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Abstract: Hydrogels are one of the most commonly used materials in our daily lives, which possess
crosslinked three-dimensional network structures and are capable of absorbing large amounts of fluid.
Due to their outstanding properties, such as flexibility, tunability, and biocompatibility, hydrogels
have been widely employed in biomedical research and clinics, especially in on-demand drug release.
However, traditional hydrogels face various limitations, e.g., the delivery of hydrophobic drugs due
to their highly hydrophilic interior environment. Therefore, micelle-containing hydrogels have been
designed and developed, which possess both hydrophilic and hydrophobic microenvironments and
enable the storage of diverse cargos. Based on the functionalities of micelles, these hydrogels can be
classified into micelle-doped and chemically/physically crosslinked types, which were reported to
be responsive to varied stimuli, including temperature, pH, irradiation, electrical signal, magnetic
field, etc. Here, we summarize the research advances of micelle-containing hydrogels and provide
perspectives on their applications in the biomedical field based on the recent studies from our own
lab and others.

Keywords: hydrogel; micelle; molecular network; stimuli-responsive material; drug delivery;
biocompatibility

1. Introduction

Hydrogels are a widely used type of soft material constructed with crosslinked three-
dimensional (3D) molecular networks. Due to their special structures, hydrogels are
able to absorb a large amount of fluid and possess flexibility, softness, tunability, and
biocompatibility [1]. Therefore, hydrogels are commonly employed in the biomedical field
(Figure 1), such as drug delivery [2], biosensors [3], wound dressings [4], bioelectronic
devices [5], contact lenses [6], etc. To construct the molecular networks within hydrogels,
two major crosslinking approaches have been applied [7], i.e., chemical and physical
crosslinking-based syntheses. Specifically, the chemical crosslinking strategy allows for the
formation of covalent bonds between hydrophilic polymers within the molecular networks
during gelation, which makes the resulting hydrogels more difficult to be biodegradable,
depending on the types of formed covalent bonds [8]. Therefore, chemically crosslinked
hydrogels have been widely applied as artificial implants [9]. Conversely, the physically
crosslinked hydrogels (also referred to as supramolecular hydrogels) are established via
non-covalent cohesion forces, such as electrostatic interactions, ligand–metal coordination,
π–π stacking, hydrogen bonding, etc [10]. Thus, the physically crosslinked hydrogels
possess highly dynamic features, such as self-healing properties and injectability [11].
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Overall, due to their unique structures and outstanding biocompatibility, both covalently
crosslinked and supramolecular hydrogels have become the most commonly employed
materials in biomedical research and clinic [12], especially for controlled drug release [13].
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Figure 1. Representative biomedical applications of hydrogels, which are one of the most commonly
used materials in our daily lives.

However, traditional hydrogels face obvious limitations in drug delivery, particularly
for drugs with low water solubility [14]. It has been well established that canonical hy-
drogel matrices are proficient at immobilizing water-soluble drugs [15], while they are
not ideal for the storage of hydrophobic drugs due to their highly hydrophilic internal
environment [16]. To overcome this drawback, a variety of modifications to hydrogels
have been developed and applied. One key method is to introduce micelles into the hy-
drogel systems (Figure 2), which can make them possess a dual microenvironment of both
hydrophilicity and hydrophobicity [17,18]. A micelle is a group of surfactant molecules
aggregated in an aqueous solution, where the water-attracting heads face outward, and
the water-repelling tails are hidden inside, forming a colloidal suspension [19]. Due to the
existence of hydrophobic cavities within micelles, micelle-containing hydrogels are able to
store cargos with poor water solubility for the subsequent controlled release [20]. In these
hydrogel systems, micelles can serve as “containers” for various hydrophobic substances,
thereby enhancing the capability of corresponding hydrogels to encapsulate and deliver
diverse contents [21].
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micelle-doped and micelle-crosslinked hydrogels.

