Spray-Dried Chitosan Hydrogel Particles as a Potential Delivery System for Benzydamine Hydrochloride
Abstract
:1. Introduction
2. Results and Discussion
2.1. Average Sizes, Yield, and Encapsulation Efficiency of Spray-Dried Gel-Based Particles
2.2. Morphology of Empty and Loaded with BHCl Particles
2.3. Physicochemical Characterization
2.4. In Vitro Mucoadhesion and Drug Release Characterization
2.4.1. In Vitro Mucoadhesion Study with Bratford Reagent
2.4.2. In Vitro Drug Release Experiment in Simulated Saliva Buffer
3. Conclusions
4. Materials and Methods
4.1. Materials
4.2. Chitosan Spray-Dried Particles
4.2.1. Size and Morphology
4.2.2. Physicochemical Characterization
4.2.3. Yield and Encapsulation Efficiency
4.2.4. In Vitro Characterization
In Vitro Mucoadhesion Study
In Vitro Drug Release Kinetics
4.2.5. Mathematical Analysis of the Experimental Data
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jiang, W.; Cai, Y.; Li, H. Chitosan-based spray-dried mucoadhesive microspheres for sustained oromucosal drug delivery. Powder Technol. 2017, 312, 124–132. [Google Scholar] [CrossRef]
- Mehravaran, M.; Haeri, A.; Rabbani, S.; Mortazavi, S.A.; Torshabi, M. Preparation and characterization of benzydamine hydrochloride-loaded lyophilized mucoadhesive wafers for the treatment of oral mucositis. J. Drug Deliv. Sci. Technol. 2022, 78, 103944. [Google Scholar] [CrossRef]
- Tuğcu-Demiröz, F.; Saar, S.; Kara, A.; Yıldız, A.; Tunçel, E.; Acartürk, F. Development and characterization of chitosan nanoparticles loaded nanofiber hybrid system for vaginal controlled release of benzydamine. Eur. J. Pharm. Sci. 2021, 161, 105801. [Google Scholar] [CrossRef]
- Pechová, V.; Gajdziok, J.; Muselík, J.; Vetchý, D. Development of orodispersible films containing benzydamine hydrochloride using a modified solvent casting method. AAPS PharmSciTech 2018, 19, 2509–2518. [Google Scholar] [CrossRef] [PubMed]
- Viraneva, A.; Marudova, M.; Milenkova, S.; Grigorov, A.; Yovcheva, T. Investigation of Polyelectrolyte Multilayers Deposited on Biodegradable Corona-Charged Substrates Used as Drug Delivery Systems. Coatings 2024, 14, 85. [Google Scholar] [CrossRef]
- Milenkova, S.; Pilicheva, B.; Uzunova, Y.; Yovcheva, T.; Marudova, M. Casein Microgels as Benzydamine Hydrochloride Carriers for Prolonged Release. Materials 2022, 15, 1333. [Google Scholar] [CrossRef]
- Wieland, S.; Balmes, A.; Bender, J.; Kitzinger, J.; Meyer, F.; Ramsperger, A.; Roeder, F.; Temgelmann, C.; Wimmer, B.; Laforsch, C.; et al. From properties to toxicity: Comparing microplastics to other airborne microparticles. J. Hazard. Mater. 2022, 428, 128151. [Google Scholar] [CrossRef] [PubMed]
- Estevinho, B. Application of Biopolymers in Controlled Delivery Systems for Nutraceutical Products and Functional Foods. In Biopolymers in Nutraceuticals and Functional Foods; Royal Society of Chemistry: London, UK, 2022; pp. 457–487. [Google Scholar]
- Das, A.; Ringu, T.; Ghosh, S.; Pramanik, N. A comprehensive review on recent advances in preparation, physicochemical characterization, and bioengineering applications of biopolymers. Polym. Bull. 2022, 80, 7247–7312. [Google Scholar] [CrossRef] [PubMed]
- Rosellini, E.; Cascone, M. Microfluidic Fabrication of Natural Polymer-Based Scaffolds for Tissue Engineering Applications: A Review. Biomimetics 2023, 8, 74. [Google Scholar] [CrossRef] [PubMed]
