Stimulus-Responsive Hydrogels for Targeted Cancer Therapy
Abstract
:1. Introduction
2. Tumor Microenvironment (TME)
3. Hydrogels: An overview
4. Stimulus-Responsive Hydrogels for Cancer Therapy
4.1. Chemical Stimuli-Responsive Hydrogels
4.1.1. pH-Responsive Hydrogels
4.1.2. Redox-Responsive Hydrogels
4.2. Biological Stimuli-Responsive Hydrogels
4.2.1. Enzyme-Responsive Hydrogels
4.2.2. Glucose-Responsive Hydrogels
4.3. Physical Stimuli-Responsive Hydrogels
4.3.1. Thermo-Responsive Hydrogels
4.3.2. Light-Responsive Hydrogels
4.4. Multi-Responsive Hydrogels
5. Limitations of Hydrogels
6. Conclusions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global Cancer Statistics 2022 GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.R.; Kumar, A.; Chuang, C.-H.; Shaikh, M.O. Recent Advances and Emerging Trends in Cancer Biomarker Detection Technologies. Ind. Eng. Chem. Res. 2023, 62, 5691–5713. [Google Scholar] [CrossRef]
- Zhu, Y.; Jia, H.; Duan, Q.; Wu, F. Nanomedicines for Combating Multidrug Resistance of Cancer. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2021, 13, e1715. [Google Scholar] [CrossRef] [PubMed]
- Passaro, A.; Al Bakir, M.; Hamilton, E.G.; Diehn, M.; André, F.; Roy-Chowdhuri, S.; Mountzios, G.; Wistuba, I.I.; Swanton, C.; Peters, S. Cancer Biomarkers: Emerging Trends and Clinical Implications for Personalized Treatment. Cell 2024, 187, 1617–1635. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Jiang, H.; Wang, X. Advances in Cancer Research: Current and Future Diagnostic and Therapeutic Strategies. Biosensors 2024, 14, 100. [Google Scholar] [CrossRef] [PubMed]
- Gupta, D.; Roy, P.; Sharma, R.; Kasana, R.; Rathore, P.; Gupta, T.K. Recent Nanotheranostic Approaches in Cancer Research. Clin. Exp. Med. 2024, 24, 8. [Google Scholar] [CrossRef] [PubMed]
- Sufyan, M.; Shokat, Z.; Ashfaq, U.A. Artificial intelligence in cancer diagnosis and therapy: Current status and future perspective. Comput. Biol. Med. 2023, 165, 107356. [Google Scholar] [CrossRef] [PubMed]
- Liang, A.; Kong, Y.; Chen, Z.; Qiu, Y.; Wu, Y.; Zhu, X.; Li, Z. Advancements and Applications of Single-Cell Multi-Omics Techniques in Cancer Research: Unveiling Heterogeneity and Paving the Way for Precision Therapeutics. Biochem. Biophys. Rep. 2024, 37, 101589. [Google Scholar] [CrossRef]
- Ogasawara, M. Wilms’ Tumor 1-Targeting Cancer Vaccine: Recent Advancements and Future Perspectives. Hum. Vaccin. Immunother. 2024, 20, 2296735. [Google Scholar] [CrossRef]
- Mir, M.; Ishtiaq, S.; Rabia, S.; Khatoon, M.; Zeb, A.; Khan, G.M.; ur Rehman, A.; ud Din, F. Nanotechnology: From in Vivo Imaging System to Controlled Drug Delivery. Nanoscale Res. Lett. 2017, 12, 500. [Google Scholar] [CrossRef]
- Solanki, R.; Shankar, A.; Modi, U.; Patel, S. New Insights from Nanotechnology in SARS-CoV-2 Detection, Treatment Strategy and Prevention. Mater. Today Chem. 2023, 29, 101478. [Google Scholar] [CrossRef] [PubMed]
- Solanki, R.; Jodha, B.; Prabina, K.E.; Aggarwal, N.; Patel, S. Recent Advances in Phytochemical Based Nano-Drug Delivery Systems to Combat Breast Cancer: A Review. J. Drug Deliv. Sci. Technol. 2022, 77, 103832. [Google Scholar] [CrossRef]
- Qiao, Y.; Wan, J.; Zhou, L.; Ma, W.; Yang, Y.; Luo, W.; Yu, Z.; Wang, H. Stimuli-responsive Nanotherapeutics for Precision Drug Delivery and Cancer Therapy. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol 2019, 11, e1527. [Google Scholar] [CrossRef] [PubMed]
- Geckil, H.; Xu, F.; Zhang, X.; Moon, S.; Demirci, U. Engineering Hydrogels as Extracellular Matrix Mimics. Nanomedicine 2010, 5, 469–484. [Google Scholar] [CrossRef] [PubMed]
- Thakuria, A.; Kataria, B.; Gupta, D. Nanoparticle-Based Methodologies for Targeted Drug Delivery—An Insight. J. Nanopart. Res. 2021, 23, 87. [Google Scholar] [CrossRef]
- Niazi, M.; Alizadeh, E.; Zarebkohan, A.; Seidi, K.; Ayoubi-Joshaghani, M.H.; Azizi, M.; Dadashi, H.; Mahmudi, H.; Javaheri, T.; Jaymand, M. Advanced Bioresponsive Multitasking Hydrogels in the New Era of Biomedicine. Adv. Funct. Mater. 2021, 31, 2104123. [Google Scholar] [CrossRef]
- Solanki, R.; Patel, S. Protein Nanocarriers for the Delivery of Phytoconstituents. In Nanotechnology Based Delivery of Phytoconstituents and Cosmeceuticals; Pooja, D., Kulhari, H., Eds.; Springer Nature: Singapore, 2024; pp. 229–264. ISBN 978-981-99-5314-1. [Google Scholar]
- Anderson, N.M.; Simon, M.C. The Tumor Microenvironment. Curr. Biol. 2020, 30, R921–R925. [Google Scholar] [CrossRef] [PubMed]
- Truffi, M.; Sorrentino, L.; Corsi, F. Fibroblasts in the Tumor Microenvironment; Springer: Berlin/Heidelberg, Germany, 2020; pp. 15–29. [Google Scholar]
- Wang, L.; Huo, M.; Chen, Y.; Shi, J. Tumor Microenvironment-enabled Nanotherapy. Adv. Heal. Mater. 2018, 7, 1701156. [Google Scholar] [CrossRef] [PubMed]
- Gong, F.; Yang, N.; Wang, X.; Zhao, Q.; Chen, Q.; Liu, Z.; Cheng, L. Tumor Microenvironment-Responsive Intelligent Nanoplatforms for Cancer Theranostics. Nano Today 2020, 32, 100851. [Google Scholar] [CrossRef]
- Wichterle, O.; Lim, D. Hydrophilic Gels for Biological Use. Nature 1960, 185, 117–118. [Google Scholar] [CrossRef]
- Nogueira, N.; Conde, O.; Minones, M.; Trillo, J.M.; Miñones, J., Jr. Characterization of Poly (2-Hydroxyethyl Methacrylate)(PHEMA) Contact Lens Using the Langmuir Monolayer Technique. J. Colloid. Interface Sci. 2012, 385, 202–210. [Google Scholar] [CrossRef] [PubMed]
- Malda, J.; Visser, J.; Melchels, F.P.; Jüngst, T.; Hennink, W.E.; Dhert, W.J.A.; Groll, J.; Hutmacher, D.W. 25th Anniversary Article: Engineering Hydrogels for Biofabrication. Adv. Mater. 2013, 25, 5011–5028. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.-C.; Metters, A.T. Hydrogels in Controlled Release Formulations: Network Design and Mathematical Modeling. Adv. Drug Deliv. Rev. 2006, 58, 1379–1408. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Zhai, Y.; Wang, J.; Zhai, G. New Progress and Prospects: The Application of Nanogel in Drug Delivery. Mater. Sci. Eng. C 2016, 60, 560–568. [Google Scholar] [CrossRef]
- Bustamante-Torres, M.; Romero-Fierro, D.; Arcentales-Vera, B.; Palomino, K.; Magaña, H.; Bucio, E. Hydrogels Classification According to the Physical or Chemical Interactions and as Stimuli-Sensitive Materials. Gels 2021, 7, 182. [Google Scholar] [CrossRef] [PubMed]
- Mohapatra, S.; Mirza, M.A.; Hilles, A.R.; Zakir, F.; Gomes, A.C.; Ansari, M.J.; Iqbal, Z.; Mahmood, S. Biomedical Application, Patent Repository, Clinical Trial and Regulatory Updates on Hydrogel: An Extensive Review. Gels 2021, 7, 207. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Chen, Y.; Zhao, L.; Zhang, J.; Luo, H. Constructions and Properties of Physically Cross-Linked Hydrogels Based on Natural Polymers. Polym. Rev. 2023, 63, 574–612. [Google Scholar] [CrossRef]
- Bashir, S.; Hina, M.; Iqbal, J.; Rajpar, A.H.; Mujtaba, M.A.; Alghamdi, N.A.; Wageh, S.; Ramesh, K.; Ramesh, S. Fundamental Concepts of Hydrogels: Synthesis, Properties, and Their Applications. Polymers 2020, 12, 2702. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Bakhshi, H.; Liu, L.; Ji, J.; Agarwal, S. Combining 3D Printing with Electrospinning for Rapid Response and Enhanced Designability of Hydrogel Actuators. Adv. Funct. Mater. 2018, 28, 1800514. [Google Scholar] [CrossRef]
- Zaszczyńska, A.; Niemczyk-Soczynska, B.; Sajkiewicz, P. A Comprehensive Review of Electrospun Fibers, 3D-Printed Scaffolds, and Hydrogels for Cancer Therapies. Polymers 2022, 14, 5278. [Google Scholar] [CrossRef]