In addition to providing hydrophobic microenvironments, the micelles have also been
utilized for the construction of 3D molecular networks of hydrogels. This type of hydrogel,
of which micelles are employed as crosslinking agents, is known as a micelle-crosslinked
hydrogel [22]. The micelles can be integrated into hydrogels together with hydrophilic
polymers through two major crosslinking approaches, i.e., chemical and physical crosslink-
ing (Figure 2), resulting in functional materials with distinct properties [23]. Specifically,
for chemically crosslinked micelle-containing hydrogels, the micelle surfaces typically
feature reactive moieties, such as C-C double bonds, that can participate in free-radical
polymerization. Under specific conditions, these reactive moieties within micelles react
with the polymers, resulting in the formation of covalently crosslinked rigid molecular
networks [24,25]. In contrast, the physically crosslinked micelle-containing hydrogels are
formed via supramolecular forces, which feature transient crosslinking formed by the
associations between polymer chains and micelles through non-covalent bonds or dynamic
reversible covalent bonds [26]. The reversible nature of these physically crosslinked net-
works imparts unique material properties, such as outstanding stretchability, toughness,
adhesion, injectability, and self-healing [27,28]. Collectively, micelle-crosslinked hydrogels
possess outstanding qualities and good performance, which are attributed to their unique
molecular network structures and thus have been widely applied in biomedical research.

In this review, we will summarize the design and preparation of micelle-containing
hydrogels. Representative examples will be discussed (Table 1), as well as the responses of
these hydrogels to diverse stimuli. Finally, we will highlight the applications of micelle-
containing hydrogels in the biomedical field and provide future perspectives, with a
particular focus on their advantages in drug delivery for disease therapeutics.
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Table 1. Summary of the micelle-containing hydrogel examples described in this paper.

Micelle Formulation Category Application Reference

Resveratrol Doped Drug release Joseph, A. et al., 2022 [29]
PIPAAm Doped Thermo sensor Yoshida, R. et al., 1995 [30]

Cholesterol-hyaluronate Doped Contact lens Mun, J. et al., 2019 [6]
Modified PEG Chemically crosslinked Drug delivery Sawhney, A. S.; et al., 1993 [17]

PU Chemically crosslinked Memory material Tan, M. et al., [31,32]
UPy Chemically crosslinked Cell encapsulation Qin, Z. et al., 2019 [33]

Pluronic F127 Physically crosslinked Memory material Yang, H. et al., 2022 [34]
CDAB Physically crosslinked Strain sensor Khan, M. et al., 2023 [35]

PEG-PLA Physically crosslinked Lacrimal implant Zhao, J. et al., 2023 [36]
SDS Physically crosslinked Gas therapy Zhou, X. et al., 2023 [37]
SDS Physically crosslinked Drug release Zhou, X. et al., 2023 [38]
SDS Physically crosslinked Soft robotics Tao, L. et al., 2021 [39]

PEO-PPO-PEO Chemically crosslinked Drug delivery Zhao, L. et al., 2011 [40]
F127 and SPION Physically crosslinked Drug release Qin, J. et al., 2009 [41]

Liposome Physically crosslinked Drug release Correa, S. et al., 2022 [42]

2. Micelle-Containing Hydrogels

Due to their instability, low local concentrations, and other issues of micelles in
complex biological environments, directly using micelles as carriers for the sustained
delivery of therapeutic agents remains challenging [43]. Furthermore, loading micelles into
hydrogels can effectively address these issues for a broader application range in biomedical
research and clinics. Based on the functionality of micelles within hydrogels, which either
contribute to the construction of molecular networks or not, micelle-containing hydrogels
can be briefly classified into micelle-doped and micelle-crosslinked ones (Figure 2). The
molecular networks of the former type are constructed regardless of the micelles, while the
gel formation of the latter type heavily relies on the existence of micelles that maintain the
crosslinking forces.

