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Abstract: An electrochemical sensor sensitive to coenzyme A (CoA) was designed using a CoA-
responsive polyallylamine–manganese oxide–polymer dot nanogel coated on the electrode surface to
detect various genetic models of osteoarthritis (OA). The CoA-responsive nanogel sensor responded
to the abundance of CoA in OA, causing the breakage of MnO2 in the nanogel, thereby changing the
electroconductivity and fluorescence of the sensor. The CoA-responsive nanogel sensor was capable
of detecting CoA depending on the treatment time and distinguishing the response towards different
OA genetic models that contained different levels of CoA (wild type/WT, NudT7 knockout/N7KO,
and Acot12 knockout/A12KO). The WT, N7KO, and A12KO had distinct resistances, which further
increased as the incubation time were changed from 12 h (R12h = 2.11, 2.40, and 2.68 MΩ, respectively)
to 24 h (R24h = 2.27, 2.59, and 2.92 MΩ, respectively) compared to the sensor without treatment
(Rcontrol = 1.63 MΩ). To simplify its application, the nanogel sensor was combined with a wireless
monitoring device to allow the sensing data to be directly transmitted to a smartphone. Furthermore,
OA-indicated anabolic (Acan) and catabolic (Adamts5) factor transcription levels in chondrocytes
provided evidence regarding CoA and nanogel interactions. Thus, this sensor offers potential usage
in simple and sensitive OA diagnostics.

Keywords: coenzyme A; osteoarthritis; manganese oxide; nanogel; polymer dot; electrochemical sensing

1. Introduction

The increasing number of patients with osteoarthritis (OA), characterized by chronic
joint and cartilage disabilities, has become a major public health concern [1–3]. Finding an
effective way to recover from this degenerative disease must be addressed by extensive
research on OA pathogenesis, including the development of diagnostic tools and thera-
peutic approaches [4–6]. In studies related to OA, understanding the metabolic pathways
and determining the prominent factors regulating OA pathogenesis are crucial for design-
ing effective diagnostic and therapeutic treatment for OA [7–9]. OA is characterized by
dysfunctional metabolic pathways, which lead to several abnormalities that are absent
in healthy cartilage such as the impairment of peroxisomal β-oxidation that triggers the
production of higher free fatty acid [10–12]. This impairment is also related to the accu-
mulation of acetyl-coenzyme A (acetyl-CoA), obtained from the increasing frequency of
CoA-catalyzed glycolysis, which leads to cartilage degradation and joint pain [13–15]. In
senescent chondrocytes lacking NudT7 knockout (N7KO) and Acot12 knockout (A12KO),
changes in acetyl-CoA and CoA concentrations are unique characteristics of OA and car-
tilage degeneration [16]. Key factors in OA metabolism, such as CoA, can be utilized as
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indicators of OA progression, which would be beneficial for the early diagnosis of OA
and determination of appropriate therapeutic actions. However, there have been only
a few reports on the design of a diagnostic platform that can conveniently detect CoA
as a benchmark for monitoring OA progression, such as liquid chromatography and the
colorimetric and fluorometric approach, which suffers from instability, low sensitivity, and
a complex detection procedure [17–20]. The design of such a sensitive and simple CoA
sensor is expected to be advantageous for addressing OA-related issues by providing an
intensive monitoring of OA progression.