- Kilic Boz, R.; Aydin, D.; Kocak, S.; Golba, B.; Sanyal, R.; Sanyal, A. Redox-Responsive Hydrogels for Tunable and “On-Demand” Release of Biomacromolecules. Bioconjug Chem. 2022, 33, 839–847. [Google Scholar] [CrossRef] [PubMed]
- Jacob, J.M.; Woldu, S.L.; Linehan, J.; Labbate, C.; Rose, K.M.; Sexton, W.J.; Tachibana, I.; Kaimakliotis, H.; Nieder, A.; Bjurlin, M.A. First Analysis of the Safety and Efficacy of UGN-101 in the Treatment of Ureteral Tumors. Urol. Oncol. Semin. Orig. Investig. 2024, 42, 20.e17–20.e23. [Google Scholar] [CrossRef] [PubMed]
- Woolen, S.; Holzmeyer, C.; Nesbitt, E.; Siami, P.F. Long-Term Efficacy and Tolerability of Abdominal Once-Yearly Histrelin Acetate Subcutaneous Implants in Patients with Advanced Prostate Cancer. Prostate Cancer 2014, 2014, 490315. [Google Scholar] [CrossRef] [PubMed]
- Porta, C.; Giannatempo, P.; Rizzo, M.; Lucarelli, G.; Ditonno, P.; Battaglia, M. An Evaluation of UGN-101, a Sustained-Release Hydrogel Polymer-Based Formulation Containing Mitomycin-C, for the Treatment of Upper Urothelial Carcinomas. Expert. Opin. Pharmacother. 2020, 21, 2199–2204. [Google Scholar] [CrossRef]
- Rafael, D.; Melendres, M.M.R.; Andrade, F.; Montero, S.; Martinez-Trucharte, F.; Vilar-Hernandez, M.; Durán-Lara, E.F.; Schwartz, S., Jr.; Abasolo, I. Thermo-Responsive Hydrogels for Cancer Local Therapy: Challenges and State-of-Art. Int. J. Pharm. 2021, 606, 120954. [Google Scholar] [CrossRef] [PubMed]
- Andrade, F.; Durán-Lara, E.; Rafael, D. Multicomponent Hydrogels for Cancer Diagnosis and Therapy; The Royal Society of Chemistry: London, UK, 2023; pp. 542–577. [Google Scholar] [CrossRef]
- Abulateefeh, S.R. Long-Acting Injectable PLGA/PLA Depots for Leuprolide Acetate: Successful Translation from Bench to Clinic. Drug Deliv. Transl. Res. 2023, 13, 520–530. [Google Scholar] [CrossRef] [PubMed]
- Municoy, S.; Alvarez Echazu, M.I.; Antezana, P.E.; Galdopórpora, J.M.; Olivetti, C.; Mebert, A.M.; Foglia, M.L.; Tuttolomondo, M.V.; Alvarez, G.S.; Hardy, J.G. Stimuli-Responsive Materials for Tissue Engineering and Drug Delivery. Int. J. Mol. Sci. 2020, 21, 4724. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Y.; Park, K. Environment-Sensitive Hydrogels for Drug Delivery. Adv. Drug Deliv. Rev. 2001, 53, 321–339. [Google Scholar] [CrossRef] [PubMed]
- Raza, A.; Hayat, U.; Rasheed, T.; Bilal, M.; Iqbal, H.M.N. Redox-Responsive Nano-Carriers as Tumor-Targeted Drug Delivery Systems. Eur. J. Med. Chem. 2018, 157, 705–715. [Google Scholar] [CrossRef]
- Rizwan, M.; Yahya, R.; Hassan, A.; Yar, M.; Azzahari, A.D.; Selvanathan, V.; Sonsudin, F.; Abouloula, C.N. PH Sensitive Hydrogels in Drug Delivery: Brief History, Properties, Swelling, and Release Mechanism, Material Selection and Applications. Polymers 2017, 9, 137. [Google Scholar] [CrossRef]
- Ding, H.; Tan, P.; Fu, S.; Tian, X.; Zhang, H.; Ma, X.; Gu, Z.; Luo, K. Preparation and Application of PH-Responsive Drug Delivery Systems. J. Control. Release 2022, 348, 206–238. [Google Scholar] [CrossRef] [PubMed]
- Ramburrun, P.; Khan, R.A.; Choonara, Y.E. Design, Preparation, and Functionalization of Nanobiomaterials for Enhanced Efficacy in Current and Future Biomedical Applications. Nanotechnol. Rev. 2022, 11, 1802–1826. [Google Scholar] [CrossRef]
- Yang, Z.; McClements, D.J.; Li, C.; Sang, S.; Chen, L.; Long, J.; Qiu, C.; Jin, Z. Targeted Delivery of Hydrogels in Human Gastrointestinal Tract: A Review. Food Hydrocoll. 2023, 134, 108013. [Google Scholar] [CrossRef]
- Alvarez-Lorenzo, C.; Blanco-Fernandez, B.; Puga, A.M.; Concheiro, A. Crosslinked Ionic Polysaccharides for Stimuli-Sensitive Drug Delivery. Adv. Drug Deliv. Rev. 2013, 65, 1148–1171. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Liu, M.; Jin, S.; Chen, Y. Synthesis and Swelling Properties of PH-sensitive Hydrogels Based on Chitosan and Poly (Methacrylic Acid) Semi-interpenetrating Polymer Network. J. Appl. Polym. Sci. 2005, 98, 1720–1726. [Google Scholar] [CrossRef]
- Gomte, S.S.; Agnihotri, T.G.; Khopade, S.; Jain, A. Exploring the potential of pH-sensitive polymers in targeted drug delivery. J. Biomater. Sci. Polym. Ed. 2024, 35, 228–268. [Google Scholar] [CrossRef]
- Ortiz, J.A.; Sepúlveda, F.A.; Panadero-Medianero, C.; Murgas, P.; Ahumada, M.; Palza, H.; Matsuhiro, B.; Zapata, P.A. Cytocompatible Drug Delivery Hydrogels Based on Carboxymethylagarose/Chitosan PH-Responsive Polyelectrolyte Complexes. Int. J. Biol. Macromol. 2022, 199, 96–107. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Gu, J.; Zhang, J.; Xie, Z.; Lu, Y.; Shen, L.; Dong, Q.; Wang, Y. Injectable and Biodegradable PH-Responsive Hydrogels for Localized and Sustained Treatment of Human Fibrosarcoma. ACS Appl. Mater. Interfaces 2015, 7, 8033–8040. [Google Scholar] [CrossRef] [PubMed]
- Patel, V.R.; Amiji, M.M. Preparation and Characterization of Freeze-Dried Chitosan-Poly(Ethylene Oxide) Hydrogels for Site-Specific Antibiotic Delivery in the Stomach. Pharm. Res. 1996, 13, 588–593. [Google Scholar] [CrossRef]
- Qu, X.; Wirsen, A.; Albertsson, A.-C. Novel PH-Sensitive Chitosan Hydrogels: Swelling Behavior and States of Water. Polymer 2000, 41, 4589–4598. [Google Scholar] [CrossRef]
- Qu, J.; Zhao, X.; Ma, P.X.; Guo, B. PH-Responsive Self-Healing Injectable Hydrogel Based on N-Carboxyethyl Chitosan for Hepatocellular Carcinoma Therapy. Acta Biomater. 2017, 58, 168–180. [Google Scholar] [CrossRef] [PubMed]
- Abdelaal, M.Y.; Abdel-Razik, E.A.; Abdel-Bary, E.M.; El-Sherbiny, I.M. Chitosan-based Interpolymeric PH-responsive Hydrogels for in Vitro Drug Release. J. Appl. Polym. Sci. 2007, 103, 2864–2874. [Google Scholar] [CrossRef]
- Goycoolea, F.M.; Heras, A.; Aranaz, I.; Galed, G.; Fernández-Valle, M.E.; Argüelles-Monal, W. Effect of Chemical Crosslinking on the Swelling and Shrinking Properties of Thermal and PH-responsive Chitosan Hydrogels. Macromol. Biosci. 2003, 3, 612–619. [Google Scholar] [CrossRef]
- Bilia, A.; Carelli, V.; Di Colo, G.; Nannipieri, E. In Vitro Evaluation of a PH-Sensitive Hydrogel for Control of GI Drug Delivery from Silicone-Based Matrices. Int. J. Pharm. 1996, 130, 83–92. [Google Scholar] [CrossRef]
- Monir, T.S.B.; Afroz, S.; Khan, R.A.; Miah, M.Y.; Takafuji, M.; Alam, M.A. PH-Sensitive Hydrogel from Polyethylene Oxide and Acrylic Acid by Gamma Radiation. J. Compos. Sci. 2019, 3, 58. [Google Scholar] [CrossRef]
- Nho, Y.C.; Lim, Y.M.; Lee, Y.M. Preparation, Properties and Biological Application of PH-Sensitive Poly(Ethylene Oxide)(PEO) Hydrogels Grafted with Acrylic Acid (AAc) Using Gamma-Ray Irradiation. Radiat. Phys. Chem. 2004, 71, 239–242. [Google Scholar] [CrossRef]
- Amiji, M.; Tailor, R.; Ly, M.-K.; Goreham, J. Gelatin-Poly(Ethylene Oxide) Semi-Interpenetrating Polymer Network with PH-Sensitive Swelling and Enzyme-Degradable Properties for Oral Drug Delivery. Drug Dev. Ind. Pharm. 1997, 23, 575–582. [Google Scholar] [CrossRef]
- Tenório-Neto, E.T.; Guilherme, M.R.; Lima-Tenório, M.K.; Scariot, D.B.; Nakamura, C.V.; Rubira, A.F.; Kunita, M.H. Synthesis and Characterization of a PH-Responsive Poly(Ethylene Glycol)-Based Hydrogel: Acid Degradation, Equilibrium Swelling, and Absorption Kinetic Characteristics. Colloid. Polym. Sci. 2015, 293, 3611–3622. [Google Scholar] [CrossRef]