2.1. Micelle-Doped Hydrogels

Micelles are constructed by amphipathic molecules [44] and easily incorporated into
hydrophilic matrices to form micelle-doped hydrogels [45]. For instance, the Madhava-
menon group reported a type of hybrid hydrogel, which was formed by the incorporation
of resveratrol micelles into a fenugreek galactomannan hydrogel [29]. In this hybrid system,
fenugreek galactomannan was used to construct the hydrogel matrix, and the resveratrol
micelles were uniformly dispersed into the molecular network through homogenization.
The resulting mixture was then dehydrated under vacuum to obtain a micelle–hydrogel
composite in a powder form (RF-20). Under gastrointestinal conditions, RF-20 could ab-
sorb water and swell to reform a soft hydrogel, and meanwhile, resveratrol micelles were
released in a sustained manner for better absorption. Notably, the experimental results
showed that RF-20 could significantly increase the absorption of free resveratrol in the
human body, with enhanced pharmacokinetic properties, e.g., a much higher maximum
plasma concentration and a longer half-life, compared to unformulated resveratrol. More-
over, RF-20 significantly improved the total bioavailability of resveratrol, which was over
ten times better than that of unformulated resveratrol. In general, this micelle-doped
hydrogel system demonstrates significant potential in enhancing the bioavailability of
resveratrol, suggesting a promising methodology to improve the therapeutic efficacy of
lipophilic bioactive compounds.

In some micelle-doped hydrogels, the micelles are not pre-prepared but formed
during the gelation of materials [46]. For example, back in 1995, the Okano group de-
signed and developed a thermosensitive hydrogel with a comb structure, where poly(N-
isopropylacrylamide) (PIPAAm) chains were grafted onto the crosslinked molecular net-
works [30]. Unlike conventional PIPAAm-crosslinked hydrogels, the grafted PIPAAm
chains in this system possessed mobile ends, allowing the materials to transform from
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an expanded (hydrated) form to a compact (dehydrated) form more readily when the
environmental temperature increased. This collapse occurred before the PIPAAm network
began to shrink due to the mobility of grafted chains. The dehydration of these grafted
chains created hydrophobic clusters (i.e., self-formed micelles), which enhanced the ag-
gregation of crosslinked chains and facilitated a rapid de-swelling and shrinking of the
hydrogel. Notably, the comb-type grafted PIPAAm hydrogel could reach equilibrium
in 20 min when the temperature was increased from 10 ◦C to 40 ◦C, whereas the same
process usually took more than a month for conventional gels. For hydrogel-based smart
materials and actuators, the rapid de-swelling and shrinking responses can be utilized
to develop fast-acting sensors and control devices [47]. Overall, the amphipathic nature
and hydrophobic cavity-containing structures of micelles enable micelle-doped hydrogels
to possess complementary advantages in comparison with canonical hydrogels, which
can be widely applied in biomedical research, including sustained drug release, tissue
engineering, etc.

2.2. Micelle-Crosslinked Hydrogels

In another type of micelle-containing hydrogel, micelles participate in the crosslinking
and construction of molecular networks, which have direct impacts on the structures and
properties of the final materials. It has been shown that micelle-crosslinked hydrogels can
offer significant improvements over traditional hydrogels with their enhanced mechanical
and self-healing properties [48,49]. These advancements broaden the application scope
of hydrogels [50], addressing the many obvious limitations associated with conventional
hydrogels. In fact, compared with biological tissues, such as skin, muscle, and blood
vessels, traditional hydrogels tend to be brittle and display inadequate mechanical char-
acteristics [51]. These shortcomings have largely limited the applications of hydrogels
in biomedical research. Therefore, developing novel micelle-crosslinked hydrogels with
superior mechanical properties, including ultra-high toughness, stretchability, and elasticity,
is of paramount importance in biomedical engineering.

2.2.1. Chemically Crosslinked Micelle Hydrogels

In polymer chemistry, micellar copolymerization is a simple and effective technique
to embed hydrophobic domains within micelles [52], which can act as multifunctional
crosslinkers to form molecular networks of hydrogels [53]. This technique has been fre-
quently used to prepare tough hydrogels with unique mechanical properties [54].

For example, the Selb group reported a type of micellar copolymerization-based hy-
drogel, which was a bioerodible material constructed by photopolymerized polyethylene
glycol (PEG) and α-hydroxy acids. [17]. In the molecular network of this hydrogel, the
monomer consisted of a PEG central block and α-hydroxy acid oligomers as extending seg-
ments with acrylate groups at the ends. Due to the amphiphilic nature of PEG (hydrophilic)
and α-hydroxy acids (hydrophobic), these structures spontaneously formed micelles in
aqueous solutions. The subsequent photopolymerization led to crosslinking between the
monomers, resulting in a 3D network structure within the hydrogel. Notably, the acrylate
groups in micelles aggregated, making the polymerization reaction more efficient and thus
forming a more uniform crosslinked network. Benefiting from the biocompatibility and
degradability of the PEG component, along with the hydrolyzable nature of α-hydroxy
acids, this chemically crosslinked micelle hydrogel could be successfully applied in drug
delivery and tissue engineering.

