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Abstract: Cellulose hydrogels, formed either through physical or chemical cross-linking into a
three-dimensional network from cellulose or its derivatives, are renowned for their exceptional
water absorption capacities and biocompatibility. Rising demands for sustainable materials have
spurred interest in cellulose hydrogels, attributed to their abundant supply, biodegradability, and
non-toxic nature. These properties highlight their extensive potential across various sectors including
biomedicine, the food industry, and environmental protection. Cellulose hydrogels are particularly
advantageous in applications such as drug delivery, wound dressing, and water treatment. Recent
large-scale studies have advanced our understanding of cellulose preparation and its applications.
This review delves into the fundamental concepts, preparation techniques, and current applications
of cellulose hydrogels in diverse fields. It also discusses the latest advances in nano-lignin-based
hydrogels, providing a comprehensive overview of this promising material and offering insights and
guidance for future research and development.

Keywords: cellulose hydrogels; biocompatibility; sustainable materials; preparation techniques;
application

1. Introduction

Over recent decades, the field of materials science has undergone significant transfor-
mations, increasingly emphasizing sustainability and green chemistry [1–5]. This period
has seen the extensive development of advanced and innovative nanomaterials, which have
revolutionized traditional approaches across multiple industries and expanded the bound-
aries of previous research [6]. In this context, bio-based nanomaterials [7] have attracted
considerable attention due to their renewability, strong biocompatibility, and exceptional
biodegradability [8]. Among these, cellulose stands out as one of the most abundant
natural polymers on Earth, playing a crucial role in driving sustainable technological
advancements [9].

Cellulose, a linear polysaccharide composed of D-glucose units linked by β(1→4) gly-
cosidic bonds, features anhydroglucose units endowed with active hydroxyl groups at the
C2, C3, and C6 positions [10]. These groups exhibit significant reactivity, enabling cellulose
to undergo diverse chemical modifications and to interact with various materials, thereby
facilitating the formation of hydrogels [11]. The inherent properties of cellulose, such as its
abundance, renewability, biocompatibility, and biodegradability, render it an exceptional
substrate for hydrogel development, surpassing other biomaterials [12]. The molecular
architecture of cellulose, characterized by reactive hydroxyl groups, is critical for hydrogel
synthesis, enabling essential processes such as cross-linking and functionalization that
tailor hydrogel properties to specific applications [13].

In recent years, cellulose hydrogels, a type of cellulose-based biomaterial, have
emerged as a focal point of research [14–17]. These hydrogels consist of cellulose polymers,
which derive their unique physical [18] and chemical [19] properties from the inherent
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structure of cellulose and the novel attributes imparted through advanced technological
modifications. The preparation of cellulose hydrogels typically involves methods such
as physical, chemical, and radiation crosslinking, each method distinctly influencing the
hydrogel’s structural and functional characteristics [20]. The properties of these hydrogels
are critically dependent on the size, shape, and texture of their internal nanostructures [21],
which are optimized by precisely controlling the extent of integration within the polymer
matrix [22]. Nanocellulosic materials, such as cellulose nanofibrils (CNFs) and cellulose
nanocrystals (CNCs), have garnered widespread attention due to their exceptional me-
chanical properties, biodegradability, and versatility [23]. Cellulose nanofibrils are long,
flexible fibers, typically several micrometers in length and a few nanometers in diameter,
making them ideal for reinforcing hydrogels and enhancing their mechanical strength [24].
Additionally, the development and application of nanocellulose-based materials, particu-
larly hybrid composites that incorporate nanocellulose polymers, have garnered extensive
research interest [25–29]. These hybrid composites exhibit unique physical and chemical
properties and broad biological functionality due to their natural polymer nanostructure,
leading to a wide range of applications [30] such as personal care products [31], noble-
metal sorption [32], bone regeneration self-cleaning textile [33], the food industry [34],
electronics [35–37], energy harvesting [38], biomedicine [39–42], and environmental pro-
tection [43,44]. This underscores the versatile utility of nanocellulose-based materials in
advancing sustainable solutions [45,46].

With increasing advanced research on cellulose hydrogels [47], the evolution of their
preparation technology has become especially crucial [48]. Cellulose, which is rich in
hydroxyl groups, possesses a unique chemical structure that provides an ideal foundation
for developing hydrogels with distinctive structures and properties. Utilizing ultrasonic
assistance generates fine bubbles and high-energy regions between cellulose molecules,
enhancing the efficiency and uniformity of chemical reactions. This leads to the production
of hydrogels with consistent quality and specialized functions [49]. The acid-treated mesh
employs a mild acid to adjust the molecular weight and surface characteristics without
compromising the main cellulose chain, thereby improving the formation capabilities and
stability of the hydrogels. In situ polymerization within the cellulose matrix initiates a
reaction that forms a densely cross-linked network, enhancing the mechanical strength and
durability of the hydrogel [50]. Janus hybrid hydrogels broaden the application spectrum
by incorporating materials with dual properties into the cellulose matrix, imparting unique
interfacial activity and versatility [51]. Furthermore, 3D printing has revolutionized the
flexibility and precision of hydrogel structure design, enabling the fabrication of customized
and intricate hydrogel structures [52]. These advanced preparation techniques have not
only significantly optimized the structural and functional properties of cellulose hydrogels
but also expanded their potential applications across diverse fields such as drug delivery,
tissue engineering, and environmental remediation.