- Wang, S.; Attah, R.; Li, J.; Chen, Y.; Chen, R. A PH-Responsive Amphiphilic Hydrogel Based on Pseudopeptides and Poly(Ethylene Glycol) for Oral Delivery of Hydrophobic Drugs. ACS Biomater. Sci. Eng. 2018, 4, 4236–4243. [Google Scholar] [CrossRef]
- Mahmood, T.; Sarfraz, R.M.; Mahmood, A.; Salem-Bekhit, M.M.; Ijaz, H.; Zaman, M.; Akram, M.R.; Taha, E.I.; Sahu, R.K.; Benguerba, Y. Preparation, In Vitro Characterization, and Evaluation of Polymeric PH-Responsive Hydrogels for Controlled Drug Release. ACS Omega 2024, 9, 10498–10516. [Google Scholar] [CrossRef]
- Halacheva, S.S.; Freemont, T.J.; Saunders, B.R. PH-Responsive Physical Gels from Poly(Meth)Acrylic Acid-Containing Crosslinked Particles: The Relationship between Structure and Mechanical Properties. J. Mater. Chem. B 2013, 1, 4065–4078. [Google Scholar] [CrossRef] [PubMed]
- Milosavljević, N.B.; Milašinović, N.Z.; Popović, I.G.; Filipović, J.M.; Kalagasidis Krušić, M.T. Preparation and Characterization of PH-sensitive Hydrogels Based on Chitosan, Itaconic Acid and Methacrylic Acid. Polym. Int. 2011, 60, 443–452. [Google Scholar] [CrossRef]
- Frutos, G.; Prior-Cabanillas, A.; París, R.; Quijada-Garrido, I. A Novel Controlled Drug Delivery System Based on PH-Responsive Hydrogels Included in Soft Gelatin Capsules. Acta Biomater. 2010, 6, 4650–4656. [Google Scholar] [CrossRef]
- Oh, J.; Kim, B. Mucoadhesive and PH-Responsive Behavior of Gelatin Containing Hydrogels for Protein Drug Delivery Applications. Korea-Aust. Rheol. J. 2020, 32, 41–46. [Google Scholar] [CrossRef]
- Hussain, K.; Aslam, Z.; Ullah, S.; Shah, M.R. Synthesis of PH Responsive, Photocrosslinked Gelatin-Based Hydrogel System for Control Release of Ceftriaxone. Chem. Phys. Lipids 2021, 238, 105101. [Google Scholar] [CrossRef] [PubMed]
- Jafari, H.; Namazi, H. PH-Sensitive Biosystem Based on Laponite RD/Chitosan/Polyvinyl Alcohol Hydrogels for Controlled Delivery of Curcumin to Breast Cancer Cells. Colloids Surf. B Biointerfaces 2023, 231, 113585. [Google Scholar] [CrossRef]
- Asad, S.; Khan, S.A.; Ullah, K.; Mannan, A.; Murtaza, G. Synthesis, Characterization, and in-Vitro Evaluation of PH-Responsive PEI-MAA Polymeric Matrices Decorated with Mesalazine for Colonic Delivery. J. Drug Deliv. Sci. Technol. 2023, 88, 104926. [Google Scholar] [CrossRef]
- Noor, F.; Mahmood, A.; Zafar, N.; Sarfraz, R.M.; Rehman, U.; Ijaz, H.; Hussain, Z.; Ahmed, I.A.; Imam, M.T.; Al Abdulmonem, W. Fabrication of PH-Responsive Hydrogels of Perindopril Erbumine Using Black Seed Extract and β-Cyclodextrin Co-Polymerized with Methacrylic Acid and Methylene Bisacrylamide. J. Drug Deliv. Sci. Technol. 2023, 88, 104924. [Google Scholar] [CrossRef]
- Yuan, L.; Li, Z.; Li, X.; Qiu, S.; Lei, J.; Li, D.; Mu, C.; Ge, L. Functionalization of an Injectable Self-Healing PH-Responsive Hydrogel by Incorporating a Curcumin/Polymerized β-Cyclodextrin Inclusion Complex for Selective Toxicity to Osteosarcoma. ACS Appl. Polym. Mater. 2022, 4, 1243–1254. [Google Scholar] [CrossRef]
- Yang, X.; Kim, J. Β-Cyclodextrin Hydrogels Containing Naphthaleneacetic Acid for PH-sensitive Release. Biotechnol. Bioeng. 2010, 106, 295–302. [Google Scholar] [CrossRef]
- Li, Z.; Crago, M.; Schofield, T.; Zeng, H.; Vyas, H.K.N.; Müllner, M.; Mai-Prochnow, A.; Farajikhah, S.; Naficy, S.; Dehghani, F. Synthesis and Evaluation of Functionalized Polyurethanes for PH-Responsive Delivery of Compounds in Chronic Wounds. Gels 2023, 9, 611. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Qiu, L.; Sheng, Y.; Sun, Y.; Deng, L.; Li, X.; Bradley, M.; Zhang, R. Biodegradable PH-Responsive Hydrogels for Controlled Dual-Drug Release. J. Mater. Chem. B 2018, 6, 510–517. [Google Scholar] [CrossRef]
- Zhang, T.; Cheng, X.; Xiu, J.; Liu, M.; Liu, S.; Zhang, B.; Miao, Q.; Cun, D.; Yang, C.; Li, K. PH-Responsive Injectable Multifunctional Pluronic F127/Gelatin-Based Hydrogels with Hydrogen Production for Treating Diabetic Wounds. ACS Appl. Mater. Interfaces 2023, 15, 55392–55408. [Google Scholar] [CrossRef] [PubMed]
- Meena, P.; Singh, P.; Warkar, S.G. Development and Assessment of Carboxymethyl Tamarind Kernel Gum-Based PH-Responsive Hydrogel for Release of Diclofenac Sodium. Eur. Polym. J. 2023, 197, 112340. [Google Scholar] [CrossRef]
- Lin, C.-Y.; Battistoni, C.M.; Liu, J.C. Redox-Responsive Hydrogels with Decoupled Initial Stiffness and Degradation. Biomacromolecules 2021, 22, 5270–5280. [Google Scholar] [CrossRef] [PubMed]
- Su, R.S.; Galas, R.J., Jr.; Lin, C.; Liu, J.C. Redox-responsive Resilin-like Hydrogels for Tissue Engineering and Drug Delivery Applications. Macromol. Biosci. 2019, 19, 1900122. [Google Scholar] [CrossRef] [PubMed]
- Alipournazari, P.; Pourmadadi, M.; Abdouss, M.; Rahdar, A.; Pandey, S. Enhanced Delivery of Doxorubicin for Breast Cancer Treatment Using PH-Sensitive Starch/PVA/g-C3N4 Hydrogel. Int. J. Biol. Macromol. 2024, 265, 130901. [Google Scholar] [CrossRef] [PubMed]
- Ma, B.; Li, Q.; Mi, Y.; Zhang, J.; Tan, W.; Guo, Z. PH-Responsive Nanogels with Enhanced Antioxidant and Antitumor Activities on Drug Delivery and Smart Drug Release. Int. J. Biol. Macromol. 2024, 257, 128590. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Cui, H.; Wang, X.; Liu, J.; Liu, G.; Meng, X.; Lin, S. Oxidized Cellulose-Filled Double Thermo/PH-Sensitive Hydrogel for Local Chemo-Photothermal Therapy in Breast Cancer. Carbohydr. Polym. 2024, 332, 121931. [Google Scholar] [CrossRef]
- Fukino, T.; Yamagishi, H.; Aida, T. Redox-responsive Molecular Systems and Materials. Adv. Mater. 2017, 29, 1603888. [Google Scholar] [CrossRef]
- Nair, D.P.; Podgorski, M.; Chatani, S.; Gong, T.; Xi, W.; Fenoli, C.R.; Bowman, C.N. The Thiol-Michael Addition Click Reaction: A Powerful and Widely Used Tool in Materials Chemistry. Chem. Mater. 2014, 26, 724–744. [Google Scholar] [CrossRef]
- Jiang, Y.; Chen, J.; Deng, C.; Suuronen, E.J.; Zhong, Z. Click Hydrogels, Microgels and Nanogels: Emerging Platforms for Drug Delivery and Tissue Engineering. Biomaterials 2014, 35, 4969–4985. [Google Scholar] [CrossRef]
- Poole, L.B. The Basics of Thiols and Cysteines in Redox Biology and Chemistry. Free Radic. Biol. Med. 2015, 80, 148–157. [Google Scholar] [CrossRef]
- Asai, D.; Xu, D.; Liu, W.; Quiroz, F.G.; Callahan, D.J.; Zalutsky, M.R.; Craig, S.L.; Chilkoti, A. Protein Polymer Hydrogels by in Situ, Rapid and Reversible Self-Gelation. Biomaterials 2012, 33, 5451–5458. [Google Scholar] [CrossRef]
- Yang, F.; Wang, J.; Cao, L.; Chen, R.; Tang, L.; Liu, C. Injectable and Redox-Responsive Hydrogel with Adaptive Degradation Rate for Bone Regeneration. J. Mater. Chem. B 2014, 2, 295–304. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Annis, I.; Barany, G. Disulfide Bond Formation in Peptides. Curr. Protoc. Protein Sci. 2001, 23, 16–18. [Google Scholar] [CrossRef]
- Lee, M.H.; Sessler, J.L.; Kim, J.S. Disulfide-Based Multifunctional Conjugates for Targeted Theranostic Drug Delivery. Acc. Chem. Res. 2015, 48, 2935–2946. [Google Scholar] [CrossRef]
- Iqbal, H.M.N.; Keshavarz, T. Bioinspired Polymeric Carriers for Drug Delivery Applications. In Stimuli Responsive Polymeric Nanocarriers for Drug Delivery Applications, Volume 1; Elsevier: Amsterdam, The Netherlands, 2018; pp. 377–404. [Google Scholar]