Biomaterials contribute massively to designing a new diagnosis and therapeutic strat-
egy on bone-related diseases, making approaches more efficient and effective [21–23]. In
biosensing platform designing, the electrochemical-based biosensor is well known as a
facile and commonly used platform for sensing biomarkers because of its reliability and ex-
cellent sensitivity [24–28]. Electrochemical biosensors are generally synthesized by coating
conductive materials onto the substrate of a sensor (metal nanoparticles, graphene oxide,
carbon nanotubes, and conductive polymers) via various methods such as electrospinning
and dip coating [29–34]. However, these materials suffer from water insolubility and
low functionality, which are the main drawbacks in the construction of a sensitive and
effective biosensor [35–37]. To address this issue, a stimuli-responsive polymer system
can be promisingly applied on the biomedical device, including onto the biosensor, owing
to the fine-tuning properties by stimuli to tailor the response for a specific use [38]. The
polymer dot (PD), one of the stimuli-responsive polymer systems, offers some unique
properties, such as biocompatibility, good water solubility, excellent fluorescence property,
and electroconductivity, that are beneficial for designing a diagnostic platform [39–44]. In
terms of functionality, facile functionalization with a broad range of functional groups, such
as stimuli-responsive nanoparticles (e.g., MnO2) or adhesive moieties (e.g., catechol), is the
main advantage that allows the PD to be used as a material for constructing electrochemical
biosensors [45–48]. Considering its versatile functionality and physical form, with features
such as its redox sensitivity and incorporation into nanogel, a functionalized PD can be
chosen as an alternative material for designing CoA-responsive electrochemical sensors,
which are expected to sensitively interact with CoA in OA samples via redox interactions
and produce distinct signals for CoA detection.

In this study, an electrochemical-based CoA sensor was constructed to detect the
presence of CoA in OA cartilage by coating a polyallylamine–manganese oxide–polymer
dot nanogel (PD@PAH-MnO2) onto the electrode substrate. The redox reaction between
CoA and the nanogel, which reduces MnO2 in nanogel into Mn2+, triggers a change in
the electroconductivity and other properties (such as fluorescence) of the sensor, which
could be used as an indicator for CoA monitoring. The fabricated PD@PAH-MnO2 nanogel-
coated sensor was expected to sensitively detect CoA in OA genetic models obtained from
primary chondrocytes of OA mouse cartilage (wild-type [WT], N7KO, and A12KO). For
ease of monitoring, this sensor was combined with a Bluetooth-activated wireless sensing
system that allowed the electrochemical detection results to be transmitted and displayed
on a smartphone.

2. Results and Discussion
2.1. Design and Mechanism of CoA-Responsive Nanogel-Coated Sensor for OA Monitoring

The presence of CoA and its elevated concentration in OA chondrocytes are prominent
biomarkers of OA progression. An electrochemical sensing approach was developed to
sensitively monitor CoA in OA chondrocytes using a CoA-responsive nanogel coated
on the surface of an electrode. The CoA-responsive nanogel (PD@PAH-MnO2 nanogel)
was synthesized by conjugating PAH-MnO2 and catechol-functionalized PD via an EDC-
NHS coupling reaction followed by surface coating on the electrode (Si wafer), where
the PAH-MnO2 interacted with CoA via redox interaction, and the PD provided distinct
fluorescence properties and promoted good nanogel coatability on the electrode surface
due to the presence of catechol moieties. The sensing mechanism of this nanogel sensor
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relied on the change in conductivity owing to the redox interaction between MnO2 in
the nanogel and CoA in OA chondrocytes, thereby converting MnO2 into Mn2+, which
was used as an indicator for CoA detection. In OA progression, the concentrations of
other natural thiol species similar to CoA, such as glutathione (GSH), are dramatically
depleted and found to be in trace amounts in OA joints, which is contrast to the abundant
elevated CoA concentration. Owing to this trace concentration, the influence of GSH on
CoA detection can be neglected [49–51]. In this study, the breakage of MnO2 by CoA also
altered the fluorescence properties of the nanogel. The fluorescence of the nanogel was
initially quenched owing to the presence of MnO2 that triggered fluorescence resonance
energy transfer (FRET) between the PD and MnO2, the degree of fluorescence quenching
of which was higher as the amount of MnO2 was increased. When CoA was present,
the fluorescence of nanogel was recovered as the FRET effect was reduced after MnO2
breakage [45]. This fluorescence recovery could be more intense as the CoA concentration
was increased, such as in the higher CoA levels of N7KO and A12KO compared to the
WT primary cell. Based on these phenomena, the PD@PAH-MnO2 nanogel-coated sensor
could respond to different levels of expressed CoA in OA genetic models such as the WT,
N7KO, and A12KO models. For ease of monitoring, an Arduino-based wireless device
arrangement was connected to the sensor to read and transmit the electronic signal of CoA
detection and was further displayed on a smartphone via Bluetooth activation (Figure 1a).
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Figure 1. (a) Schematic illustration of PD@PAH-MnO2 nanogel-coated sensor design and its usage in
CoA detection. PL and DLS spectra of different ratios of PD@PAH-MnO2 nanogel (b) without and
(c) with CoA treatment (10 mM, 12 h). (d) Zeta potential and (e) SEM-EDX images of PD@PAH-MnO2