Cellulose hydrogels has become a popular research focus, making it essential to
summarize the latest advancements in cellulose hydrogels. This paper provides a compre-
hensive review of the basic concepts, advanced preparation techniques, and performance
optimization methods of cellulose hydrogels, as well as their current applications and
potential in various emerging fields. The review begins by defining cellulose hydrogels,
highlighting their structural characteristics and how they differ from traditional hydrogels.
It then proceeds to summarize innovations in cellulose hydrogel preparation techniques,
including chemical, physical, and radiation cross-linking. These developments not only
enhance the structural and functional attributes of the hydrogels but also expand their ap-
plication prospects in environmental, biomedical, and industrial domains. The objective of
this review is to offer valuable insights and guidance for future research and development
in this promising area.
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2. Basic Properties and Chemical Structure of Cellulose

Cellulose, a prevalent organic polymer, is abundantly found in nature and plays a
pivotal role in numerous fields due to its unique physicochemical properties and biocompat-
ibility. This section delves into the molecular structure and physicochemical characteristics
of cellulose, providing a foundational understanding that is essential for exploring its
applications in hydrogel preparation.

Cellulose consists of long-chain polysaccharides composed of β-D-glucose units
(Figure 1a), interconnected through β-(1→4)-glycosidic bonds(Figure 1b). The presence of
these β-glycosidic bonds makes cellulose insoluble in water [53], a property essential for its
stability and utility. The fundamental repeating unit within cellulose molecules, known as
cellobiose, forms linear polymer chains. These chains exhibit a dual structural arrangement:
highly ordered crystalline regions and less-structured amorphous regions [54]. This organi-
zation is facilitated by hydrogen bonding and van der Waals forces, endowing cellulose
with its distinctive mechanical strength and chemical stability [55].

Figure 1. Chemical structures relevant to cellulose hydrogel: (a) the chemical structure of β-D-
pyranoglucose, (b) the chemical structure of cellulose, and (c) a comparative diagram between
natural wood and elastic wood (Reprinted with permission from the reference [56]. Copyright © 2020
American Chemical Society).



Gels 2024, 10, 365 4 of 25

The physicochemical properties of natural cellulose (Figure 1c) include renewability,
biodegradability, non-toxicity, and chemical stability. These attributes collectively position
cellulose as an ideal substrate for biomaterials preparation. However, the inherent high
porosity of natural wood cellulose [57], as demonstrated by previous studies, contributes
to brittleness and reduced resilience. Notably, the chemical modification of cellulose,
especially targeting its hydroxyl groups, serves as a strategic approach to enhance its
solubility, hydrophilicity, and biocompatibility [58].

An illustrative example of these modifications is the development of elastic mem-
ory wood, depicted in Figure 1c. This innovative material demonstrates the reversible
movement of water [59] between the hydrophilic cellulose nanofiber-based cell walls and
the gel-like substances within the lumens, thereby enhancing resilience and flexibility.
Such chemical modifications underscore the adaptability of cellulose, tailoring its prop-
erties to meet specific application needs and significantly broadening its applications in
biomaterial engineering and related fields.

3. Factors Effecting the Properties of Cellulose Hydrogels

This section delves into the environmental and procedural factors that critically influ-
ence the physical and chemical properties of cellulose hydrogels. These factors encompass
a range of conditions, including pH levels, temperature settings, and the choice of solvents,
which can significantly alter the cellulose’s solubility and the efficacy of the hydrogel’s
crosslinking process. Understanding and controlling these variables is essential for tailoring
the hydrogel’s functionality and stability, ensuring that they meet specific performance
criteria required for various applications in fields such as biomedicine, environmental
science, and materials engineering.

3.1. Solvent Selection and Cellulose Dissolution

Solvent selection is pivotal in the dissolution of cellulose, the initial step in cellulose
hydrogel preparation. Due to its limited solubility [60] in most solvents, choosing effective
solvent systems is crucial to enhancing cellulose solubility and consequently influencing
the structure and properties of the resulting hydrogels [61]. Traditional solvents such
as N-Methylmorpholine N-oxide (NMMO) ionic liquids [62,63], aqueous solutions con-
taining alkali metal hydroxides [64,65], and LiOH/DMSO alkali/polar organic solvent
systems have been extensively employed. There is also a growing interest in using green
solvents, like deep eutectic solvents, which effectively dissolve cellulose while preserving
its biocompatibility and biodegradability—key considerations in hydrogel preparation.

3.2. Swelling Kinetics, Temperature, and pH Effects

The formulation of cellulose hydrogels is significantly influenced by pH levels, tem-
perature settings, and swelling kinetics [66]. Higher temperatures facilitate cellulose disso-
lution and speed up crosslinking reactions, creating a stable hydrogel network swiftly [67].
On the other hand, pH affects the cellulose’s ionization state, impacting its structural
integrity and interactions within the hydrogel matrix. Swelling kinetics, which describe the
hydrogel’s water absorption rate, are crucial for applications requiring rapid hydration,
such as agricultural hydrogels [68] or medical dressings [48]. For example, in wound
healing hydrogels, a slightly acidic pH (close to skin’s pH of 5.5) and lower temperatures
help ensure bio-compatibility and sufficient mechanical strength [69]. Adjusting these
factors optimizes hydrogel properties like mechanical strength, pore size, degradation
rates, and swelling behavior, crucial for diverse applications from drug delivery to tissue
scaffolds. Proper management of these parameters ensures the hydrogels meet specific
needs, enhancing their functionality across various applications.
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3.3. Crosslinking Methods