- Bashir, S.; Hina, M.; Iqbal, J.; Rajpar, A.H.; Mujtaba, M.A.; Alghamdi, N.A.; Wageh, S.; Ramesh, K.; Ramesh, S. Fundamental Concepts of Hydrogels: Synthesis, Properties, and Their Applications. Polymers 2020, 12, 2702. [Google Scholar] [CrossRef]
- Niu, Y.; Wu, J.; Kang, Y.; Sun, P.; Xiao, Z.; Zhao, D. Recent advances of magnetic chitosan hydrogel: Preparation, properties and applications. Int. J. Biol. Macromol. 2023, 247, 125722. [Google Scholar] [CrossRef] [PubMed]
- Khan, T.A.; Azad, A.K.; Fuloria, S.; Nawaz, A.; Subramaniyan, V.; Akhlaq, M.; Safdar, M.; Sathasivam, K.V.; Sekar, M.; Porwal, O.; et al. Chitosan-Coated 5-Fluorouracil Incorporated Emulsions as Transdermal Drug Delivery Matrices. Polymers 2021, 13, 3345. [Google Scholar] [CrossRef]
- El Itawi, H.; Fadlallah, S.; Allais, F.; Perré, P. Green assessment of polymer microparticles production processes: A critical review. Green Chem. 2022, 24, 4237–4269. [Google Scholar] [CrossRef]
- Santos, D.; Maurício, A.; Sencadas, V.; Santos, J.; Fernandes, M.; Gomes, P. Spray drying: An overview. In Biomaterials—Physics and Chemistry—New Edition; IntechOpen: London, UK, 2018; pp. 9–35. [Google Scholar]
- Oluwatosin, S.; Tai, S.; Fagan-Endres, M. Sucrose, maltodextrin and inulin efficacy as cryoprotectant, preservative and prebiotic–towards a freeze dried Lactobacillus plantarum topical probiotic. Biotechnol. Rep. 2022, 33, e00696. [Google Scholar] [CrossRef] [PubMed]
- Zuccari, G.; Alfei, S. Development of Phytochemical Delivery Systems by Nano-Suspension and Nano-Emulsion Techniques. Int. J. Mol. Sci. 2023, 24, 9824. [Google Scholar] [CrossRef]
- Zahariev, N.; Marudova, M.; Milenkova, S.; Uzunova, Y.; Pilicheva, B. Casein Micelles as Nanocarriers for Benzydamine Delivery. Polymers 2021, 13, 4357. [Google Scholar] [CrossRef] [PubMed]
- Gelfuso, G.; Gratieri, T.; Simao, P.; de Freitas, L.; Lopez, R. Chitosan microparticles for sustaining the topical delivery of minoxidil sulphate. J. Microencapsul. 2011, 28, 650–658. [Google Scholar] [CrossRef]
- Wei, Y.; Huang, Y.; Cheng, K.; Song, Y. Investigations of the influences of processing conditions on the properties of spray dried chitosan-tripolyphosphate particles loaded with theophylline. Sci. Rep. 2020, 10, 1155. [Google Scholar] [CrossRef]
- Li, X.; Guo, Q.; Zheng, X.; Kong, X.; Shi, S.; Chen, L.; Zhao, X.; Wei, Y.; Qian, Z. Preparation of honokiol-loaded chitosan microparticles via spray-drying method intended for pulmonary delivery. Drug Deliv. 2009, 16, 160–166. [Google Scholar] [CrossRef]
- Sinsuebpol, C.; Chatchawalsaisin, J.; Kulvanich, P. Preparation and in vivo absorption evaluation of spray dried powders containing salmon calcitonin loaded chitosan nanoparticles for pulmonary delivery. Drug Des. Dev. Ther. 2013, 7, 861–873. [Google Scholar]
- Malamatari, M.; Somavarapu, S.; Kachrimanis, K.; Buckton, G.; Taylor, K. Preparation of respirable nanoparticle agglomerates of the low melting and ductile drug ibuprofen: Impact of formulation parameters. Powder Technol. 2017, 308, 123–134. [Google Scholar] [CrossRef]
- Esyanti, R.; Zaskia, H.; Amalia, A.; Nugrahapraja, D. Chitosan nanoparticle-based coating as post-harvest technology in banana. J. Phys. Conf. Ser. 2019, 1204, 012109. [Google Scholar] [CrossRef]