In 2013, the Guo Lab developed a novel micellar crosslinking copolymerization
method using amphiphilic polyurethane (PU) macromonomers that could self-assemble
into micelles, thus eliminating the need for small molecular surfactants [31,32]. Specifically,
polyurethane macromonomers (PUI and PUII) were synthesized using polyethylene glycol
(PEG), isocyanate (IPDI), and acrylate (AOI) units. These amphiphilic macromonomers self-
assemble into micelles in aqueous solutions, where the hydrophobic IPDI units form the core
and the hydrophilic PEG chains construct the shell. Hydrogels were then formed by free-
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radical copolymerization of acrylamide (AAm) with micellar PUI or PUII macromonomers
under ultraviolet (UV) light using α-ketoglutaric acid (α-KA) as the photoinitiator. In this
hydrogel system, the micelles function as multifunctional crosslinkers, providing both
physical and chemical crosslinking within the molecular network. This approach results
in highly stretchable and resilient hydrogels with tunable mechanical properties and over
96% resilience at a 400% strain.

Another example is the Pluronic F127 diacrylate (F127DA)-based micelle hydrogels,
which were synthesized by acrylating the end hydroxyl groups of Pluronic F127 using
acryloyl chloride and triethylamine. F127DA is self-assembled in water to form micelles
with vinyl groups on their surfaces. The Fu group and Yang group have utilized these
F127DA-based micelles as crosslinking points by copolymerizing them with acrylamide
(AAm) and N-acryloyl-6-aminocaproic acid (AACA) monomers to enhance the molecular
network structures of the hydrogels and thus successfully improved their mechanical
properties and toughness [55–58].

In 2019, the Yang group developed a micelle-crosslinked hydrogel by incorporating
alkyl chain-protected ureido pyrimidinone (UPy) moieties into segmented copolymer back-
bones [33]. This study proposed a novel strategy based on strong and high-density micelle
crosslinking for the preparation of non-swelling and tough supramolecular hydrogels. In
this approach, micelle crosslinkers (NH2O-PEG-C8-UPy-C8-PEG-ONH2) were chemically
crosslinked with aldehyde-terminated polyethylene glycol (OHC-PEG-CHO) at 37 ◦C
through oxime bonds. This crosslinking reaction was highly rapid and efficient, forming a
hydrogel network with a high crosslinking density. Future experimental results demon-
strated that the C8-ONH2 micelle-crosslinked hydrogel exhibited excellent mechanical
properties, with a compressive strength reaching 4 MPa and a maintained elasticity at high
stretch ratios. Additionally, the C8-ONH2 micelle-crosslinked hydrogel showed almost no
swelling after being immersed in phosphate-buffered saline (PBS) for one week, whereas
the conventional hydrogels exhibited significant swelling and even complete degradation.
The high-strength, non-swelling, and self-recoverable hydrogels prepared by using this
strategy have huge potential for future biomedical applications.

In addition, a special micelle-crosslinked hydrogel with strain-stiffening properties was re-
ported recently. The Huo group synthesized core-crosslinked micelles with adjustable intrami-
cellar crosslinking densities and customizable chemical compositions using polymerization-
induced self-assembly at high concentrations [59]. This work demonstrated that intramicellar
crosslinking could effectively enhance the strain-stiffening properties of micelle-crosslinked
hydrogel networks, allowing for the decoupled regulation of fracture stress and Young’s
modulus, which created photoresponsive hydrogels with tunable mechanical properties and
provided new insights into designing adaptive and tough hydrogels.