nanogel (100:10/nanogel 3) without and with CoA treatment. Notes: nanogel 1 = 100:2.5, nanogel
2 = 100:5, nanogel 3 = 100:10, and nanogel 4 = 100:20 for PD:PAH-MnO2.
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2.2. Effect of CoA on PD@PAH-MnO2 Nanogel Properties

The optimum condition for designing a CoA-responsive nanogel was decided by
varying the ratio of the PD and PAH-MnO2. Nanogels with different ratios (PD: PAH-
MnO2 = 100:2.5/nanogel 1, 100:5/nanogel 2, 100:10/nanogel 3, and 100:20/nanogel 4)
were treated with a CoA solution (10 mM) and the changes in the physical properties of
the nanogels affected by CoA were evaluated. Before CoA treatment, the average size of
the nanogel was higher than that of the PD only (98.6 nm), and it increased as the ratio
of PAH-MnO2 increased from nanogel 1 to nanogel 4 (156.8, 213.7, 283.9, and 392.4 nm,
respectively). A higher amount of MnO2 also caused significant fluorescence quenching in
the nanogel as FRET occurred between the PD and PAH-MnO2 (Figure 1b). When CoA was
introduced into nanogel 1–4, a decrease in nanogel size was observed for all nanogel ratios
(101.6, 110.3, 118.0, and 188.5 nm, respectively) whereas the fluorescence intensity was
significantly recovered for all nanogels (Figure 1c). The change in the size and fluorescence
properties of the nanogel after CoA treatment clearly indicated the decomposition efficacy
of MnO2 nanosheets into Mn2+ by CoA, leading to reduced nanogel sizes and a lower FRET
effect. Based on these data, the ratio of nanogel 3 was chosen as the optimum condition
and used for further experiments. A change in the zeta potential was also observed after
treatment with CoA. The zeta potentials of the PD and PD@PAH-MnO2 nanogel were
observed at −9.14 and −16.73 mV, respectively. After reaction with 10 mM CoA, the zeta
potential of the PD@PAH-MnO2 nanogel changed to −7.75 mV owing to the effect of MnO2
decomposition into Mn2+ (Figure 1e). SEM-EDX analysis further revealed an alteration in
the nanogel morphology between pre- and post-treatment with CoA. The PD@PAH-MnO2
nanogel was round in shape, with a high amount of Mn present in the nanogel before
CoA treatment. However, this structure was broken into smaller particles as CoA was
exposed to the nanogel, and the amount of Mn decreased dramatically, indicating the
decomposition of the nanogel in the presence of CoA, particularly because of the cleavage
of MnO2 in the nanogel (Figure 1e). This structural change in the nanogel was further
confirmed by assessing its thermal properties using the DSC and TGA profiles. As shown
in the DSC graph (Figure 2a), Tm peaks of the nanogel shifted before (169.7◦C and 291.5 ◦C)
and after CoA treatment (117.3 ◦C and 264.1 ◦C) (Figure 2a). The TGA profiles also showed
the distinct thermal features of the nanogel pre- and post-treatment with CoA, with the
post-treated hydrogel exhibiting additional degradation between 535.1 ◦C and 623.7 ◦C
(Figure 2b). Moreover, the change in the pore density of the nanogel indicated the effect
of CoA. The pore density of the nanogel without CoA was 2.6291 m2/g whereas the pore
density with CoA treatment was 6.9718 m2/g (Figure 2c). An increase in the surface area
correlated with a decrease in the nanogel size after treatment owing to the decomposition
of MnO2 by CoA. In addition, XPS analysis revealed the elemental composition and the
disappearance of MnO2 after CoA treatment. The survey scan XPS of the PD@PAH-
MnO2 nanogel showed the presence of peaks centered at 283.7, 398.7, 531.5, and 642.1 eV
corresponding to C1s, N1s, O1s, and Mn2p, respectively. Furthermore, the Mn2p peak
disappeared after CoA treatment. The narrow scan clearly showed the disappearance
of Mn2p3/2 and Mn2p1/2 at 642.1 and 653.5 eV on the electrode surface as a result of
the reaction with CoA (Figure 2d) [45]. Because of the presence of catechol moieties as
an adhesive functional group in the nanogel, the PD@PAH-MnO2 nanogel was easily
coated on the Si wafer surface to construct CoA-responsive nanogel sensor. The successful
coating and coating stability of the PD@PAH-MnO2 nanogel was assessed via contact angle
and conductivity measurements of PD@PAH-MnO2 nanogel-coated Si wafer (Figure S1).
The contact angle of Si wafer (30.2◦) was changed after coating with the PD@PAH-MnO2
nanogel (43.2◦). This nanogel coating was stable even after being soaked in the cell media
for 24 h (43.1◦), confirming the coating stability of nanogel sensor. The same change was
also observed from the resistance of Si wafer before (13.10 MΩ) and after nanogel coating
(1.55 MΩ), with a negligible effect of cell media on the nanogel-coated Si wafer resistance
(1.56 MΩ), confirming the excellent adhesion and coating stability of the nanogel on the
fabricated sensor.
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2.3. Electrochemical Detection of CoA in OA Genetic Models Using PD@PAH-MnO2
Nanogel-Coated Sensor