Crosslinking methods play a pivotal role in determining the structural and functional
characteristics of hydrogels [70]. Table 1 presents a summary of cellulose hydrogel prop-
erties based on different preparation techniques. These methods, which include physical,
chemical, and irradiation techniques, directly influence the network architecture of hydro-
gels, thereby affecting their mechanical strength, elasticity, and response to environmental
stimuli [71]. For instance, chemical crosslinking often results in a more stable and rigid
structure due to the formation of covalent bonds between polymer chains, which is ideal
for applications requiring durability, such as implantable devices or load-bearing tissue
scaffolds [72]. In contrast, physical crosslinking, which involves weaker, reversible bonds,
allows for more flexible hydrogel networks that can respond dynamically to changes in pH
or temperature, making them suitable for drug delivery systems where controlled release
is necessary [73]. Irradiation crosslinking offers a unique advantage by allowing precise
control over the crosslink density without the addition of chemical crosslinkers, reducing
potential toxicity and making hydrogels safer for biomedical applications [74]. The choice
of crosslinking method, therefore, must align with the intended application of the hydrogel,
as it significantly affects the material’s performance and suitability for specific uses.

Table 1. Summary of cellulose hydrogel properties based on different preparation techniques.

Method Category Cross-Linking Mechanism Specific Method Physico-Chemical Properties Ref.

Chemical
Cross-Linking Methods

Microcrystalline Hydrate
Epichlorohydrin (ECH)

Water content: 76–84%,
Mechanical strength:

21 ± 3 MPa, Fracture energy:
2.6 ± 0.4 MJ m−3

[14]

Agarose Transition from
Mono-Succinylation to

Cross-Linking

Succinic Anhydride
(SA)

Transparency: 89%, Strength:
815 g/cm2 Water content: 94.7% [75]

Formation of Ester Bonds
between Two Polymer

Chains
Citric Acid (CA)

Water content: 13.5–38.4%,
Mechanical strength:
1.09 ± 0.11 MPa, Cell
compatibility, Blood

compatibility, and pH sensitivity

[69]

Dual Cross-Linking of
Nanocrystals

Gelatin Methacrylate
(GelMA) and Ionically

Cross-Linked
Hyaluronic Acid (HA)

Porosity (>90%) and Average
Pore Size: 130–296 µm

Mechanical strength: 10 kPa,
Enhancing tissue regeneration

[76]

Physical Cross-Linking
Methods

Cellulose Nanocrystal
Interface Adsorption and

Hydrogen Bonding
Ultrasonication Viscosity: 998.46 Pa.s

Antioxidant [77]

Strong Hydrogen Bond
Interaction Freeze-Casting Method

Immobilized Papain pH,
Thermal Stability, and Storage

Stability
[78]

Radiation
Cross-Linking Methods

CMC and Gelatin
Cross-Linking γ-Ray Radiation Mechanical strength: 20–100 kPa

Cell viability [79]

Glycosidic Bond Cleavage
in Hydroxypropyl

Methylcellulose Main
Chain

Electron Beam
Radiation

Temperature Sensitivity,
Biodegradability [80]
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Conventional Preparation Techniques for Cellulose Hydrogels:
The preparation of cellulose hydrogels represents a prominent research area in materi-

als science, largely attributed to their distinctive properties and broad application potential.
The preparation process employs a variety of techniques that address the specific challenges
of cellulose solubilization and cross-linking. These techniques include the use of solvent
systems for dissolving cellulose, along with diverse cross-linking methods such as chemical,
physical, and radiation-based approaches. Figure 2a shows a novel surface engineering
strategy is employed for extracting cellulose elementary fibrils from various cellulosic
sources. This method entails a two-step process of swelling and esterification, utilizing
alkali/DMSO systems as pseudosolvents [81]. This approach selectively disrupts hydrogen
bonds and van der Waals interactions among the less-accessible fibril surfaces, forming
highly swollen networks without dissolution or degradation. Subsequent esterification of
exposed hydroxyl groups, facilitated by the addition of cyclic anhydrides, results in the
production of cellulose nanofibers (CNFs) bearing carboxyl moieties. Importantly, these
processes are executed concurrently in a one-pot reaction, which transforms cellulose pulp
into a stable CNF suspension [82]. The stability of this suspension is attributed to the elec-
trostatic repulsions among the CNFs, preventing agglomeration and ensuring their uniform
dispersion throughout the suspension. This surface engineering strategy provides a promis-
ing route for the efficient extraction and utilization of cellulose nanofibers, with potential
applications spanning materials science, biotechnology, and environmental engineering.

3.4. Chemical Cross-Linking Methods

Chemical cross-linking involves introducing cross-linkers, such as epoxides [83],
isocyanates [84], or aldehydes [85], to form a stable three-dimensional network [86,87].
These cross-linkers react with the hydroxyl groups on cellulose molecular chains [88],
forming stable covalent bonds [89], significantly enhancing the mechanical strength and
stability of the resulting hydrogel.