- Zhai, S.; Hu, X.; Hu, Y.; Wu, B.; Xing, D. Visible Light-Induced Crosslinking and Physiological Stabilization of Diselenide-Rich Nanoparticles for Redox-Responsive Drug Release and Combination Chemotherapy. Biomaterials 2017, 121, 41–54. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Lei, M.; Yan, L.; An, F. Diselenide-Crosslinked Zwitterionic Nanogels with Dual Redox-Labile Properties for Controlled Drug Release. Polym. Chem. 2020, 11, 2360–2369. [Google Scholar] [CrossRef]
- Wang, J.; Liu, J.; Lu, D.-Q.; Chen, L.; Yang, R.; Liu, D.; Zhang, B. Diselenide-Crosslinked Carboxymethyl Chitosan Nanoparticles for Doxorubicin Delivery: Preparation and in Vivo Evaluation. Carbohydr. Polym. 2022, 292, 119699. [Google Scholar] [CrossRef]
- Huang, D.; Zhu, J.; Xu, M.-F.; Chen, J.; Gao, X.; Zhao, L.; Ding, F.; Wu, C.-Z. One-Pot Preparation of PH-and Redox-Responsive Polymeric Microgel as an Efficient Carrier for Improved Breast Cancer Therapy. Colloids Surf. A Physicochem. Eng. Asp. 2024, 685, 133320. [Google Scholar] [CrossRef]
- Tao, W.; Wu, X.; Li, J.; Wu, F.; Chen, C.; Jiang, T.; Xu, C.; Jiang, S.; Wang, J.; Xiao, B. An Injectable Selenite-Containing Hydrogel for Synergistic Tumor Therapy by Triggering ROS/RNS Generation and Disrupting NADPH Homeostasis. Chem. Eng. J. 2024, 479, 147437. [Google Scholar] [CrossRef]
- Robby, A.I.; Yang, J.; Jin, E.; Park, S.Y. Tumor Microenvironment-Selective Sol–Gel Mineralization of ROS-Responsive Stretchable and Conductive Hydrogel. Adv. Funct. Mater. 2024; early view. [Google Scholar] [CrossRef]
- Mohamed, M.A.; Fallahi, A.; El-Sokkary, A.M.A.; Salehi, S.; Akl, M.A.; Jafari, A.; Tamayol, A.; Fenniri, H.; Khademhosseini, A.; Andreadis, S.T. Stimuli-Responsive Hydrogels for Manipulation of Cell Microenvironment: From Chemistry to Biofabrication Technology. Prog. Polym. Sci. 2019, 98, 101147. [Google Scholar] [CrossRef]
- Shahriari, M.; Zahiri, M.; Abnous, K.; Taghdisi, S.M.; Ramezani, M.; Alibolandi, M. Enzyme Responsive Drug Delivery Systems in Cancer Treatment. J. Control. Release 2019, 308, 172–189. [Google Scholar] [CrossRef]
- Webber, M.J.; Anderson, D.G. Smart Approaches to Glucose-Responsive Drug Delivery. J. Drug Target. 2015, 23, 651–655. [Google Scholar] [CrossRef] [PubMed]
- Hou, X.-F.; Chen, Y.; Liu, Y. Enzyme-Responsive Protein/Polysaccharide Supramolecular Nanoparticles. Soft Matter 2015, 11, 2488–2493. [Google Scholar] [CrossRef]
- Sobczak, M. Enzyme-Responsive Hydrogels as Potential Drug Delivery Systems—State of Knowledge and Future Prospects. Int. J. Mol. Sci. 2022, 23, 4421. [Google Scholar] [CrossRef]
- He, W.; Reaume, M.; Hennenfent, M.; Lee, B.P.; Rajachar, R. Biomimetic Hydrogels with Spatial-and Temporal-Controlled Chemical Cues for Tissue Engineering. Biomater. Sci. 2020, 8, 3248–3269. [Google Scholar] [CrossRef] [PubMed]
- Sakai, S.; Kawakami, K. Synthesis and Characterization of Both Ionically and Enzymatically Cross-Linkable Alginate. Acta Biomater. 2007, 3, 495–501. [Google Scholar] [CrossRef]
- Sekhon, B.S. Matrix Metalloproteinases—An Overview. Res. Rep. Biol. 2010, 1, 1–20. [Google Scholar]
- Conlon, G.A.; Murray, G.I. Recent Advances in Understanding the Roles of Matrix Metalloproteinases in Tumour Invasion and Metastasis. J. Pathol. 2019, 247, 629–640. [Google Scholar] [CrossRef] [PubMed]
- Yao, Q.; Kou, L.; Tu, Y.; Zhu, L. MMP-Responsive ‘Smart’ Drug Delivery and Tumor Targeting. Trends Pharmacol. Sci. 2018, 39, 766–781. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, S.; Solanki, R.; Jangid, A.K.; Jain, P.; Pranjali, P.; Patel, S.; Guleria, A.; Pooja, D.; Kulhari, H. Manganese Nanocarrier for Matrix Metalloproteinase 9 Responsive Delivery of Irinotecan for Colon Cancer Treatment. J. Ind. Eng. Chem. 2023, 128, 258–267. [Google Scholar] [CrossRef]
- Zhao, Z.; Shen, J.; Zhang, L.; Wang, L.; Xu, H.; Han, Y.; Jia, J.; Lu, Y.; Yu, R.; Liu, H. Injectable Postoperative Enzyme-Responsive Hydrogels for Reversing Temozolomide Resistance and Reducing Local Recurrence after Glioma Operation. Biomater. Sci. 2020, 8, 5306–5316. [Google Scholar] [CrossRef] [PubMed]
- Nazli, C.; Demirer, G.S.; Yar, Y.; Acar, H.Y.; Kizilel, S. Targeted Delivery of Doxorubicin into Tumor Cells via MMP-Sensitive PEG Hydrogel-Coated Magnetic Iron Oxide Nanoparticles (MIONPs). Colloids Surf. B Biointerfaces 2014, 122, 674–683. [Google Scholar] [CrossRef] [PubMed]
- Nagel, G.; Sousa-Herves, A.; Wedepohl, S.; Calderón, M. Matrix Metalloproteinase-Sensitive Multistage Nanogels Promote Drug Transport in 3D Tumor Model. Theranostics 2020, 10, 91. [Google Scholar] [CrossRef] [PubMed]
- Su, T.; Tang, Z.; He, H.; Li, W.; Wang, X.; Liao, C.; Sun, Y.; Wang, Q. Glucose Oxidase Triggers Gelation of N-Hydroxyimide–Heparin Conjugates to Form Enzyme-Responsive Hydrogels for Cell-Specific Drug Delivery. Chem. Sci. 2014, 5, 4204–4209. [Google Scholar] [CrossRef]
- Ono, K.; Hashimoto, H.; Katayama, T.; Ueda, N.; Nagahama, K. Injectable Biocatalytic Nanocomposite Hydrogel Factories for Focal Enzyme-Prodrug Cancer Therapy. Biomacromolecules 2021, 22, 4217–4227. [Google Scholar] [CrossRef] [PubMed]
- Hovgaard, L.; Brøndsted, H. Dextran Hydrogels for Colon-Specific Drug Delivery. J. Control. Release 1995, 36, 159–166. [Google Scholar] [CrossRef]
- Dong, Y.; Wang, W.; Veiseh, O.; Appel, E.A.; Xue, K.; Webber, M.J.; Tang, B.C.; Yang, X.-W.; Weir, G.C.; Langer, R. Injectable and Glucose-Responsive Hydrogels Based on Boronic Acid–Glucose Complexation. Langmuir 2016, 32, 8743–8747. [Google Scholar] [CrossRef]
- Li, X.; Fu, M.; Wu, J.; Zhang, C.; Deng, X.; Dhinakar, A.; Huang, W.; Qian, H.; Ge, L. PH-Sensitive Peptide Hydrogel for Glucose-Responsive Insulin Delivery. Acta Biomater. 2017, 51, 294–303. [Google Scholar] [CrossRef] [PubMed]
- Volpatti, L.R.; Matranga, M.A.; Cortinas, A.B.; Delcassian, D.; Daniel, K.B.; Langer, R.; Anderson, D.G. Glucose-Responsive Nanoparticles for Rapid and Extended Self-Regulated Insulin Delivery. ACS Nano 2019, 14, 488–497. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wang, Z.; Yu, J.; Kahkoska, A.R.; Buse, J.B.; Gu, Z. Glucose-responsive Insulin and Delivery Systems: Innovation and Translation. Adv. Mater. 2020, 32, 1902004. [Google Scholar] [CrossRef] [PubMed]
- Tanna, S.; Sahota, T.S.; Sawicka, K.; Taylor, M.J. The Effect of Degree of Acrylic Derivatisation on Dextran and Concanavalin A Glucose-Responsive Materials for Closed-Loop Insulin Delivery. Biomaterials 2006, 27, 4498–4507. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, A.; Ikeda, S.; Harada, A.; Kataoka, K. Glucose-Responsive Polymer Bearing a Novel Phenylborate Derivative as a Glucose-Sensing Moiety Operating at Physiological PH Conditions. Biomacromolecules 2003, 4, 1410–1416. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Li, M.; Yang, Y.; Qiao, L.; Xu, H.; Guo, B. PH/Glucose Dual Responsive Metformin Release Hydrogel Dressings with Adhesion and Self-Healing via Dual-Dynamic Bonding for Athletic Diabetic Foot Wound Healing. ACS Nano 2022, 16, 3194–3207. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.; Cao, S.; Chen, X.; Liu, S.; Tan, H.; Wu, W.; Li, J. Super Long-Term Glycemic Control in Diabetic Rats by Glucose-Sensitive LbL Films Constructed of Supramolecular Insulin Assembly. Biomaterials 2012, 33, 8733–8742. [Google Scholar] [CrossRef]
- Gu, Z.; Aimetti, A.A.; Wang, Q.; Dang, T.T.; Zhang, Y.; Veish, O.; Cheng, H.; Langer, R.S.; Anderson, D.G. Injectable Nano-Network for Glucose-Mediated Insulin Delivery. ACS Nano 2013, 7, 4194–4201. [Google Scholar] [CrossRef] [PubMed]