Because the PD@PAH-MnO2 nanogel contains catechol moieties that provide adhesive
properties, it can be coated on the electrode surface (Si wafer) to construct a CoA-responsive
sensor. After coating, the ability of the PD@PAH-MnO2 nanogel-coated sensor to respond
to CoA was evaluated by observing the change in the electroconductivity of the sensor
depending on the duration of CoA treatment. Sourcemeter measurements clearly showed
a change in the resistance, particularly as the treatment time increased (Figure 3a). The
resistance was increased from 1.27 MΩ at 0 h to 2.53, 3.60, and 6.55 MΩ at 6, 12, and 24 h
of CoA treatment. This result indicates that the fabricated nanogel-coated sensor was
capable of sensitively detecting CoA, with a notable change in resistance measured as the
incubation time varied owing to the increased cleavage of MnO2. These data were further
confirmed by EIS measurements (Figure 3b). The Nyquist plot shows the gradual change
in impedance that occurred in the PD@PAH-MnO2 nanogel-coated sensor when interacting
with CoA. As the interaction time increased, the impedance also increased, indicating
that the change in electroconductivity was affected by the breakage of the nanogel. To
develop a simple approach for CoA detection, a wireless sensing system was utilized by
combining a Bluetooth-assisted microcontroller with a PD@PAH-MnO2 nanogel-coated
sensor. Using this system, sensing data were transmitted and displayed on a smartphone
as a resistance graph by activating a Bluetooth connection. As shown in Figure 3c, the
resistance graph displayed on a smartphone closely correlated with the sourcemeter and
EIS data wherein the resistance increased as the treatment time increased, confirming the
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electrochemical detection capability of the PD@PAH-MnO2 nanogel-coated sensor. Changes
in the electrochemical properties before and after CoA interaction were also observed by
CV measurements (Figure S2). The nanogel sensor without CoA treatment showed notable
oxidation peaks at 0.62 V and 1.32 V. However, with CoA treatment, the current density of
the nanogel sensor was lower than that without CoA, with the disappearance of a peak at
0.62 V. This change confirmed that the breakage of MnO2 in the nanogel was triggered by
CoA, which affected the electrochemical properties of the PD@PAH-MnO2 nanogel-coated
sensor. In addition, a simple LED experiment demonstrated the enhanced resistance of the
nanogel sensor treated with CoA as the light intensity dramatically decreased compared to
that of the control (0 h) (Figure 3d).
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CoA plays a crucial role in the generation of acetyl-CoA in cells during OA pathogene-
sis. CoA catalyzes acetyl-CoA production during glycolysis, and accumulated acetyl-CoA
can be used as an indicator of OA. Hence, the performance of the PD@PAH-MnO2 nanogel-
coated sensor in detecting CoA was further evaluated using an in vitro culture of primary
articular chondrocyte-isolated OA genetic models (WT, N7KO, and A12KO) that express
high levels of CoA. After PD@PAH-MnO2 nanogel-coated sensor was seeded by each
model for different incubation time, the change in electroconductivity was measured and
compared with the nanogel sensor without any samples (control). Based on sourcemeter
measurement, the resistance of the PD@PAH-MnO2 nanogel-coated sensor increased after
treatment with the WT, N7KO, and A12KO, which further increased as the treatment time
increased from 12 h (2.11, 2.40, and 2.68 MΩ, respectively) to 24 h (2.27, 2.59, and 2.92 MΩ,
respectively) compared to the control (12 h = 1.63 MΩ, 24 h = 1.65 MΩ) (Figure 4a). In-
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terestingly, the resistance values of N7KO and A12KO were higher than those of the WT
owing to the higher level of CoA in N7KO and A12KO, allowing more breakage of MnO2,
thereby increasing the resistance of the sensor. Based on the statistical analysis of p values,
the differences between the control and OA genetic-model-treated nanogel sensor were
significant, particularly during the detection of N7KO and A12KO after 24 h (p < 0.001,
n = 6), confirming the detection capability of the sensor towards OA. The change in resis-
tance was also analyzed using EIS (Figure 4b). An increasing trend of the Nyquist plot
for the WT-, N7KO-, and A12KO-treated nanogel sensors clearly indicated the difference
in impedance affected by CoA, in which enhanced impedance was observed at 24 h of
incubation compared to that at 12 h of incubation. Moreover, the patterns of enhanced
resistance displayed on the smartphone via the wireless sensing system closely correlated
with the data obtained using the sourcemeter and EIS, revealing the performance of the
PD@PAH-MnO2 nanogel-coated sensor in detecting different CoA levels in various genetic
models of OA (Figure 4c).
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2.4. Cellular Analysis and Transcriptional Studies of Anabolic–Catabolic Factors in OA
Genetic Models