2.2.2. Physically Crosslinked Micelle Hydrogels

Although chemically micelle-crosslinked hydrogels have been developed to address
the mechanical limitations of canonical hydrogels through covalent crosslinking, this
approach has resulted in relatively poor environmental sensitivity and biodegradabil-
ity [60,61]. Additionally, during the crosslinking process, micelles undergo chemical reac-
tions with polymer chains, which may have negative impacts on the encapsulated contents.
Physically crosslinked hydrogels have better reversible properties due to the absence of
covalent bonds, which makes up for the shortcomings of chemical crosslinking. In compar-
ison, physically crosslinked micelle hydrogels, due to the lack of covalent bonds, exhibit
superior reversibility without the limitations associated with chemical crosslinking [62].

For example, the Fu group used unmodified Pluronic 127 (F127) to form a type of
non-swelling, super-tough, self-healing, and multi-responsive polymer hydrogel (PHFGs)
utilizing micellar crosslinking with Pluronic F127 micelles [34]. In this hydrogel system,
F127 micelles formed extensive hydrogen bonding and hydrophobic associations with
poly(2-hydroxyethyl methacrylate) (pHEMA) chains, leading to a strong polymer network.
The resulting hydrogels exhibited excellent mechanical properties, negligible swelling, self-
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healing ability, and responsiveness to diverse environmental stimuli (such as pH changes),
making them suitable for smart switches and shape memory applications. Specifically,
upon the addition of acid to this hydrogel, the hydrogen bonds were disrupted, thereby
causing the material to swell and become transparent. As expected, when a base was
added, the hydrogel reverted to its original state. Notably, the PHFGs demonstrated rapid
self-healing under acidic conditions, attributed to the formation of new hydrogen bonds
and the activation of polymer chain diffusion. Moreover, the PHFGs exhibited shape
memory effects with changes in the water content, enabling them to be fixed into temporary
shapes and recover to their original form upon water stimulation.

In 2023, the Yoo group developed a new type of hydrogel by incorporating L-glutamic
acid (LGA) into hydrophobically crosslinked polyacrylamide (PAmm) chains, where the
surfactant cetyldimethylethylammonium bromide (CDAB) was employed to introduce
cationic micelles [35]. The introduction of LGA facilitated dynamic non-covalent crosslink-
ing through electrostatic interactions and hydrogen bonding, acting as a connecting bridge
between the micelle–micelle and micelle–polymer chains. This design significantly en-
hanced the mechanical properties of the material, including high extensibility (1650%), high
toughness (740 kJ/m3), and a relatively high Young’s modulus (1.65 kPa) by increasing the
crosslinking density through non-covalent interactions. The resulting hydrogels demon-
strated rapid self-recovery and remarkable fatigue resistance, maintaining their mechanical
properties after multiple deformations. In addition, the hydrogels in this research exhibited
a high strain sensitivity, which was capable of accurately monitoring a wide range of hu-
man movements and subtle physiological signals. Collectively, this novel micelle–micelle
crosslinking method offers new possibilities for manufacturing flexible hydrogel-based
sensors with adjustable mechanical properties and reliable durability.

In 2023, the Zhang group reported a triple crosslinked micelle hydrogel, where the
PEG-polylactic acid (PEG-PLA)-based micelles interacted with polymer chains and net-
works by acting as multifunctional crosslinkers, providing physical crosslinking points
through hydrophobic interactions [36]. These supramolecular interactions enhanced the
mechanical properties of the hydrogel, contributed to its self-healing capability, and enabled
its application for sustained drug release. Therefore, the release duration of latanoprost and
timolol was extended to 28 days, with the intraocular pressure-lowering effect in a rabbit
model demonstrating an efficacy over five times higher than that of regular eye drops.
These micelle hydrogel-based lacrimal sac implants could effectively reduce intraocular
pressure and exhibited good safety and tissue compatibility, which have great potential for
long-term and non-invasive treatment of glaucoma.