Although chemically cross-linked cellulose hydrogels exhibit improved performance
characteristics, the selection and concentration of cross-linkers are crucial. Excessive or
inappropriate use of cross-linkers can lead to toxicity, potentially posing risks to biological
organisms. For example, certain isocyanates are known for their cytotoxic effects, which can
limit their application in biomedical fields. Thus, it is imperative to develop cross-linking
methods that not only enhance mechanical properties but also ensure biocompatibility.

Current research in this area focuses on identifying new, less toxic, and environmen-
tally friendly cross-linkers, as well as optimizing cross-linking conditions to maintain
desired properties without compromising safety. Advances in this field promise to yield
new materials that are robust, durable, and safe for diverse applications, including in
medical and environmentally sustainable technologies.

3.5. Physical Cross-Linking Methods

Physical cross-linking methods are essential for stabilizing cellulose chains, primar-
ily leveraging physical forces such as hydrogen bonding, hydrophobic interactions, or
charge interactions, rather than forming covalent bonds [90]. Notable techniques include
freeze–thawing [91], thermogelation [92], and ionic cross-linking [93], each contributing
significantly to the structural integrity of cellulose-based materials. For example, the freeze–
thawing process facilitates physical cross-linking among cellulose molecules via repeated
cycles of freezing and thawing, which though generally result in lower mechanical strength
compared to chemical cross-links, provide excellent biocompatibility and adjustability [94].
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Figure 2. Preparation techniques for cellulose hydrogels: (a) solvent systems and cellulose disso-
lution, chemical cross-linking techniques, and exfoliation of cellulose elementary fibrils through
a dual-step method, and sophisticated cellulose material assembly through surface deionization
(Reprinted with permission from the reference [81]. Copyright © 2024 Wiley-VCH). (b,c) Physi-
cal cross-linking methods (Reprinted with permission from the reference [73]. Copyright © 2020
American Chemical Society).



Gels 2024, 10, 365 8 of 25

Moreover, scientists devised a freeze cross-linking technique to create a physically
cross-linked hydrogel with significant compressive strength and recoverability, employing
carboxymethyl cellulose nanofiber (CMCF) and citric acid (CA) (Figure 2b). The process
of CMCF hydrogel formation entailed the addition of an aqueous solution of CA to a
frozen CMCF sol, succeeded by thawing the sol [73]. The principle and procedure for
preparation is presented in Figure 2c. This technique enhances the compressive strength
and recoverability of the hydrogel [73]. Additionally, the hydrogel’s properties, including its
efficacy as an adsorbent for removing toxic substances, have been thoroughly investigated.

Given the edibility and high biodegradability of CMCF and CA, the resultant hydro-
gels are considered non-toxic and environmentally friendly. Crucially, this method does
not require complex procedures or synthetic reagents, utilizing only CMCF, CA, and water,
thus promoting its practicality and sustainability.

3.6. Radiation Cross-Linking Methods

Radiation cross-linking [74] involves the use of γ-rays, electron beams [95], or ultravi-
olet light [96] to irradiate cellulose, thereby initiating free radical reactions that facilitate
cross-linking. This technique enables the preparation of cellulose hydrogels without the
need for chemical cross-linkers, thus avoiding potential toxicity concerns. Hydrogels
produced via radiation cross-linking exhibit exceptional transparency, uniformity, and
mechanical properties, making them particularly suitable for applications in 3D printing
technology [97]. However, the efficacy of this method depends critically on the precise con-
trol of the radiation source, dosage, and exposure duration to ensure optimal performance
and safety of the hydrogels.

The various preparation techniques for cellulose hydrogels each offer unique ad-
vantages and limitations [98,99]. The selection of the appropriate method is contingent
upon the specific requirements of the intended application. As demands for environ-
mental protection and biocompatibility increase, the development of more efficient and
environmentally friendly preparation techniques remains a key focus of future research.
Additionally, thorough investigations into different preparation methods can enhance the
performance of cellulose hydrogels, broadening their application prospects in fields such
as biomedicine, environmental protection, and beyond.

4. Performance Evaluation of Cellulose Hydrogels

The performance evaluation of cellulose hydrogels is crucial to ascertain their effi-
cacy across diverse applications. This evaluation primarily encompasses assessments of
mechanical properties, water absorption capabilities, and tests for biocompatibility and
biodegradability.

4.1. Mechanical Properties of Cellulose Hydrogels

The mechanical properties of cellulose hydrogels are critical in a variety of applica-
tions [100–102], particularly in biomedical [103] and engineering [69] applications where
materials must exhibit specific strengths and elasticity. Mechanical properties are evaluated
using methods such as compression [104], tension, and shear characterization. These analy-
ses provide crucial data on the strength [105], elastic modulus [106], elongation at break,
and toughness of cellulose hydrogel. The factors such as cross-linking density, molecular
weight distribution [107], and preparation methods influence the mechanical properties of
cellulose hydrogel. Enhancements in mechanical performance are achieved by optimizing
the degree of cross-linking and incorporating reinforcing fillers like nanoparticles or fibers.

Photographic evidence highlights the unique characteristics of cellulose hydrogels [108],
such as thermal reversibility (Figure 3a) and remoldability (Figure 3b). The thermally re-
versible nature of these hydrogels is observed during heating-cooling cycles, allowing for
easy modification of shape when molten cellulose is introduced into molds. Their remold-
ability originates from noncovalent cross-linking, primarily via hydrogen bonding and
metal-cellulose interactions [108]. Additionally, the exceptional flexibility of the gel-glycerol
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system at −10 ◦C (Figure 3c) demonstrates its capability to withstand significant tensile
deformation and recover its original shape effectively [108].