- Li, J.; Huang, Q. Rheological properties of chitosan–tripolyphosphate complexes: From suspensions to microgels. Carbohydr. Polym. 2012, 87, 1670–1677. [Google Scholar] [CrossRef]
- Babakhani, A.; Sartaj, M. Synthesis, characterization, and performance evaluation of ion-imprinted crosslinked chitosan (with sodium tripolyphosphate) for cadmium biosorption. J. Environ. Chem. Eng. 2022, 10, 107147. [Google Scholar] [CrossRef]
- Hashad, R.; Ishak, R.; Fahmy, S.; Mansour, S.; Geneidi, A. Chitosan-tripolyphosphate nanoparticles: Optimization of formulation parameters for improving process yield at a novel pH using artificial neural networks. Int. J. Biol. Macromol. 2016, 86, 50–58. [Google Scholar] [CrossRef] [PubMed]
- Pereira, M.; Honório, L.; Lima-Júnior, C.; Silva Filho, E.; Gaslain, F.; Rigaud, B.; Fonseca, M.; Jaber, M. Modulating the structure of organofunctionalized hydroxyapatite/tripolyphosphate/chitosan spheres for dye removal. J. Environ. Chem. Eng. 2020, 8, 103980. [Google Scholar] [CrossRef]
- Robla, S.; Calviño, R.; Ambrus, R.; Csaba, N. A ready-to-use dry powder formulation based on protamine nanocarriers for pulmonary drug delivery. Eur. J. Pharm. Sci. 2023, 185, 106442. [Google Scholar] [CrossRef]
- Bruni, G.; Berbenni, V.; Milanese, C.; Girella, A.; Cofrancesco, P.; Bellazzi, G.; Marini, A. Physico-chemical characterization of anhydrous D-mannitol. J. Therm. Anal. Calorim. 2009, 95, 871–876. [Google Scholar] [CrossRef]
- Ferrero, F.; Periolatto, M. Antimicrobial finish of textiles by chitosan UV-curing. J. Nanosci. Nanotechnol. 2012, 12, 4803–4810. [Google Scholar] [CrossRef]
- Barreneche, C.; Gil, A.; Sheth, F.; Fernández, A.; Cabeza, L. Effect of d-mannitol polymorphism in its thermal energy storage capacity when it is used as PCM. Sol. Energy 2013, 94, 344–351. [Google Scholar] [CrossRef]
- Altay Benetti, A.; Bianchera, A.; Buttini, F.; Bertocchi, L.; Bettini, R. Mannitol Polymorphs as Carrier in DPIs Formulations: Isolation Characterization and Performance. Pharmaceutics 2021, 13, 1113. [Google Scholar] [CrossRef]
- Buanz, A.; Gurung, M.; Gaisford, S. Crystallisation in printed droplets: Understanding crystallisation of d-mannitol polymorphs. CrystEngComm 2019, 21, 2212–2219. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, J.; Hu, A.; Nie, T.; Cheng, Z.; Liu, W. A Critical Review on Engineering of d-Mannitol Crystals: Properties, Applications, and Polymorphic Control. Crystals 2022, 12, 1080. [Google Scholar] [CrossRef]
- Sharma, V.; Kalonia, D. Effect of vacuum drying on protein-mannitol interactions: The physical state of mannitol and protein structure in the dried state. AAPS PharmSciTech 2004, 5, 58–69. [Google Scholar] [PubMed]
- Lee, Y.; Wu, J.; Yang, M.; Young, P.; van den Berg, F.; Rantanen, J. Particle size dependence of polymorphism in spray-dried mannitol. Eur. J. Pharm. Sci. 2011, 44, 41–48. [Google Scholar] [CrossRef] [PubMed]
- Katsarov, P.; Pilicheva, B.; Uzunova, Y.; Gergov, G.; Kassarova, M. Chemical cross-linking: A feasible approach to prolong doxylamine/pyridoxine release from spray-dried chitosan microspheres. Eur. J. Pharm. Sci. 2018, 123, 387–394. [Google Scholar] [CrossRef] [PubMed]
- Abruzzo, A.; Bigucci, F.; Cerchiara, T.; Cruciani, F.; Vitali, B.; Luppi, B. Mucoadhesive chitosan/gelatin films for buccal delivery of propranolol hydrochloride. Carbohydr. Polym. 2012, 87, 581–588. [Google Scholar] [CrossRef] [PubMed]