- de Almeida, M.S.; Susnik, E.; Drasler, B.; Taladriz-Blanco, P.; Petri-Fink, A.; Rothen-Rutishauser, B. Understanding Nanoparticle Endocytosis to Improve Targeting Strategies in Nanomedicine. Chem. Soc. Rev. 2021, 50, 5397–5434. [Google Scholar] [CrossRef]
- Rahim, M.A.; Jan, N.; Khan, S.; Shah, H.; Madni, A.; Khan, A.; Jabar, A.; Khan, S.; Elhissi, A.; Hussain, Z. Recent Advancements in Stimuli Responsive Drug Delivery Platforms for Active and Passive Cancer Targeting. Cancers 2021, 13, 670. [Google Scholar] [CrossRef]
- Wang, N.; Cheng, X.; Li, N.; Wang, H.; Chen, H. Nanocarriers and Their Loading Strategies. Adv. Heal. Mater. 2019, 8, 1801002. [Google Scholar] [CrossRef] [PubMed]
- Ding, C.; Li, Z. A Review of Drug Release Mechanisms from Nanocarrier Systems. Mater. Sci. Eng. C 2017, 76, 1440–1453. [Google Scholar] [CrossRef]
- Huang, J.; Zhang, X.; Fu, K.; Wei, G.; Su, Z. Stimulus-Responsive Nanomaterials under Physical Regulation for Biomedical Applications. J. Mater. Chem. B 2021, 9, 9642–9657. [Google Scholar] [CrossRef] [PubMed]
- Ahsan, A.; Farooq, M.A.; Parveen, A. Thermosensitive Chitosan-Based Injectable Hydrogel as an Efficient Anticancer Drug Carrier. ACS Omega 2020, 5, 20450–20460. [Google Scholar] [CrossRef]
- Yang, F.; Shi, K.; Hao, Y.; Jia, Y.; Liu, Q.; Chen, Y.; Pan, M.; Yuan, L.; Yu, Y.; Qian, Z. Cyclophosphamide Loaded Thermo-Responsive Hydrogel System Synergize with a Hydrogel Cancer Vaccine to Amplify Cancer Immunotherapy in a Prime-Boost Manner. Bioact. Mater. 2021, 6, 3036–3048. [Google Scholar] [CrossRef] [PubMed]
- Garrett, M.C.; O’Shea, T.M.; Wollenberg, A.L.; Bernstein, A.M.; Hung, D.; Staarman, B.; Soto, H.; Deming, T.J.; Sofroniew, M.V.; Kornblum, H.I. Injectable Diblock Copolypeptide Hydrogel Provides Platform to Deliver Effective Concentrations of Paclitaxel to an Intracranial Xenograft Model of Glioblastoma. PLoS ONE 2020, 15, e0219632. [Google Scholar] [CrossRef]
- Qian, Z.; Zhao, N.; Xu, S.; Yuan, W. In Situ Injectable Thermoresponsive Nanocomposite Hydrogel Based on Hydroxypropyl Chitosan for Precise Synergistic Calcium-Overload, Photodynamic and Photothermal Tumor Therapy. Carbohydr. Polym. 2024, 324, 121487. [Google Scholar] [CrossRef]
- He, J.; Zou, H.; Zhou, J.; Deng, C. Thermoresponsive MXene-Based Hydrogel for Controlled Anticancer Drug Release. J. Drug Deliv. Sci. Technol. 2024, 91, 105207. [Google Scholar] [CrossRef]
- Lu, Y.-J.; Lan, Y.-H.; Chuang, C.-C.; Lu, W.-T.; Chan, L.-Y.; Hsu, P.-W.; Chen, J.-P. Injectable Thermo-Sensitive Chitosan Hydrogel Containing CPT-11-Loaded EGFR-Targeted Graphene Oxide and SLP2 ShRNA for Localized Drug/Gene Delivery in Glioblastoma Therapy. Int. J. Mol. Sci. 2020, 21, 7111. [Google Scholar] [CrossRef]
- Darge, H.F.; Andrgie, A.T.; Hanurry, E.Y.; Birhan, Y.S.; Mekonnen, T.W.; Chou, H.-Y.; Hsu, W.-H.; Lai, J.-Y.; Lin, S.-Y.; Tsai, H.-C. Localized Controlled Release of Bevacizumab and Doxorubicin by Thermo-Sensitive Hydrogel for Normalization of Tumor Vasculature and to Enhance the Efficacy of Chemotherapy. Int. J. Pharm. 2019, 572, 118799. [Google Scholar] [CrossRef]
- Liu, M.; Song, X.; Wen, Y.; Zhu, J.-L.; Li, J. Injectable Thermoresponsive Hydrogel Formed by Alginate-g-Poly (N-Isopropylacrylamide) That Releases Doxorubicin-Encapsulated Micelles as a Smart Drug Delivery System. ACS Appl. Mater. Interfaces 2017, 9, 35673–35682. [Google Scholar] [CrossRef]
- Chen, X.; Liu, Z.; Parker, S.G.; Zhang, X.; Gooding, J.J.; Ru, Y.; Liu, Y.; Zhou, Y. Light-Induced Hydrogel Based on Tumor-Targeting Mesoporous Silica Nanoparticles as a Theranostic Platform for Sustained Cancer Treatment. ACS Appl. Mater. Interfaces 2016, 8, 15857–15863. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Wang, G.; Huang, C.; Sun, Y.; Zhang, J.; Chai, Z.; Guo, S.-S.; Zhao, X.-Z.; Yuan, Y.; Liu, W. A Light-Induced Hydrogel Responsive Platform to Capture and Selectively Isolate Single Circulating Tumor Cells. Nanoscale 2022, 14, 3504–3512. [Google Scholar] [CrossRef] [PubMed]
- Xing, C.; Chen, S.; Liang, X.; Liu, Q.; Qu, M.; Zou, Q.; Li, J.; Tan, H.; Liu, L.; Fan, D. Two-Dimensional MXene (Ti3C2)-Integrated Cellulose Hydrogels: Toward Smart Three-Dimensional Network Nanoplatforms Exhibiting Light-Induced Swelling and Bimodal Photothermal/Chemotherapy Anticancer Activity. ACS Appl. Mater. Interfaces 2018, 10, 27631–27643. [Google Scholar] [CrossRef] [PubMed]
- Hou, M.; Yang, R.; Zhang, L.; Zhang, L.; Liu, G.; Xu, Z.; Kang, Y.; Xue, P. Injectable and Natural Humic Acid/Agarose Hybrid Hydrogel for Localized Light-Driven Photothermal Ablation and Chemotherapy of Cancer. ACS Biomater. Sci. Eng. 2018, 4, 4266–4277. [Google Scholar] [CrossRef]
- Wu, Y.; Chen, F.; Huang, N.; Li, J.; Wu, C.; Tan, B.; Liu, Y.; Li, L.; Yang, C.; Shao, D. Near-Infrared Light-Responsive Hybrid Hydrogels for the Synergistic Chemo-Photothermal Therapy of Oral Cancer. Nanoscale 2021, 13, 17168–17182. [Google Scholar] [CrossRef]
- Chen, X.; Wang, M.; Yang, X.; Wang, Y.; Yu, L.; Sun, J.; Ding, J. Injectable Hydrogels for the Sustained Delivery of a HER2-Targeted Antibody for Preventing Local Relapse of HER2+ Breast Cancer after Breast-Conserving Surgery. Theranostics 2019, 9, 6080. [Google Scholar] [CrossRef]
- Jeong, B.; Kim, S.W.; Bae, Y.H. Thermosensitive Sol–Gel Reversible Hydrogels. Adv. Drug Deliv. Rev. 2012, 64, 154–162. [Google Scholar] [CrossRef]
- Bellotti, E.; Schilling, A.L.; Little, S.R.; Decuzzi, P. Injectable Thermoresponsive Hydrogels as Drug Delivery System for the Treatment of Central Nervous System Disorders: A Review. J. Control. Release 2021, 329, 16–35. [Google Scholar] [CrossRef]
- Cook, M.T.; Haddow, P.; Kirton, S.B.; McAuley, W.J. Polymers Exhibiting Lower Critical Solution Temperatures as a Route to Thermoreversible Gelators for Healthcare. Adv. Funct. Mater. 2021, 31, 2008123. [Google Scholar] [CrossRef]
- Lanzalaco, S.; Armelin, E. Poly (N-Isopropylacrylamide) and Copolymers: A Review on Recent Progresses in Biomedical Applications. Gels 2017, 3, 36. [Google Scholar] [CrossRef]
- Xiao, Y.; Gu, Y.; Qin, L.; Chen, L.; Chen, X.; Cui, W.; Li, F.; Xiang, N.; He, X. Injectable Thermosensitive Hydrogel-Based Drug Delivery System for Local Cancer Therapy. Colloids Surf. B Biointerfaces 2021, 200, 111581. [Google Scholar] [CrossRef] [PubMed]
- Dasgupta, A.; Mondal, J.H.; Das, D. Peptide Hydrogels. RSC Adv. 2013, 3, 9117–9149. [Google Scholar] [CrossRef]
- Nagahama, K.; Takahashi, A.; Ohya, Y. Biodegradable Polymers Exhibiting Temperature-Responsive Sol–Gel Transition as Injectable Biomedical Materials. React. Funct. Polym. 2013, 73, 979–985. [Google Scholar] [CrossRef]
- Liow, S.S.; Dou, Q.; Kai, D.; Karim, A.A.; Zhang, K.; Xu, F.; Loh, X.J. Thermogels: In Situ Gelling Biomaterial. ACS Biomater. Sci. Eng. 2016, 2, 295–316. [Google Scholar] [CrossRef] [PubMed]
- Di Martino, M.; Sessa, L.; Diana, R.; Piotto, S.; Concilio, S. Recent Progress in Photoresponsive Biomaterials. Molecules 2023, 28, 3712. [Google Scholar] [CrossRef]
- Li, L.; Scheiger, J.M.; Levkin, P.A. Design and Applications of Photoresponsive Hydrogels. Adv. Mater. 2019, 31, 1807333. [Google Scholar] [CrossRef] [PubMed]
- Peng, K.; Zheng, L.; Zhou, T.; Zhang, C.; Li, H. Light Manipulation for Fabrication of Hydrogels and Their Biological Applications. Acta Biomater. 2022, 137, 20–43. [Google Scholar] [CrossRef] [PubMed]
- Guimarães, C.F.; Ahmed, R.; Marques, A.P.; Reis, R.L.; Demirci, U. Engineering Hydrogel-Based Biomedical Photonics: Design, Fabrication, and Applications. Adv. Mater. 2021, 33, 2006582. [Google Scholar] [CrossRef]