In general, physically crosslinked micelle hydrogels exhibit rapid association and
dissociation rates due to their non-covalent interactions, such as hydrogen bonding, electro-
static interactions, hydrophobic interactions, and van der Waals forces, which contribute to
the construction of molecular networks within hydrogels [63]. These dynamic supramolec-
ular interactions enable the resulting hydrogels to serve as smart carriers for delivering
versatile medicinal agents or as matrices for the repair and regeneration of organs and
tissues in the human body [64]. Such dynamic crosslinking systems often result in hydrogel
materials with high stretchability and other excellent mechanical properties, as well as
adhesive properties [65]. These micelle hydrogels can actively rearrange themselves by
remodeling, reshaping, and adapting to environmental stimuli, showcasing their diverse
stimuli-responsiveness [66]. Overall, micelle-crosslinked hydrogels hold great promise for
a wide range of biomedical applications, such as serving as drug delivery systems, tissue
engineering scaffolds, wound dressings, and smart biomaterials that can adapt to complex
environmental stimuli [67].

3. Stimuli-Responsive Micelle Hydrogels and Applications

In addition to the stimuli-responsive properties of polymer chains within their molec-
ular networks, micelle-containing hydrogels possess more diverse stimuli-responsiveness,
attributed to the existence of micelles that can also respond to environmental changes
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(Figure 3). For instance, the Duvall group developed a reactive oxygen species (ROS)-
degradable and thermoresponsive micelle hydrogel, which possessed tunable mechanical
properties and effective drug delivery capabilities (Figure 3A) [68]. Specifically, poly(N-
isopropylacrylamide) (PNIPAAM) exhibits a lower critical solution temperature (LCST) of
around 32 ◦C. Below the LCST, the PNIPAAM block is hydrophilic, thereby stabilizing the
micelles in aqueous solution. When the temperature rises above the LCST (e.g., to body tem-
perature at 37 ◦C), the PNIPAAM blocks hydrophilic to hydrophobic transitions. Addition-
ally, this micelle hydrogel exhibited good compatibility with cells in vitro and demonstrated
protective effects against ROS-mediated cell death. In a mouse model, the subcutaneous
injection of PPS-b-PDMA-b-PNIPAAM polymer solution formed a stable hydrogel that
could locally release the model drug, Nile Red, in a sustained fashion for up to two weeks.
Collectively, this novel thermoresponsive micelle-containing hydrogel showcased excellent
mechanical properties, degradation characteristics, and drug-release capabilities.
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Recently, our lab developed a novel pH-responsive and recyclable micelle hydro-
gel [37]. This hydrogel system could sense environmental pH changes to control the
reversible disassembly and reassembly of their molecular networks, which were con-
structed via one-pot radical polymerization, featuring dynamic hydrophobic interactions.
Specifically, at a low pH, sodium dodecyl sulfate (SDS) micelles disassemble due to proto-
nation and changes in the critical micelle concentration (CMC), thus breaking the hydrogel
network. When the pH returns to neutral, adding fresh SDS and mineral salts allows
the micelles to reassemble, thereby reforming the hydrogel. This pH-responsive behavior
enables dynamic micelle–polymer interactions, where different mineral salts (e.g., NaHS,
NaN3, and NaNO2) could play crucial roles in stabilizing micelles and reconstructing
hydrophobic interactions.

Our lab also designed and developed an electro-responsive and dynamic micelle
hydrogel with robust mechanical properties and precise spatiotemporal resolution
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(Figure 3C) [38]. This hydrogel system was designed and successfully developed based on
the direct current voltage (DCV)-induced rearrangement of SDS micelles. Upon applying a
direct current voltage, the SDS micelles within the hydrogel matrix rearranged, thus altering
the mesh size of the hydrogel network. Notably, these hydrogel materials possessed high
extensibility (>6000%) and high toughness (507 J/m2), exhibiting strong mechanical proper-
ties. Additionally, they featured self-healing and processability, which were reusable under
dynamic conditions. The experimental results also indicated that after DCV treatment, a
highly hydrophobic antibiotic, thiostrepton (TSR), which was encapsulated within the hy-
drophobic cavities of SDS micelles, could be released from the hydrogel, demonstrating its
capability for on-demand drug delivery. The follow-up antibacterial experiments showed
that TSR-loaded micelle hydrogels significantly inhibited the growth of methicillin-resistant
Staphylococcus aureus (MRSA) after DCV loading. The model experiments conducted on
porcine skin further demonstrated the potential of these micelle-containing hydrogels as
wearable devices and bioelectronics in practical applications.