- Jaipal, A.; Pandey, M.; Charde, S.; Raut, P.; Prasanth, K.; Prasad, R. Effect of HPMC and mannitol on drug release and bioadhesion behavior of buccal discs of buspirone hydrochloride: In-vitro and in-vivo pharmacokinetic studies. Saudi Pharm. J. 2015, 23, 315–326. [Google Scholar] [CrossRef] [PubMed]
- Pilicheva, B.; Uzunova, Y.; Marudova, M. Polyelectrolyte Multilayer Films as a Potential Buccal Platform for Drug Delivery. Polymers 2022, 14, 734. [Google Scholar] [CrossRef] [PubMed]
- Corsaro, C.; Neri, G.; Mezzasalma, A.M.; Fazio, E. Weibull Modeling of Controlled Drug Release from Ag-PMA Nanosystems. Polymers 2021, 13, 2897. [Google Scholar] [CrossRef]
Sample Code | Sample Composition | Average Size, µm | PDI |
---|---|---|---|
C1 | 0.1% Chitosan | 1.83 ± 0.02 | 0.37 ± 0.03 |
C2 | 0.2% Chitosan | 2.40 ± 0.34 | 0.26 ± 0.02 |
C3 | 0.3% Chitosan | 2.49 ± 0.11 | 0.22 ± 0.01 |
CN1 | 0.2% Ch + 0.05% NaTPP | 3.00 ± 0.11 | 0.19 ± 0.02 |
CN2 | 0.2% Ch + 0.10% NaTPP | 3.03 ± 0.61 | 0.26 ± 0.03 |
CN3 | 0.2% Ch + 0.50% NaTPP | 3.74 ± 0.47 | 0.31 ± 0.02 |
CM1 | 0.2% Ch, Ch:Mannitol = 1:5 | 4.17 ± 0.15 | 0.18 ± 0.02 |
CM2 | 0.2% Ch, Ch:Mannitol = 1:7.5 | 6.56 ± 0.20 | 0.21 ± 0.03 |
CM3 | 0.2% Ch, Ch:Mannitol = 1:10 | 8.84 ± 0.38 | 0.51 ± 0.04 |
Sample Code | Sample Composition | Yield, % | EE, % |
---|---|---|---|
BC1 | 0.1% Chitosan + 0.05% BHCl | 17.2 | 11.84 ± 0.23 |
BC2 | 0.2% Chitosan + 0.1% BHCl | 22.7 | 20.98 ± 0.06 |
BC3 | 0.3% Chitosan +0.15% BHCl | 21.8 | 23.13 ± 0.04 |
BCN1 | 0.2% Ch + 0.05% NaTPP + 0.1% BHCl | 20.60 | 15.67 ± 0.06 |
BCN2 | 0.2% Ch + 0.1% NaTPP + 0.1% BHCl | 14.49 | 20.49 ± 0.05 |
BCN3 | 0.2% Ch + 0.5% NaTPP + 0.1% BHCl | 18.49 | 8.73 ± 0.06 |
BCM1 | 0.2% Ch 1:5 Mannitol + 0.1% BHCl | 21.13 | 17.22 ± 0.04 |
BCM2 | 0.2% Ch 1:7.5 Mannitol + 0.1% BHCl | 38.79 | 16.84 ± 0.09 |
BCM3 | 0.2% Ch 1:10 Mannitol + 0.1% BHCl | 20.05 | 14.73 ± 0.05 |
Sample | Adsorbed Mucin, % |
---|---|
BC2 | 90.52 ± 0.45 |
BCN2 | 89.86 ± 3.44 |
BCM2 | 93.31 ± 0.45 |
Sample | τ, min | β | R2 | Released Drug after 24 h, % |
---|---|---|---|---|
BC2 | 20 ± 4 | 0.70 ± 0.04 | 0.99 | 93.2 ± 4.1 |
BCN2 | 50 ± 14 | 0.81 ± 0.06 | 0.98 | 89.6 ± 9.0 |
BCM2 | 34 ± 9 | 0.94 ± 0.07 | 0.99 | 100.0 ± 0.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Milenkova, S.; Ambrus, R.; Mukhtar, M.; Pilicheva, B.; Marudova, M. Spray-Dried Chitosan Hydrogel Particles as a Potential Delivery System for Benzydamine Hydrochloride. Gels 2024, 10, 189. https://doi.org/10.3390/gels10030189
Milenkova S, Ambrus R, Mukhtar M, Pilicheva B, Marudova M. Spray-Dried Chitosan Hydrogel Particles as a Potential Delivery System for Benzydamine Hydrochloride. Gels. 2024; 10(3):189. https://doi.org/10.3390/gels10030189
Chicago/Turabian StyleMilenkova, Sofia, Rita Ambrus, Mahwash Mukhtar, Bissera Pilicheva, and Maria Marudova. 2024. "Spray-Dried Chitosan Hydrogel Particles as a Potential Delivery System for Benzydamine Hydrochloride" Gels 10, no. 3: 189. https://doi.org/10.3390/gels10030189
APA StyleMilenkova, S., Ambrus, R., Mukhtar, M., Pilicheva, B., & Marudova, M. (2024). Spray-Dried Chitosan Hydrogel Particles as a Potential Delivery System for Benzydamine Hydrochloride. Gels, 10(3), 189. https://doi.org/10.3390/gels10030189