- Tong, R.; Hemmati, H.D.; Langer, R.; Kohane, D.S. Photoswitchable Nanoparticles for Triggered Tissue Penetration and Drug Delivery. J. Am. Chem. Soc. 2012, 134, 8848–8855. [Google Scholar] [CrossRef]
- Jiang, Z.; Li, H.; You, Y.; Wu, X.; Shao, S.; Gu, Q. Controlled Protein Delivery from Photosensitive Nanoparticles. J. Biomed. Mater. Res. A 2015, 103, 65–70. [Google Scholar] [CrossRef] [PubMed]
- Pianowski, Z.L.; Karcher, J.; Schneider, K. Photoresponsive Self-Healing Supramolecular Hydrogels for Light-Induced Release of DNA and Doxorubicin. Chem. Commun. 2016, 52, 3143–3146. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Qi, B.; Lepage, M.; Zhao, Y. Polymer Micelles Stabilization on Demand through Reversible Photo-Cross-Linking. Macromolecules 2007, 40, 790–792. [Google Scholar] [CrossRef]
- Xing, Y.; Zeng, B.; Yang, W. Light Responsive Hydrogels for Controlled Drug Delivery. Front. Bioeng. Biotechnol. 2022, 10, 1075670. [Google Scholar] [CrossRef] [PubMed]
- Pourjavadi, A.; Heydarpour, R.; Tehrani, Z.M. Multi-Stimuli-Responsive Hydrogels and Their Medical Applications. New J. Chem. 2021, 45, 15705–15717. [Google Scholar] [CrossRef]
- Lavrador, P.; Esteves, M.R.; Gaspar, V.M.; Mano, J.F. Stimuli-responsive Nanocomposite Hydrogels for Biomedical Applications. Adv. Funct. Mater. 2021, 31, 2005941. [Google Scholar] [CrossRef]
- El-Husseiny, H.M.; Mady, E.A.; Hamabe, L.; Abugomaa, A.; Shimada, K.; Yoshida, T.; Tanaka, T.; Yokoi, A.; Elbadawy, M.; Tanaka, R. Smart/Stimuli-Responsive Hydrogels: Cutting-Edge Platforms for Tissue Engineering and Other Biomedical Applications. Mater. Today Bio 2022, 13, 100186. [Google Scholar] [CrossRef] [PubMed]
- Thang, N.H.; Chien, T.B.; Cuong, D.X. Polymer-Based Hydrogels Applied in Drug Delivery: An Overview. Gels 2023, 9, 523. [Google Scholar] [CrossRef] [PubMed]
- Güngör, A.; Özdemir, T.; Genç, R. Investigation of Use in 5-FU Release: Synthesis of Temperature and PH Responsive P (NVCL-Co-VIm)/PVP Hydrogels. Polym. Bull. 2024, 81, 2091–2109. [Google Scholar] [CrossRef]
- Fathi, M.; Alami-Milani, M.; Geranmayeh, M.H.; Barar, J.; Erfan-Niya, H.; Omidi, Y. Dual Thermo-and PH-Sensitive Injectable Hydrogels of Chitosan/(Poly(N-Isopropylacrylamide-Co-Itaconic Acid)) for Doxorubicin Delivery in Breast Cancer. Int. J. Biol. Macromol. 2019, 128, 957–964. [Google Scholar] [CrossRef]
- Zhao, C.; Zhuang, X.; He, P.; Xiao, C.; He, C.; Sun, J.; Chen, X.; Jing, X. Synthesis of Biodegradable Thermo-and PH-Responsive Hydrogels for Controlled Drug Release. Polymer 2009, 50, 4308–4316. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, Y.; Long, L.; Hu, C.; Kong, Q.; Wang, Y. A Spatiotemporal Release Platform Based on PH/ROS Stimuli-Responsive Hydrogel in Wound Repairing. J. Control. Release 2022, 341, 147–165. [Google Scholar] [CrossRef] [PubMed]
- Jung, J.M.; Kim, S.H.; Phan, V.H.G.; Thambi, T.; Lee, D.S. Therapeutic Effects of Boronate Ester Cross-Linked Injectable Hydrogels for the Treatment of Hepatocellular Carcinoma. Biomater. Sci. 2021, 9, 7275–7286. [Google Scholar] [CrossRef]
- Ma, Z.; Ma, R.; Wang, X.; Gao, J.; Zheng, Y.; Sun, Z. Enzyme and PH Responsive 5-Flurouracil (5-FU) Loaded Hydrogels Based on Olsalazine Derivatives for Colon-Specific Drug Delivery. Eur. Polym. J. 2019, 118, 64–70. [Google Scholar] [CrossRef]
- Palmese, L.L.; Fan, M.; Scott, R.A.; Tan, H.; Kiick, K.L. Multi-Stimuli-Responsive, Liposome-Crosslinked Poly(Ethylene Glycol) Hydrogels for Drug Delivery. J. Biomater. Sci. Polym. Ed. 2020, 32, 635–656. [Google Scholar] [CrossRef]
- Li, X.; Su, X. Multifunctional Smart Hydrogels: Potential in Tissue Engineering and Cancer Therapy. J. Mater. Chem. B 2018, 6, 4714–4730. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Li, J.; Pu, K. Recent Advances in Dual-and Multi-Responsive Nanomedicines for Precision Cancer Therapy. Biomaterials 2022, 291, 121906. [Google Scholar] [CrossRef] [PubMed]
- Jo, Y.-J.; Gulfam, M.; Jo, S.-H.; Gal, Y.-S.; Oh, C.-W.; Park, S.-H.; Lim, K.T. Multi-Stimuli Responsive Hydrogels Derived from Hyaluronic Acid for Cancer Therapy Application. Carbohydr. Polym. 2022, 286, 119303. [Google Scholar] [CrossRef] [PubMed]
- Gou, S.; Xie, D.; Ma, Y.; Huang, Y.; Dai, F.; Wang, C.; Xiao, B. Injectable, Thixotropic, and Multiresponsive Silk Fibroin Hydrogel for Localized and Synergistic Tumor Therapy. ACS Biomater. Sci. Eng. 2019, 6, 1052–1063. [Google Scholar] [CrossRef]
- Buwalda, S.J.; Vermonden, T.; Hennink, W.E. Hydrogels for Therapeutic Delivery: Current Developments and Future Directions. Biomacromolecules 2017, 18, 316–330. [Google Scholar] [CrossRef]
- Zhang, X.; Achazi, K.; Steinhilber, D.; Kratz, F.; Dernedde, J.; Haag, R. A Facile Approach for Dual-Responsive Prodrug Nanogels Based on Dendritic Polyglycerols with Minimal Leaching. J. Control. Release 2014, 174, 209–216. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Xu, J.; Sun, J.; Jiang, Y.; Zheng, W.; Hu, W.; Qian, H. Recent Advances on Thermosensitive Hydrogels-Mediated Precision Therapy. Asian J. Pharm. Sci. 2024, 19, 100911. [Google Scholar] [CrossRef]
- Cook, A.B.; Decuzzi, P. Harnessing Endogenous Stimuli for Responsive Materials in Theranostics. ACS Nano 2021, 15, 2068–2098. [Google Scholar] [CrossRef] [PubMed]
- Yin, Z.-C.; Wang, Y.-L.; Wang, K. A PH-Responsive Composite Hydrogel Beads Based on Agar and Alginate for Oral Drug Delivery. J. Drug Deliv. Sci. Technol. 2018, 43, 12–18. [Google Scholar] [CrossRef]
- Tan, J.; Luo, Y.; Guo, Y.; Zhou, Y.; Liao, X.; Li, D.; Lai, X.; Liu, Y. Development of Alginate-Based Hydrogels: Crosslinking Strategies and Biomedical Applications. Int. J. Biol. Macromol. 2023, 239, 124275. [Google Scholar] [CrossRef] [PubMed]
- Salehi, S.; Naghib, S.M.; Garshasbi, H.R.; Ghorbanzadeh, S.; Zhang, W. Smart Stimuli-Responsive Injectable Gels and Hydrogels for Drug Delivery and Tissue Engineering Applications: A Review. Front. Bioeng. Biotechnol. 2023, 11, 1104126. [Google Scholar] [CrossRef] [PubMed]
- Esther, M.; Solanki, R.; Dhanka, M.; Thareja, P.; Bhatia, D. Self-Healing, Injectable Chitosan-Based Hydrogels: Structure, Properties and Biological Applications. Mater. Adv. 2024; advance article. [Google Scholar] [CrossRef]
- Gu, D.; O’Connor, A.J.; GH Qiao, G.; Ladewig, K. Hydrogels with Smart Systems for Delivery of Hydrophobic Drugs. Expert. Opin. Drug Deliv. 2017, 14, 879–895. [Google Scholar] [CrossRef]
- Ghasemiyeh, P.; Mohammadi-Samani, S. Hydrogels as Drug Delivery Systems; Pros and Cons. Trends Pharm. Sci. 2019, 5, 7–24. [Google Scholar]
- Larrañeta, E.; Stewart, S.; Ervine, M.; Al-Kasasbeh, R.; Donnelly, R.F. Hydrogels for Hydrophobic Drug Delivery. Classification, Synthesis and Applications. J. Funct. Biomater. 2018, 9, 13. [Google Scholar] [CrossRef]
- Li, J.; Mooney, D.J. Designing Hydrogels for Controlled Drug Delivery. Nat. Rev. Mater. 2016, 1, 16071. [Google Scholar] [CrossRef]
- Popescu, M.-T.; Mourtas, S.; Pampalakis, G.; Antimisiaris, S.G.; Tsitsilianis, C. PH-Responsive Hydrogel/Liposome Soft Nanocomposites for Tuning Drug Release. Biomacromolecules 2011, 12, 3023–3030. [Google Scholar] [CrossRef] [PubMed]
- Tao, H.; Parthiban, A. Stimuli-Responsive Copolymers and Their Applications. In Synthesis and Applications of Copolymers; John Wiley & Sons: Hoboken, NJ, USA, 2014; pp. 274–306. [Google Scholar]