To assess the cytotoxicity of the PD@PAH-MnO2 nanogel-coated sensor on the cells,
live and dead staining analyses were performed under a confocal microscope using annexin-
V (live, green fluorescence) and propidium iodide (dead, red fluorescence). As shown in
the confocal images in Figure 5a, the PD@PAH-MnO2 nanogel-coated sensor exhibited low
cytotoxicity towards cells of the OA genetic models after seeding with the WT, N7KO, and
A12KO for 24 h as indicated by the dominant green fluorescence in the obtained cell images.
This result was consistent with various reports that revealed the excellent biocompatibility
of the PD and MnO2, which makes those nanomaterials suitable to be used for biomedical
applications [52–55]. Furthermore, the cellular uptake of PD@PAH-MnO2 in the WT, N7KO,
and A12KO was investigated (Figure 5b). Distinct fluorescence intensities were observed in
the WT, N7KO, and A12KO, with A12KO exhibiting the brightest fluorescence, indicating
the differential fluorescence recovery of nanogel uptake by cells, as the levels of CoA
were different for the WT, N7KO, and A12KO. The interaction between the WT, N7KO,
and A12KO PD@PAH-MnO2 nanogel-coated sensors was also evaluated by observing
the fluorescence recovery on the substrate (for this experiment, PET film) coated with
the nanogel, which reflected MnO2 breakage in the nanogel. As shown in Figure 5c,
distinct fluorescence recovery was observed in the PD@PAH-MnO2 nanogel-coated PET
treated with each OA genetic model, particularly for substrates incubated with A12KO,
which showed the most significant fluorescence recovery compared to the WT and N7KO.
These findings confirmed the reduced FRET effect in the nanogel as MnO2 was cleaved
by CoA in the OA genetic models. Moreover, to understand the interaction between the
PD@PAH-MnO2 nanogel and CoA in cells during detection, the PD@PAH-MnO2 nanogel
was expected to scavenge CoA, and the transcriptional levels of anabolic–catabolic factors
in the OA genetic models were determined. In OA cartilage chondrocytes, the levels of
anabolic factors such as aggrecan (Acan) are highly suppressed. In contrast, catabolic
factors such as Adamts-5, which play a vital role in cartilage matrix degradation, are
expressed in OA. After incubation with the PD@PAH-MnO2 nanogel-coated sensor, Acan
expression in the WT, N7KO, and A12KO was significantly enhanced, particularly in the
A12KO (Figure 5d). In contrast, the levels of Adamts5 expression in the WT, N7KO, and
A12KO were dramatically suppressed (Figure 5e). The increased and decreased levels
of Acan and Adamts5 revealed lower concentrations of CoA owing to exposure to the
PD@PAH-MnO2 nanogel-coated sensor, which reduced acetyl-CoA accumulation in the
cells and further altered the levels of Acan and Adamts5. These results demonstrate the
capability of the PD@PAH-MnO2 nanogel-coated sensor for sensitive electrochemical-
based OA detection.
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3. Conclusions