In 2021, the Sun group developed a type of micelle-containing hydrogel that combined
excellent toughness, self-healing ability, and photoelectronic responsiveness [39]. Inspired
by the hierarchical structure of fluorescent proteins in jellyfish and biomembranes in
nature, they devised a universal strategy for constructing such hydrogels. Specifically,
these hydrogels were created through the aqueous self-assembly and polymerization of
UPy-containing polyelectrolyte-surfactant (i.e., SDS) micelles featuring a hydrophobic
core with reversible physical crosslinks that could provide a durable molecular network
structure. As a result, enhanced fluorescence emission was achieved through the formation
of nanoclusters with electron-rich moieties that restrict intramolecular motion via hydrogen
bonding networks. These hydrogels also exhibited bending behavior, which could be
explained by the Shiga-type bending theory, where immobilized sulfonate ions in the
hydrogel and freely moving Na+ ions migrated toward the cathode under the electric field.
This migration could create an ionic strength difference, leading to an osmotic pressure
difference that induces bending. Collectively, this type of micelle-containing hydrogel has
potential applications in soft robotics, artificial muscles, and other bioelectronics.

4. Micelle-Containing Hydrogels as Delivery Systems

One of the most important directions of biomedical engineering might be controlled
drug release for disease therapeutics [69]. As we described before, traditional hydrogels are
ideal tools for the sustained delivery of hydrophilic drugs due to their unique molecular net-
works, highly hydrophilic matrices, and outstanding biocompatibility. There are two types
of microenvironments within the micelle-containing hydrogels, i.e., the hydrophilic envi-
ronment of the hydrogel matrices and the hydrophobic environment within the micelles,
which make micelle hydrogels more flexible in storing and delivering diverse therapeutic
agents (Figure 4) [70].

Post-operative recurrence of breast cancer poses a significant clinical challenge, partic-
ularly for patients who have undergone breast-conserving therapy [71]. In 2015, the Qian
group developed a biodegradable and thermoresponsive hybrid hydrogel to prevent such
recurrences [72]. Specifically, this hydrogel system incorporated gold nanorods (GNRs)
into a thermoresponsive matrix and utilized a near-infrared (NIR) laser to trigger the re-
lease of loaded doxorubicin (DOX) through the photothermal effect of GNRs. In a mouse
model of breast cancer recurrence, the DOX-PCNA-GNR hydrogel with NIR irradiation
significantly reduced tumor recurrence to 16.7%, compared to the higher recurrence rates in
the control groups. The researchers also observed that under 808 nm NIR laser irradiation,
the hydrogel temperature rapidly increased to 50 ◦C, effectively killing cancer cells. This
temperature change caused a significant contraction of the hydrogel and thus accelerated
DOX release. Notably, this hydrogel demonstrated excellent thermal responsiveness and
could be reused multiple times. Moreover, the sustained release of DOX could be signifi-
cantly increased upon NIR laser irradiation or under acidic conditions (such as the tumor
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microenvironment), showcasing a remarkable characteristic for dual-stimuli-responsive
drug release as a smart material.
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In 2011, the Yang group reported a pH-triggered injectable amphiphilic hydrogel [40],
which was synthesized through a Schiff’s base reaction between glycol chitosan (GC) and
benzaldehyde-capped poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene
glycol) (OHC-PEO-PPO-PEO-CHO). The inclusion of DOX accelerated the gelation time
and increased the gel strength, while paclitaxel (PTX) had the opposite effect. The release
rates of DOX and PTX from this hydrogel system varied with the pH, where a lower
pH accelerated the drug release. Future in vivo experiments showed that the hydrogel
significantly reduced the DOX concentration in the bloodstream, thereby mitigating DOX-
induced cardiotoxicity. Local injection of this hydrogel into subcutaneous tumors in mice
showed an effective inhibition of tumor growth. Specifically, following the subcutaneous
(s.c.) injection of free DOX, the peak blood concentration (Cmax) reached 2.2 µg/mL, which
then rapidly declined within 80 h. In contrast, mice administered the DOX-loaded hydrogel
exhibited a much lower Cmax of approximately 0.05 µg/mL. Notably, the combination ther-
apy with both drugs in the hydrogel significantly improved the survival time compared to
single-drug therapies. Overall, these results indicated that this micelle-containing hydrogel
could effectively control the drug release in a sustained manner and enhance the safety and
efficacy of localized tumor therapies.