Figure 3. Performance evaluation of cellulose hydrogel and appearance of cellulose hydrogel:
(a) photographs showing the thermal reversibility of gel glycerol, (b) photographs showing the
remodelability of gel glycerol, and (c) an extended piece of gel glycerin exhibits good tensile properties
at −10 ◦C, (d) tensile stress–strain curves of cellulose hydrogels at 25, −20, and −60 ◦C (Reprinted
with permission from the reference [108]. Copyright © 2019 Wiley-VCH). (e) Cytocompatibility test
of cellulose hydrogels [109].

Further exploration of the tensile properties of cellulose gels at different temperatures
(Figure 3d) provides deeper insights into the mechanical behavior of cellulose gels. The sol-
gel poured into custom molds at room temperature to prepare the gel (Gel-0) and the
sol-gel solidified using water as a reagent (Gel-water) exhibit varying tensile strength,
elastic modulus, and elongation at break, highlighting the influence of water content on
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mechanical performance [108]. The increase in tensile strength with additional water
is attributed to a higher cross-linking density, while a reduction in elongation at break
indicates increased rigidity of the hydrogel network, likely due to water coordination with
zinc ions. Despite the inherent mechanical limitations of physically cross-linked hydrogels,
those composed of cellulose display sufficient mechanical adequacy for use in applications
such as soft tissue replacements, thanks to their dense network of cross-links.

4.2. Water Absorption Performance

Water absorption performance is a critical parameter for cellulose hydrogels, particu-
larly when utilized as moisture-absorbing materials or in drug delivery systems [110–114].
This performance is influenced by factors such as cross-linking density [115], pore struc-
ture [116], and the hydrophilicity of the material [116], influencing the water absorption
performance, typically measured by water absorption rate [117] and water content [118],
which reflect the gel’s ability to absorb and retain moisture. By adjusting preparation
conditions, such as the type and concentration of cross-linking agents, the water absorp-
tion performance of cellulose hydrogels can be optimized to meet specific application
requirements.

4.3. Biocompatibility and Biodegradability

Biocompatibility [119] and biodegradability [120] are crucial performance metrics for
cellulose hydrogels in biomedical applications. Biocompatibility is defined as the capacity
of a substance to interact with the biological body without inducing adverse reactions or tox-
icity. This characteristic is typically evaluated through cytotoxicity tests, blood compatibility
tests, and animal experiments to ensure both safety and effectiveness (Figure 3e). Cellulose,
as a natural polymer, generally exhibits good biocompatibility [121]. Biodegradability
refers to the capacity of a material to decompose into low-molecular-weight compounds,
either within the body or in the natural environment, which is vital for minimizing environ-
mental impact and avoiding long-term negative effects in the body. The biodegradability of
cellulose hydrogels is influenced by factors such as chemical structure, cross-linking density,
and external environmental conditions like enzymes, microorganisms, and pH [122,123].
By choosing suitable preparation methods and conditions, the biodegradation rate of
hydrogels can be controlled to align with specific application needs.

Evaluating the performance of cellulose hydrogels is vital to ensure their efficacy and
safety in various applications. With continuous research and development, the creation of
new hydrogel materials with enhanced properties is expected to meet the diverse needs of
different fields.

4.4. Thermal Properties

The thermal properties of cellulose hydrogels are pivotal in determining their ap-
plicability across various environmental and biomedical settings [124]. These properties
primarily include thermal stability and thermal conductivity [108]. Thermal stability as-
sesses the ability of the hydrogel to maintain its chemical structure and mechanical integrity
under elevated temperatures, which is crucial for applications that involve sterilization
processes or outdoor usage [125]. Thermal conductivity impacts how effectively a hydrogel
can distribute or resist heat, an important factor in therapeutic applications where tempera-
ture modulation is necessary for pain relief or inflammation reduction [126]. Analyzing
these properties involves detailed testing to determine the hydrogel’s melting point, glass
transition temperature, and thermal degradation thresholds [127]. This ensures that cel-
lulose hydrogels perform reliably under different thermal conditions, whether utilized in
controlled drug delivery systems or as insulating materials in construction.



Gels 2024, 10, 365 11 of 25

5. Application Fields of Cellulose Hydrogels
5.1. Applications of Cellulose Hydrogels in Medical and Drug Delivery Fields

Cellulose hydrogels exhibit significant potential as drug delivery systems and wound
healing materials in the medical field, primarily due to their excellent biocompatibility
which minimizes systemic side effects [128,129]. In tissue engineering, cellulose hydrogels
are utilized as scaffolding materials that enhance cell attachment and proliferation, thereby
accelerating tissue regeneration. As wound dressing materials, they help maintain wound
moisture, absorb exudates, and facilitate effective gas exchange, all of which contribute to
faster healing processes.