A CoA-responsive PD@PAH-MnO2 nanogel sensor was successfully fabricated to
sensitively detect CoA levels in OA genetic models via the electrochemical approach. The
PD@PAH-MnO2 nanogel sensor responded to CoA via a redox reaction that converted
MnO2 into Mn2+ triggered by CoA, thereby changing the electroconductivity, fluorescence,
and other properties of the nanogel sensor. The PD@PAH-MnO2 nanogel sensor exhibited
sensitivity towards CoA as indicated by the change in resistance before and after treatment
with CoA depending on the reaction time. When the sensor was used for detection in the
OA genetic models, significant differences were observed in resistance values between WT,
N7KO, and A12KO. In addition, the continuous treatment times from 12 h (R12h = 2.11, 2.40,
and 2.68 MΩ, respectively) to 24 h (R24h = 2.27, 2.59, and 2.92 MΩ, respectively) altered
the resistance of the sensor. Furthermore, the resistance obtained during CoA detection
can be transmitted and displayed on a smartphone via a Bluetooth connection in a wireless
sensing device, which simplifies the OA sensing application. In addition, the changes in
anabolic–catabolic factors (Acan and Adamts5) in WT, N7KO, and A12KO after exposure to
the PD@PAH-MnO2 nanogel sensor demonstrated the interaction between CoA and the
PD@PAH-MnO2 nanogel. This evidence suggests that the PD@PAH-MnO2 nanogel sensor
has potential applications for the sensitive and simple detection of OA.
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4. Materials and Methods
4.1. Materials

Alginic acid sodium salt, coenzyme A (CoA), dopamine hydrochloride, (N-morpholino)
ethanesulfonic acid (MES), potassium permanganate (KMnO4), poly(allylamine hydrochlo-
ride) (PAH), trizma base, ethylcarbodiimide hydrochloride (EDC), and N-hydroxysuccinimide
(NHS) were purchased from Sigma-Aldrich (St. Louis, MO, USA). Phosphate buffered
saline (PBS) was purchased from Bioneer Corp. (Daejeon, Republic of Korea). P-type Silicon
wafers were obtained from Silicon Technology Corporation (Daejon, Republic of Korea).
Trypsin-ethylenediaminetetraacetic acid (trypsin-EDTA, 0.03% w/v), fetal bovine serum
(FBS), penicillin–streptomycin, and cell medium were obtained from Gibco BRL (New York,
NY, USA). Live and dead cell staining systems (live: annexin V-FITC, dead: propidium
iodide) were purchased from Life Technologies (Carlsbad, CA, USA).