- Wu, J.; Xue, W.; Yun, Z.; Liu, Q.; Sun, X. Biomedical Applications of Stimuli-Responsive “Smart” Interpenetrating Polymer Network Hydrogels. Mater. Today Bio 2024, 25, 100998. [Google Scholar] [CrossRef] [PubMed]
- Anju, S.; Prajitha, N.; Sukanya, V.S.; Mohanan, P.V. Complicity of Degradable Polymers in Health-Care Applications. Mater. Today Chem. 2020, 16, 100236. [Google Scholar] [CrossRef]
Stimulus | Polymer(s) | Drug/Dye/Ligand | Cross-Linking Agent | Preparation Method | Cancer/Model/Route | Findings | Reference |
---|---|---|---|---|---|---|---|
pH | CS and PEO | Amoxicillin, Metronidazole | Glyoxal | Cross-linking | Peptic ulcers | In the acidic environment of the stomach fluid, prepared hydrogels may be helpful for the localized administration of antibiotics. | [52] |
PAA: PEO | SAM, NAM, CHC, PDN | TDIC | Cross-linking | GI tract | The pH-dependent swelling of IPN granules in the matrix significantly determines drug release across all studied types. | [57] | |
Gelatin: PEO | Riboflavin | Glyoxal | Cross-linking | For oral delivery | Gelatin and gelatin-PEO hydrogels swell based on pH and high--eight PEO. | [60] | |
PEG and L-Lactide | DOX and TET | MA–PLLA–PEG–PLLA–MA | Cross-linking | GI tract | pH-mediated drug release observed (slow release of DOX in acidic buffers as well as fast release of TET). | [75] | |
PEG-6000 and MAA | - | MBA | Radical polymerization reaction | Male albino rabbits | The nanogels were well-tolerated with no toxic effects in animals. | [63] | |
Gelatin and Pluronic F127 | CUR | FCHO | Schiff base cross-linking | Diabetes mellitus | Displayed antibacterial and antioxidative activity and biocompatibility, facilitated wound closure, and enhanced tissue regeneration. | [76] | |
Lap®/CS/PVA | CUR | Lap®CUR | Cross-linking | Breast cancer cells (MDA-MB 231) and bacteria S. aureus, E. coli, and H. pylori | Had good blood compatibility, excellent antioxidant properties, and antibacterial activity. | [69] | |
PEI-Co-MAA | Mesalazine | MBA | Free radical polymerization | Colorectal diseases | Hydrophilic drugs can be delivered to colon sites via hydrogels. | [70] | |
Black seed extract and β-CD, MAA | Perindopril Erbumine | MBA | Free radical polymerization | - | At alkaline pHs, hydrogels demonstrated more swelling and in vitro drug release compared to acidic pHs, with no adverse effects observed in animals. | [71] | |
CMTKG/PVP/PAM | DS | MBA | Free radical polymerization | - | A higher drug release was observed at physiological pH (pH 7.4) compared to acidic pH (pH 1.2) from hydrogel. | [77] | |
PU−PEI and PU−CA | Ciprofloxacin, Bromophenol blue and Pyronin Y | - | Aminolysis and Stiglich esterification mechanism, physical cross-linking | Chronic wounds | PU–PEI films exhibited significantly higher antibacterial activity than PU–CA films, and they discharged more cargo at an acidic pH than PU–CA films did at an alkaline pH. | [74] | |
CMA and CS | DS | - | Ionic complexation | Dermal drug delivery, HaCaT cells | The viability of HaCaT cells was nearly 100% in the presence of hydrogels and DS, indicating the potential of CMA/CS PECs for pH-responsive dermal drug delivery. | [50] | |
DF-PEG, PAHy | DOX | - | Chemical cross-linking | Human fibrosarcoma | The DOX-loaded hydrogel exhibited enhanced efficacy, achieving approximately 80% tumor inhibition by day 20, suggesting its potential as a highly effective treatment for human fibrosarcoma. | [51] | |
Redox | DPA-DSDMA, PEG | PDS, BSA | - | - | L929 mouse fibroblasts | When hydrogels were treated with thiol-containing reducing agents, they broke down quickly, facilitating the release of the encapsulated payload (such as BSA) more quickly. | [33] |
PEG-SH and Fe-EDTA | Dextran | DVS | One-pot cross-linking | NIH/3T3 mouse fibroblasts | These gels offer a potentially useful platform for separating the behavior of degradation in response to reduction stimuli from the initial mechanical properties. | [78] | |
Resilin | RGD | DTSSP | - | NIH/3T3 fibroblasts | Demonstrated the degradation and cytocompatibility of DTSSP-cross-linked RZ10-RGD, showcasing their potential for biomedical applications. | [79] |
Stimulus | Polymer(s) | Drug/Dye/Ligand | Cross-Linking Agent | Preparation Method | Cancer/Model/Route | Findings | Reference |
---|---|---|---|---|---|---|---|
Enzyme (HRP) | Alginate and tyramine | Phenol | HRP/H2O2 | Enzymatic cross-linking | - | Findings demonstrated the viability of a unique alginate synthesized with phenols as an alternate to typical unmodified alginates. | [104] |
Enzyme (GOx) | N-hydroxyimide–heparin | DOX | EDC/NHS, Gox | Radical polymerization reaction | HeLa, HepG2, and NIH-3T3 cells | Drug was released from hydrogel in an enzyme-responsive manner. | [112] |
Enzyme (MMP) | Tm | TMZ, BG | - | - | C6 glioma cells, BALB/c nude male mice, orthotropic glioma model | Hydrogels reduced MGMT expression in vivo, rendering TMZ-resistant glioma cells more responsive to TMZ treatment. Additionally, post-surgery, these hydrogels significantly enhanced TMZ efficacy in glioma growth inhibition and reduced the recurrence of TMZ-resistant gliomas. | [109] |
Enzyme (β-gal) | PLGA− PEG− PLGA | 5-FU, LAPONITE | 2-ethyl-hexanoate as a catalyst | Bulk ring-opening co-polymerization | MCF-7, female nude mice (ICR-nu/nu), PC-3 cells | Prodrug 5-FU−β-gal and nanocomposite gels were injected locally once, and the combination had long-lasting anticancer activity in vivo with no side effects. | [113] |
Enzyme (MMP) | dPG | DOX | Peptide | Nano-precipitation | HeLa cells, MCTSs, primary fibroblasts | The digested multistage pNGs demonstrated enhanced diffusive transport through a dense gel matrix. pNGs facilitated the infiltration of functional chemotherapeutic medication into deeper tissue regions in tumor-like MCTSs. | [111] |
Enzyme (MMP) | PEG | DOX, MIONPs, RGDS | - | Surface-initiated photopolymerization | HeLa cells, mouse fibroblast | Targeted nanocarriers internalized and efficiently carried and released DOX into the nucleus of HeLa cells within 2 h. | [110] |
Enzyme (dextranases) | Dextran | - | HDI or DDI | - | SD rats, human colonic fermentation model | Dextran hydrogels were degraded in vitro by a model dextranase, as well as in vivo in rats and a human colonic fermentation model. | [114] |
Glucose | PBA and glucose | PBA | AIBN as an initiator | Radical polymerization | Insulin delivery | Mechanism was not studied but could be used for insulin delivery | [115] |
Glucose | IA-0 peptide | Gox, Catalase, Insulin | - | Solid-phase method | STZ-induced diabetic mice | In vitro and in vivo studies demonstrated that the developed hydrogels can regulate blood glucose levels. | [116] |
Stimulus | Polymer(s) | Drug/Dye/Ligand | Cross-Linking Agent | Preparation Method | Cancer/Model/Route | Findings | Reference |
---|---|---|---|---|---|---|---|
Temperature | Chitosan | DSF | - | Physical cross-linking | SMMC-7721 cells | High biocompatibility hydrogels that quickly gelled at body temperature and showed dose-dependently greater cytotoxicity compared to the free DSF solution may be given at room temperature. | [129] |
PLA-PEG-PLA | CTX and CpG-ODN | - | - | CT26 cells, CT26-bearing mice | The outcomes demonstrated that this combined approach decreases CTX toxicity while generating a cytotoxic T cell response that efficiently suppresses tumor growth, extends survival, and significantly increases the tumor cure rate. | [130] | |