An ε-PL-modified cellulose/γ-PGA hydrogel (CGLH) was developed employing a
double-network strategy. The researchers first synthesized CGH through chemical crosslink-
ing, followed by integration of ε-PL to enhance the hydrogel’s properties. The resulting
molecular structure of the double-network CGLH is prominently displayed, showcasing
the successful integration of the components (Figure 4a) [130]. Subsequently, extensive
investigations were conducted to assess the biocompatibility and antibacterial properties
of CGLH across various preclinical models [130]. The hypothesis was posited that CGLH
could potentially expedite the healing process of infected and critical-size wounds by
eradicating bacteria and facilitating crucial physiological processes like collagen deposi-
tion, vascularization, and cell proliferation (Figure 4b). The findings of this study suggest
promising prospects for clinical translation of the developed hydrogel products. A pH-
responsive, injectable, and self-healing hydrogel, crafted from oxidized hydroxypropyl
cellulose (Ox-HPC) and carboxymethyl chitosan (CMCS), utilizes reversible imine bonds
for its functionality (Figure 4c) [131]. This dynamic hydrogel shows enhanced drug release
in slightly acidic conditions like those around tumor cells, demonstrating its potential for
targeted drug delivery.

5.2. Applications of Cellulose Hydrogels in Environmental Engineering

Cellulose hydrogels are increasingly utilized in environmental engineering as effective
adsorbents for removing heavy metals and organic pollutants from water. These hydrogels
facilitate pollutant adsorption through various mechanisms including electrostatic interac-
tions, ion exchange, and hydrophobic interactions [132–134]. For example, carboxymethyl
cellulose nanocrystalline hydrogels bind lead ions effectively through electrostatic adsorp-
tion (Figure 5a), while high-charge-density cationic hydrogels are used to treat anionic
pollutants in wastewater [135–139]. Furthermore, innovative ultrafast photochromic materi-
als, created by embedding tungsten oxide nanodots into cellulose fibers, exhibit exceptional
photothermal conversion efficiency. This capability is particularly useful in solar-driven
water evaporation experiments (Figure 5b,c), supporting the development of solar-powered
seawater desalination technologies [140].

Cellulose hydrogels also play a crucial role in removing dyes such as methylene
blue from wastewater, utilizing physical adsorption, ion exchange, or electron-sharing
mechanisms for purification. Nanocomposite hydrogels, such as those made from car-
boxymethyl cellulose and polyacrylic acid, enhance adsorption efficiency by increasing
their specific surface area [141–147]. In soil remediation, cellulose hydrogels improve soil
quality by retaining moisture and reducing the leaching of harmful substances (Figure 5d).
These hydrogels are also employed in encapsulating fertilizers, thereby improving fertilizer
efficiency and supporting sustainable agricultural practices [148–151].
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Figure 4. Cellulose hydrogels in medical and drug delivery fields: (a) Schematic illustration depicting
the method of preparation and biomedical utilization of double-network CGLH. (b) CGLH exhibits
potential in accelerating wound healing by eliminating bacteria and promoting vascularization, cell
proliferation, and collagen deposition (Reprinted with permission from the reference [130]. Copyright
© 2023 Elsevier). (c) Cellulose-based hydrogels are pH responsive to targeted drug delivery (Reprinted
with permission from the reference [131]. Copyright © 2023 Elsevier).

Cellulose hydrogels are applied in air purification to effectively adsorb particulate
matter and toxic gases, improving air quality. Through these versatile applications, cellulose
hydrogels demonstrate their immense potential as sustainable materials in environmental
engineering [152].
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Figure 5. Cellulose hydrogels in environmental engineering fields. (a) A biodegradable solution to
remove organic dyes from water via the mechanism of adsorption of MB onto CURD/CMC adsorbent
(Reprinted with permission from the reference [153]. Copyright © 2024 Elsevier). (b,c) Picture of prac-
tical application of water vapor evaporation of composite materials under sunlight irradiation [140].
(d) Soil water retention experiment: comparison of swelling properties of hydrogel particle size ≥ 2
mm and hydrogel particle size ≤ 2 mm in soil (Reprinted with permission from the reference [68].
Copyright © 2024 Elsevier).
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5.3. Applications of Cellulose Hydrogels in Food Industry

In the food industry, cellulose hydrogels are primarily used as food additives and
packaging materials [154]. As food additives, they serve as stabilizers and thickeners,
enhancing the texture and stability of food (Figure 6a). The study examines the growth
kinetics of escherichia coli and staphylococcus aureus against hydrogel films with 2,2,6,6-
Tetramethylpiperidine-1-oxyl(TEMPO)-oxidized cellulose nanofiber/cationic copolymer,
showing a moderate bacterial colony inhibition of around 40%. The hydrogel films dis-
played significant antifungal efficiency against aspergillus niger, particularly TEMPO-
oxidized nanocellulose/cationic poly(N-isopropylacrylamide-co-acrylamide) (NATOCNF/
CPNIPAM-AM), which completely inhibited growth, demonstrating the potential of narin-
genin(NA) integrated into hydrogel films for enhanced antimicrobial effectiveness under
acidic and/or high-temperature conditions, optimizing naringenin release rates and reduc-
ing naringenin concentration on fruit surfaces by 25–50% (Figure 6b) [155].

Figure 6. Cellulose hydrogels in environmental food industry. (a) Thermo-/pH-responsive preser-
vative delivery based on TEMPO cellulose nanofiber/cationic copolymer hydrogel film in fruit
packaging, and (b) the appearance development of mangos from two cultivars, subjected to different
in vivo treatments and stored under the aforementioned conditions (Reprinted with permission from
the reference [155]. Copyright © 2021 Elsevier).