4.2. Characterizations

The diameter and zeta potential of the nanogel were analyzed using a Zetasizer Nano
(Malvern Panalytical, Kassel, Germany). The photoluminescence (PL) characteristics of the
nanogel were assessed using a fluorescence spectrometer (L550B; Perkin Elmer, Shelton, CT,
USA). Scanning electron microscopy–electron dispersive X-ray spectroscopy (SEM-EDX)
was performed using a JSM-6700F instrument (JEOL, Tokyo, Japan). Thermal gravimetric
analysis (TGA) and differential scanning calorimetry (DSC) were performed using a TGA
8000 and DSC4000 instrument, respectively (Perkin Elmer, Shelton, CT, USA). Confocal
imaging was performed using a confocal microscope (ECLIPSE Ti2-E, Nikon, Tokyo, Japan).
The surface area of the nanogel was measured using a Tristar II 3020 (Micromeritics, Nor-
cross, GA, USA). Structural characterization of the nanogel was performed using X-ray
photoelectron spectroscopy (XPS; Omicron ESCALAB, Berlin, Germany). Electrochemical
impedance spectrometry (EIS) and cyclic voltammetry (CV) measurements were performed
using an electrochemical workstation (CS350, CorrTest Instruments, Wuhan, China). A
2-electrode DC system sourcemeter (Keithley 2450, Tektronik, Cleveland. OH, USA) was
used to measure the resistance of the nanogel sensors. An Arduino Uno microcontroller (AT-
mega328P Processor, sensing part), a Bluetooth module (AppGosu, Somerville, MA, USA),
and a smartphone were used as the wireless sensing system for real-time data monitoring.

4.3. Synthesis of CoA-Responsive Nanogel (PD@PAH-MnO2)

CoA-responsive nanogel was synthesized by reacting PD with PAH-MnO2. In brief, PD
containing catechol moieties was obtained from the hydrothermal carbonization of alginate-
dopamine as described in a previous report [39]. PAH-MnO2 was then synthesized by
reacting 57.4 mg KMnO4 with 60 mg PAH in 70 mL double-distilled water (DDW), followed
by the addition of 120 mL MES buffer solution (0.1 M, pH 6.0), and allowed to react for 2 h
under sonication. The mixture was dialyzed against DDW (cutoff: 3500 Da) and freeze-
dried. The obtained PAH-MnO2 was then reacted with PD at different ratios (PD:PAH-
MnO2 = 100:2.5/nanogel 1, 100:5/nanogel 2, 100:10/nanogel 3, and 100:20/nanogel 4)
via the EDC-NHS coupling reaction at room temperature for 24 h [40]. Subsequently,
the mixtures were dialyzed against DDW (cut-off: 3500 Da) and freeze-dried. To assess
the PD@PAH-MnO2 nanogel structure in the absence and presence of CoA, the nanogel
structural integrity and properties was analyzed by exposing the PD@PAH-MnO2 nanogel
with different PD:PAH-MnO2 ratios (nanogel 1–4) to a CoA solution (10 mM) for 12 h at
room temperature. The changes in the nanogel size and surface area were measured using
dynamic light scattering (DLS) and Brunauer–Emmett–Teller (BET) methods whereas the
structural and morphological changes in the CoA-treated nanogel were observed using
SEM-EDX and XPS. The changes in thermal properties of nanogel were also observed
using DSC (25–300 ◦C, 10 ◦C/min, N2 atmosphere) and TGA (25–800 ◦C, 10 ◦C/min,
N2 atmosphere).
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4.4. Synthesis of CoA-Responsive PD@PAH-MnO2 Nanogel-Coated Sensor

A CoA-responsive nanogel sensor was fabricated by coating the PD@PAH-MnO2
nanogel onto an electrode substrate (Si wafer, 1 cm × 1 cm) via the dip-coating method.
Briefly, an Si wafer was soaked in 2 mg/mL PD@PAH-MnO2 nanogel (pH 8.5) and allowed
to react overnight at room temperature. The coated surfaces were washed with DDW and
dried before use.