L-lysine and L-alanine-based diblock copolypeptide | PTX | - | - | Glioblastoma (HK308 cells) | Hydrogel loaded with paclitaxel caused less cellular inflammation, tissue damage, and reactive astrocytes than either the hydrogel or cremaphor-taxol (the usual taxol carrier). In vivo studies suggested local tumor control and improved survival. | [131] | |
HPCS and F127-CHO | ICG and BSA, CaO2 NPs, Bi2S3 | - | Schiff-base linking | L929 cells, 4 T1 cells, BALB/c nude mice | ICG@CaO2-BSA nanoparticles’ CaO2 broke down in the TME to produce Ca2+ and H2O2. In addition, ICG produced ROS when exposed to NIR radiation. Furthermore, when Bi2S3 nanorods and ICG were exposed to near-infrared radiation, they produced a photothermal effect that raised the temperature of tumor tissues, which helped to precisely destroy tumor cells. | [132] | |
MXene nanosheets | DOX, FeCl2 solution, gellan gum | - | Physical cross linking | A549 and L-929 cells | MXene@GG demonstrated superior photothermal properties and precise drug release control. Additionally, cell studies confirmed MXene@GG’s high biocompatibility and the sustained anticancer efficacy of DOX. | [133] | |
CS-g-PNIPAM | GO-CET/ CPT11 and shRNA | NIPAM and MAA | Free radical polymerization | U87 cells (glioblastoma), 3T3 fibroblasts, BALB/c nude mice | In vitro studies suggested cell apoptosis, reduced SLP2 protein expression, and inhibited cell migration. In vivo studies confirmed 40% tumor size compared with the untreated control group after 12 days. | [134] | |
PDLLA-PEG-PDLLA | BVZ and DOX | Stannous octoate as catalyst | Ring-opening polymerization | HaCaT and HeLa cells, HeLa xenograft nude | In vitro studies showed negligible cytotoxicity on HeLa and HaCaT cells. In vivo studies suggested that hydrogel co-loaded with BVZ and DOX effectively suppressed tumors for 36 days after a single intratumoral injection, with no harm to vital organs. | [135] | |
Alginate-grafted PNIPAM | DOX | EDC, NHS, MES buffer | ATRP | AT3B-1 cells | DOX was gradually released from hydrogel, and had enhanced cellular uptake, good biocompatibility, and increased efficacy in inducing cancer cell death. | [136] | |
Light | Azobenzene and α-CD functionalized HA | MSNs-AuNBs, DOX | NIR radiation | In situ self-assembly | HaCaT and SCC cells, MCS | Upregulation of hyaluronidase (HAase) near the tumor tissue caused hydrogel HA degradation and the release of the drug from hydrogel, which could be taken up by tumor cells and the drug is delivered to cell nuclei. | [137] |
CSMA | Gnp substrate, LAP | 405 nm laser | - | MCF-7, HepG2, and HeLa cells, healthy and cancer patients’ blood | Study indicated that the isolation platform had acceptable biocompatibility and had isolated the selected cells successfully. This light-responsive hydrogel has potential for use in clinical applications. | [138] | |
Ti3C2 MXene/cellulose | DOX | ECH | Chemical cross-linking | HepA1-6, SMMC-7721, HepG2, U-118MG and U-251 MG cells, BALB/c or C57BL/6 mice | The results showed the promise of the nanoplatform for use in cancer therapy by demonstrating that the combination of PTT and adjuvant chemotherapy delivered via this nanoplatform destroyed tumors instantly and prevented tumor relapse. Notably, DOX was released from the hydrogel and had excellent photothermal action. | [139] | |
Humic acid/agarose | SH and DOX | - | Physical cross-linking | 4T1 cells, 4T1 tumor-bearing BALB/c mice | In vivo studies suggested improved antineoplastic efficacy of hydrogel drugs in tumoral tissues compared to the local distribution of free drugs. | [140] | |
MC | MSNs, DOX | - | - | 3T3 mouse fibroblasts and Cal27 human OSCC, female BALB/c mice | Chemotherapy and phototherapy together produced a less toxic, long-lasting synergistic antitumor impact both in vitro and in vivo. | [141] |
Stimuli | Polymer(s) | Drug/Dye/Ligand | Cross-Linking Agent | Preparation Method | Cancer/Disease Model/Route | Findings | Reference |
---|---|---|---|---|---|---|---|
Temperature and pH | PNVCL, Vim, PVP | 5-FU | MBA | Free radical polymerization | Neoplastic cells | Hydrogels of P(NVCL-co-VIm)/PVP across various pH and temperature conditions offer promise for targeted drug delivery applications. | [164] |
Temperature and pH | PNIAAm-co-IA and CS | DOX | GP | Free radical polymerization | Breast cancer (MCF-7 cells) | Lower concentrations in an acidic environment (37 °C) demonstrated faster DOX release than a neutral pH and 40 °C. The hydrogels were cytocompatible and had negligible or no cytotoxicity according to the cytotoxicity analysis. | [165] |
Temperature and pH | PGA and PNH | Lysozyme | Carbodiimide | Radical polymerization, ring-opening polymerization | - | The hydrogel’s potential as a smart drug carrier was highlighted by the quicker rates of lysozyme release at pH 7.4 along with a decreased cross-linking density and PNH content. At pH 4.0, the release of lysozyme was slowed due to protonation of the PGA portion. | [166] |
pH and glucose | PEGS-PBA-BA and CS-DA-LAG | rGO@ PDA and metformin | - | Double dynamic bond between Schiff bases and phenylboronate esters | Type II diabetic foot wounds | With their increased adhesion, stimuli-responsive metformin release, and self-healing properties, the PC hydrogels were shown to be effective in helping chronic athletic diabetic foot wounds to recover. | [121] |
pH and ROS | POD, CE | DS and MF | Groups from POD and CE | Schiff base linkages and boronic ester bonds | Chronic diabetic wound | Results both in vitro and in vivo studies showed anti-infection, anti-oxidation, and anti-inflammatory effects at first, which were followed by enhanced angiogenesis and faster wound healing. | [167] |
Temperature and pH- | PCLA | DOX-pH-GA, BA | - | Covalent cross-linking | Hepatocellular carcinoma | The in vivo investigation demonstrated the efficacious inhibition of tumor growth by the DOX-releasing hydrogel depot. These results demonstrated the pH-responsive hydrogel’s intriguing potential for localized anticancer therapy. | [168] |
pH and enzyme | HEMA and MAA | 5-FU | OLZ-AC | Radical copolymerization | HCT116 colon cells, rat colonic fluid | Local 5-FU release occurred at a colon location, and high 5-FU concentrations overcame cancer therapy resistance by promoting necroptosis in colon cancer cells. | [169] |
Temperature and enzyme | PEG, MMP peptide | DOX, TSLs | Michael-type reaction responsible for cross linking | Thiol–maleimide reaction, chemical cross-linking | AoAF and NIH3T3 cells | Investigations into in situ drug delivery and degradation demonstrated that the TSL-gel reacts to local environmental factors such as temperature and enzymatic stimulation. | [170] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Solanki, R.; Bhatia, D. Stimulus-Responsive Hydrogels for Targeted Cancer Therapy. Gels 2024, 10, 440. https://doi.org/10.3390/gels10070440
Solanki R, Bhatia D. Stimulus-Responsive Hydrogels for Targeted Cancer Therapy. Gels. 2024; 10(7):440. https://doi.org/10.3390/gels10070440
Chicago/Turabian StyleSolanki, Raghu, and Dhiraj Bhatia. 2024. "Stimulus-Responsive Hydrogels for Targeted Cancer Therapy" Gels 10, no. 7: 440. https://doi.org/10.3390/gels10070440
APA StyleSolanki, R., & Bhatia, D. (2024). Stimulus-Responsive Hydrogels for Targeted Cancer Therapy. Gels, 10(7), 440. https://doi.org/10.3390/gels10070440