In the realm of food packaging, cellulose hydrogel-based biodegradable materials not
only effectively extend the shelf life of food but also reduce environmental pollution. Lian et al.
utilized cotton linter pulp as a cellulose source dispersed in ZnCl2/CaCl2 hydrates to form
ionically cross-linked hydrogels, which were regenerated through ethanol exchange, of-
fering a promising alternative to sustainably replace petroleum-based plastics with low
biotoxicity [156]. Additionally, TEMPO-oxidized nanofibrillated cellulose from wheat straw
was employed to synthesize pH/thermal-responsive hydrogel films of TEMPO-oxidized
nanocellulose/cationic poly(N-isopropylacrylamide-co-acrylamide)(NATOCNF/CPNIPAM-AM)
through cationic modification with poly(N-isopropylacrylamide-acrylamide) and natamycin,
establishing a novel dual stimuli-responsive preservative delivery system sensitive to cli-
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macteric fruit environmental cues using a naringenin preservative model. Ding et al. suc-
cessfully constructed a pH-responsive RC (resin/cotton) thin film using cotton fabric, PVA,
and acid-sensitive colorants. Under alkaline conditions, the film exhibits a color change
in response to pH and demonstrates excellent leak-proof properties in acidic and alkaline
environments. This preparation utilize for naked-eye detection of ethanol/cellulose-based
pH sensors, applicable for monitoring ammonia generation and indicating the freshness of
crustacean products [157].

5.4. Personal Care Products

Due to its excellent water absorption and non-irritating properties, cellulose hydrogel
is widely used in personal care products like sanitary pads, diapers, and wet wipes [158].
Sodium alginate (SA) and cellulose nanocrystals (CNC) have been ingeniously combined
to form cross-linked and semi-interpenetrating network hydrogels (SAH) with exceptional
absorbency and mechanical properties, ideal for the core of adult incontinence pads [159].
Sodium carboxymethylcellulose (NaCMC) is mixed with starch and subjected to cross-
linking using a distinctive blend of sodium trimetaphosphate (STMP) and aluminum
sulfate (AlS). Through a process of phase inversion (NaCMC-PI) followed by freeze-drying,
membranes composed of NaCMC/Starch with ideal cross-linking are produced to hinder
dissolution and breakdown.

These environmentally friendly membranes feature a microtextured surface with ex-
cellent water and blood absorption capabilities, retaining around 50% of water. The provide
an eco-friendly substitute for non-biodegradable polyacrylate hygiene items. In these prod-
ucts, it acts as an absorbent layer [160], quickly absorbing and locking in liquids to keep the
skin dry and comfortable [161]. Additionally, cellulose hydrogel is used in cosmetics as a
moisturizer and carrier, enhancing the performance and user experience of cosmetic prod-
ucts [162]. Furthermore, researchers have developed a novel cellulose hydrogel with robust
mechanical, self-healing, pH-responsive, and antibacterial properties, making it suitable
for wound dressing applications. The hydrogels are constructed using TEMPO-oxidized
cellulose nanofibers (CNFs) and polyvinyl alcohol (PVA) as the framework, combining the
distinct and complementary features of both materials (Figure 7a). Within this hydrogel
matrix, PVA serves as the primary polymer network structure due to its remarkable elas-
ticity and biocompatibility, while CNFs act as nanofillers to further enhance mechanical
strength. Moreover, to confer antibacterial and antioxidant properties to the hydrogel,
CNFs are functionalized with the natural antibiotic resveratrol (RSV) using polyethylene
glycol (PEG) as a linker prior to hydrogel formation. This integration of materials not
only enhances mechanical properties but also introduces bioactive functionalities, posi-
tioning the hydrogel as a promising candidate for advanced wound dressing applications.
The explored the adhesive properties of cellulose hydrogels to human skin, revealing their
excellent adhesion without causing harm to the skin even after prolonged use (Figure 7b).
These findings underscore the multifaceted applications of cellulose hydrogels in medical
and drug delivery fields, highlighting their potential as safe and effective materials for
various biomedical applications.

As summarized in Table 2 overview of cellulose hydrogel compositions, applications,
and performance outcomes, the diverse applications of cellulose hydrogels across various
fields, from healthcare and environmental protection to the food industry and personal
care, highlight their broad potential due to their unique properties.
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Figure 7. (a) A cellulose nanofibril-reinforced hydrogel, and the application of the hydrogel in wound
healing; (b) RPC/PB-0.5: the hydrogel is removed from human skin without residue [163].

Table 2. Overview of cellulose hydrogel compositions, applications, and performance outcomes.

Types of Cellulose Additives Application Characteristics Ref.

Natural Cellulose Magnesium Ion Medical and Drug
Delivery

Biocompatibility, antimicrobial
efficacy, accelerated wound healing [40]

Carboxymethyl
Cellulose (CMC) MXene Environmental

Engineering
Multifunctional conductive

cellulose hydrogel [36]

Nanocellulose Alginate Environmental
Engineering

Enhanced moisture retention,
antibacterial properties [126]

Bacterial Cellulose (BC) Silver Nanoparticles Personal Care Products Antibacterial effect, fast-reducing,
anti-wrinkle and UV protection [33]

Hydroxyethyl
Cellulose (HEC) Lignosulfonate Environmental

Engineering

High toughness and ductility,
porous structure, dye absorption

and removal
[164]

Exfoliated Fibrils Proteins and
polysaccharides Food Industry Recyclable, sustainable, economical [154]
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6. Challenges and Future Directions

Despite the broad application prospects of cellulose hydrogels, their development
faces several challenges. The high dependency on solvents, many of which are environ-
mentally harmful, complicates large-scale production without damaging the environment.
Additionally, the mechanical performance and stability of cellulose hydrogels often fail
to meet the needs of specific applications, such as those requiring high material strength
and biological stability in the medical field. Moreover, the biodegradation rate and pattern
of cellulose hydrogels are difficult to precisely control, which may lead to performance
degradation or unintended biological interactions in some applications.