4.5. Electrochemical-Based Detection of CoA Using PD@PAH-MnO2 Nanogel-Coated Sensor

The electrochemical sensing capability of the PD@PAH-MnO2 nanogel-coated sensor
towards CoA was evaluated by measuring the resistance using a 2-electrode DC system
sourcemeter, wireless sensing device, and 3-electrode system EIS, as well as by observing
the I–V profiles using CV. The PD@PAH-MnO2 nanogel-coated sensor was treated with
CoA solution (10 mM) for different durations (0, 6, 12, and 24 h). The nanogel-coated sensor
was washed with DDW and dried using an air compressor before the electrochemical
measurements. The resistance was measured by connecting the nanogel-coated sensor to
a sourcemeter (2-electrode DC setting). For wireless sensing, the nanogel-coated sensor
was combined with a wireless sensing system comprising a Bluetooth module and a
microcontroller circuit using alligator clips. By turning on the Bluetooth on a smartphone,
the sensing data (shown as a resistance graph) can be transmitted and displayed on a
smartphone. Furthermore, EIS analysis was conducted using the nanogel-coated sensor
as the working electrode, Ag/AgCl as the reference electrode, a Pt wire as the counter
electrode, and PBS (pH 7.4) as an electrolyte. The frequency ranged from 104–10−1 Hz
with −1.2 V of DC bias at 25 ◦C. The CV measurement was also conducted using similar
set-up as the EIS measurement (working electrode: PD@PAH-MnO2 nanogel-coated sensor,
reference electrode: Ag/AgCl, counter electrode: Pt wire, electrolyte: PBS pH 7.4), with
voltage in the range −1.5–1.5 V at a scan speed of 50 mV/s.

4.6. Sensing Ability of PD@PAH-MnO2 Nanogel-Coated Sensor towards In Vitro OA
Genetic Models

The in vitro OA genetic models (WT, N7KO, and A12KO) were obtained by isolating
immature articular chondrocyte (iMAC) primary cultures from postnatal day 5–6 articular
cartilage of mice by tibial plateau and femoral condyle dissection. Digestion of carti-
lage was performed using collagenase D solution (3 mg/mL, Roche, Basel, Switzerland,
11088858001) for 45 min, followed by transfer to a culture dish containing collagenase D
solution (0.5 mg/mL) and incubation at 37 ◦C for 12 h. After filtration (70 µm cell strainer),
primary iMACs were cultured in Dulbecco’s modified Eagle’s medium (low glucose, 1 g/L)
containing penicillin–streptomycin and FBS (10%) at 37 ◦C for 5 days in the presence of
5% CO2. For electrochemical sensing experiments, cultured WT, N7KO, and A12KO were
seeded onto the PD@PAH-MnO2 nanogel-coated sensor for 12 h and 24 h at 37 ◦C, then
washed and dried before measurement. To evaluate the significance of the sensing data
compared to the control, the obtained sensing results were further statistically analyzed
using Student’s t-test to determine p values (* = p < 0.1, ** = p < 0.01, *** = p < 0.001), and
number of replications of each sample was 6 (n = 6).

4.7. Confocal Imaging of PD@PAH-MnO2 Nanogel-Coated Sensor

PD@PAH-MnO2 nanogel was coated on the polyethylene terephthalate (PET) surface
for fluorescence observation after detecting CoA using dip-coating method mentioned in
Section 4.5. The PD@PAH-MnO2 nanogel-coated PET surface was then seeded with WT,
N7KO, and A12KO for 12 h at 37 ◦C. Prior to fluorescence imaging, the coated surfaces were
washed with DDW and dried using an air compressor. The fluorescence of PD@PAH-MnO2
nanogel-coated PET surface was observed under confocal microscope.
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Supplementary Materials: The following supporting information can be downloaded from https://
www.mdpi.com/article/10.3390/gels10070451/s1, Figure S1: Cyclic voltammogram of the PD@PAH-
MnO2 nanogel-coated sensor without and with CoA treatment. Figure S2: Cyclic voltammogram of
PD@PAH-MnO2 nanogel-coated sensor without and with CoA treatment (10 mM, 12 h).
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