In 2009, the Muhammed group designed and developed a type of injectable superpara-
magnetic ferrogel (SPEL) for the controlled release of hydrophobic drugs (Figure 3D) [41].
These ferrogels were created using superparamagnetic iron oxide nanoparticles (SPIONs)
embedded in Pluronic F127 (PF127) copolymer gels. The resulting hydrogels demonstrated
temperature-dependent sol–gel transitions and magnetic field-responsive properties for
drug release, which were ideal for targeted topical drug delivery. Specifically, SPIONs were
mixed with a PF127 aqueous solution at low temperatures to form a stable suspension.
Upon heating, PF127 micelles organized into an ordered structure, encapsulating the SPI-
ONs. Thereafter, indomethacin (IMC), a model hydrophobic drug, was incorporated into
the hydrophobic cores of PF127 micelles. Without a magnetic field, the drug release from
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this hydrogel system occurred primarily through diffusion. When an external magnetic
field was applied, SPIONs aligned and moved closer, which could cause the micelles to
“squeeze” and increase the local concentration gradient of the IMC, thus accelerating the
drug release. Notably, the release half-time of the IMC decreased from 3195 min in the
absence of a magnetic field to 1500 min in the presence of a 300 mT magnetic field.

Controlled release technologies are essential for tissue and immuno-engineering but
often rely on passive diffusion, which largely limits the drug size and hampers the coordi-
nation of multiple drug releases [73]. In 2022, the Appel Lab introduced a novel injectable
liposome-based supramolecular hydrogel (LNH) for the programmable release of multiple
protein drugs [42]. Created by mixing liposomes with modified cellulose polymers, LNHs
feature tunable mechanical properties and easy injectability through standard needles. By
chemically engineering the liposome surfaces, these hydrogels enabled an affinity-based
protein release, acting as depots for synchronized therapeutic delivery. In vivo studies in
mouse models showed that LNHs could achieve a sustained and localized release of IgG
antibodies as well as IL-12 cytokines despite their size differences. The in vivo imaging
system (IVIS) indicated that while bolus administration caused a swift reduction in both
IgG and IL-12 within a day, these liposomal micelle hydrogels synchronized the release
patterns of these proteins, retaining over 50% of the fluorescent signal even after 14 days.
The follow-up toxicology studies showed that the gradual degradation of LNHs in vivo
would not cause toxicity or inflammation. The two types of supramolecular forces within
this hydrogel network, i.e., electrostatic and hydrophobic interactions, effectively reduced
the release rates of protein cargos, which made the liposomal micelle hydrogel an ideal
smart material for sustained drug delivery.

5. Summary and Outlooks

As one of the most commonly used materials in our daily lives, hydrogels are now
becoming more and more important in biomedical research and clinics (Figure 1) [74].
Among the various types of hydrogels, micelle-containing hydrogels possess significant
advantages (Table 1), which can effectively address the challenge of delivering poorly
water-soluble drugs. Their unique amphiphilic micelle structures allow for the efficient
encapsulation of water-insoluble drugs, thereby facilitating effective drug delivery in a
sustained manner. As smart materials, micelle-containing hydrogels offer unparalleled
advantages in drug delivery systems. Specifically, they are able to respond to various envi-
ronmental stimuli (Figure 3), such as changes in pH, temperature, magnetic fields, electric
fields, enzymes, metal ions, irradiation, etc., enabling a precise drug release in different
physiological environments and the regulation of release rates (Figure 4). Additionally, in
comparison with other materials, hydrogels possess excellent biocompatibility and degrad-
ability, making them a safe and effective carrier for biomedical applications. In summary,
well-designed micelle-containing hydrogels possess unique internal matrix structures with
dual microenvironments, which enable them to have novel material properties and great
application prospects in the biomedical field.
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