6.1. In Vivo Performance and Long-Term Stability

Ensuring the in vivo performance and long-term stability of cellulose-based hydrogels
remains a primary challenge. While these hydrogels exhibit excellent biocompatibility
and biodegradability, their performance in biological environments can be unpredictable.
Factors such as enzymatic degradation, immune response, and mechanical wear can
affect their stability and functionality over time. Ensuring consistent performance in vivo
requires comprehensive studies on the degradation behavior and biocompatibility of these
hydrogels over extended periods.

6.2. Scalability and Cost-Effectiveness

Scalability and cost-effectiveness are also critical concerns. The processes used to
produce cellulose-based hydrogels, especially those involving advanced modifications
such as TEMPO oxidation or the incorporation of functional additives, can be complex
and costly. Developing scalable manufacturing processes that maintain the quality and
performance of these hydrogels while reducing costs is essential for their widespread
adoption. This includes optimizing the use of raw materials, improving synthesis methods,
and minimizing the need for expensive reagents or extensive purification steps.

6.3. Mechanical Properties

Achieving the desired balance between flexibility and robustness in cellulose-based
hydrogels is another challenge. While physical and chemical cross-linking methods can
enhance the mechanical strength of these hydrogels, ensuring they possess sufficient me-
chanical integrity to withstand physiological stresses without compromising their function-
ality remains difficult. This is particularly important for applications such as load-bearing
materials or scaffolds for tissue engineering.

6.4. Environmental Impact

The environmental impact of hydrogel production and disposal is an important con-
sideration. Although cellulose-based hydrogels are inherently biodegradable, the synthesis
processes may involve the use of hazardous chemicals or generate waste products that
need to be managed responsibly. Developing greener synthesis methods and ensuring that
the entire lifecycle of the hydrogels, from production to degradation, is environmentally
sustainable is crucial.

6.5. Functionalization and Customization

The functionalization and customization of cellulose-based hydrogels to meet specific
application requirements also pose challenges. For instance, achieving precise control
over the release profiles of encapsulated drugs or preservatives requires sophisticated
design and engineering of the hydrogel matrix. Tailoring the physical and chemical proper-
ties of hydrogels for specific uses, such as responsive behavior to environmental stimuli,
necessitates innovative approaches in material science and engineering.



Gels 2024, 10, 365 18 of 25

6.6. Regulatory and Market Acceptance

Regulatory and market acceptance are critical hurdles. Ensuring that cellulose-based
hydrogels meet the stringent regulatory standards for medical or food-related applications
involves extensive testing and validation. Additionally, market acceptance depends on
demonstrating the clear advantages of these hydrogels over existing materials and ensuring
that they can be produced at a competitive cost.

Future research trends and directions will focus on the following:

6.7. Eco-Friendly Solvents and Green Preparation Technologies

Developing new eco-friendly solvents and dissolution processes to reduce reliance on
harmful chemicals, aligning with green chemistry principles. Research on deep eutectic
solvents, supercritical fluids, and ionic liquids will be emphasized.

6.8. Enhancing Mechanical Performance and Stability

Improving the mechanical properties and stability of cellulose hydrogels through opti-
mized cross-linking strategies, nano-composite technologies, and molecular-level design.
For instance, introducing nanocellulose or nanoparticles to reinforce the hydrogel structure
or using advanced cross-linking methods to increase cross-link density and uniformity.

6.9. Smart and Responsive Hydrogels

Developing cellulose hydrogels with responsiveness to temperature, pH, and light to
sensitively respond to environmental changes. These smart hydrogels have great potential
in drug delivery, self-healing materials, and sensors.

6.10. Precise Control of Biocompatibility and Biodegradability

Precisely regulating the biocompatibility and biodegradation rate of cellulose hydro-
gels through chemical modification and bioengineering methods to meet the needs of
different application scenarios.

Multifunctional integrated applications: combining cellulose hydrogels with other
functional materials to develop new multifunctional integrated materials. For example,
composite hydrogel systems integrating drug delivery, wound healing, and bio-detection.

6.11. Sustainable Production and Application

Strengthening the study of the life cycle of cellulose hydrogels, including raw material
sourcing, production process, application lifespan, and final disposal, to promote their
application under a sustainable development framework.

6.12. Multifunctional Integrated Applications

Combining cellulose hydrogels with other functional materials to develop new mul-
tifunctional integrated materials. For example, composite hydrogel systems integrating
drug delivery, wound healing, and bio-detection.

Addressing these challenges will require a multidisciplinary approach, combining
insights from materials science, engineering, biology, and environmental science. Con-
tinued research and development, along with collaboration between academia, industry,
and regulatory bodies, will be essential to overcome these obstacles and unlock the full
potential of cellulose-based hydrogels.
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