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Abstract: Breast cancer is the most common malignancy among women and is the second leading
cause of cancer-related death for women. Depending on the tumor grade and stage, breast cancer is
primarily treated with surgery and antineoplastic therapy. Direct or indirect side effects, emotional
trauma, and unpredictable outcomes accompany these traditional therapies, calling for therapies that
could improve the overall treatment and recovery experiences of patients. Hydrogels, biomimetic
materials with 3D network structures, have shown great promise for augmenting breast cancer
therapy. Hydrogel implants can be made with adipogenic and angiogenic properties for tissue inte-
gration. 3D organoids of malignant breast tumors grown in hydrogels retain the physical and genetic
characteristics of the native tumors, allowing for post-surgery recapitulation of the diseased tissues
for precision medicine assessment of the responsiveness of patient-specific cancers to antineoplastic
treatment. Hydrogels can also be used as carrier matrices for delivering chemotherapeutics and
immunotherapeutics or as post-surgery prosthetic scaffolds. The hydrogel delivery systems could
achieve localized and controlled medication release targeting the tumor site, enhancing efficacy
and minimizing the adverse effects of therapeutic agents delivered by traditional procedures. This
review aims to summarize the most recent advancements in hydrogel utilization for breast cancer
post-surgery tissue reconstruction, tumor modeling, and therapy and discuss their limitations in
clinical translation.

Keywords: hydrogel; breast cancer; tissue engineering; regenerative medicine; 3D bioprinting;
3D culture; organoids; drug delivery; chemotherapy; immunotherapy

1. Introduction

Breast cancer is defined as a malignant neoplasm in the breast. Of all cancers, it has the
highest incidence in women globally. In the United States, about 310,720 new cases of invasive
breast cancer will be diagnosed in women in 2024 [1]. As the second leading cause of cancer
death after lung cancer in women, breast cancer claims the lives of about 1 in 40 [1].

The standard treatment for breast cancer involves a combination of surgical, drug,
and radiation interventions, depending on tumor grade, stage, and the patient’s physical
condition. Surgical interventions span from breast-conserving lumpectomies to radical
mastectomy. Radiation therapy (or radiotherapy) applies to unresectable or metastatic
breast cancer. Pharmacological intervention, depending on drug categories and molecular
characteristics, can be chemotherapy, immunotherapy, hormone therapy, or targeted therapy.

Despite being a golden standard for treatment, surgical interventions, particularly
mastectomies, are associated with elevated rates of depression, anxiety, stress, and body
image disturbances for breast cancer survivors [2,3]. Pharmacological drug interventions
may be less invasive than surgery but face the challenges of multidrug resistance, which
accounts for 90% of cancer deaths [4]. The resistance mechanisms include drug efflux,
genetic adaptations, enhanced epigenetic alterations, tumor heterogeneity, and tumor
microenvironment (TME) factors [4]. Additionally, exposure to chemotherapeutics, such as
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taxanes, platinum analogs, and antitumor antibiotics, causes a variety of acute and chronic
adverse effects [5]. These limitations underscore the great need for alleviating the adverse
effects of these therapies and improving their therapeutic benefits.

A technology with increasing potential to address the shortcomings of current clinical
therapies is hydrogels, a class of polymeric materials with high water content, elasticity,
and 3D porous network structures. Their physical resemblance to living tissues has raised
significant attention in biomedical applications, particularly in medicine [6,7]. They are can-
didate breast implants post-mastectomy to restore breast structure and function, potential
modeling platforms for patient-specific precision medicine, and drug vehicles to increase
the efficacy of antineoplastic treatment and reduce exposure to toxic regimens (Figure 1).
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Figure 1. Hydrogel technology complements traditional breast cancer treatment. With the advent
of the “engineering era”, applying engineered hydrogels in breast cancer modeling, post-surgical
reconstruction, and drug delivery will greatly enhance the capabilities of breast cancer treatment and
improve the quality of cancer patients’ lives.

While our previous review presented hydrogel-based scaffolding techniques, model-
ing of cell–ECM/cell–cell interactions, studying of cellular phenotypes and signaling, and
testing of drug sensitivities in 3D cultures [8], the evolving advancements and multidis-
ciplinary nature of hydrogel utilization for breast cancer therapy highlight the need for
a specific yet comprehensive review of recent advances in the field. The use of hydrogel
in the overall cancer research field has recently been described either in a global or an
application-specific way. For example, Li et al. emphasized hydrogel molecular sizes and
delivery routes as well as the physical and chemical aspects of hydrogels relative to their
potential therapeutic usage [9]. Zhang et al. summarized the applications of hydrogels
in immunomodulation studies for cancer treatment and regenerative medicine [10]. Here
we specifically summarize the advances of hydrogel applications in breast cancer post-
surgical tissue engineering and tumor modeling to facilitate further development of this
multidisciplinary technology and its clinical translation.



Gels 2024, 10, 479 3 of 25

2. Advancements in Hydrogel Implants for Post-Mastectomy Regeneration of
Functional Breast Tissues
2.1. Common Hydrogels for Breast Tissue Regeneration
2.1.1. Natural Hydrogels

Natural hydrogels are biocompatible and can be derived from animals, plants, algae,
or donor human tissues [7,8,11]. Collagen, the most abundant extracellular matrix (ECM)
protein in the human breast with acini formation-supporting properties [12], is a master
hydrogel for bioengineering and regenerative medicine studies of the human breast. Colla-
gen and its derived gelatin not only mimic the physical properties of the breast ECM but
also promote adipocyte proliferation [13] and human breast epithelial cell ductal branching
and lobular expansion [14].

Methacrylamide-modified gelatin (GelMA) has been widely used for diverse tissue
engineering applications due to its biocompatibility, biodegradability, and modality. The
methacrylamide functional groups allow the GelMA molecule to undergo cross-linking
for the creation of a methacryloyl backbone, which gives GelMA stability at physiological
temperature and allows fine-tuning of mechanical properties [15,16].

Using 3D-printed technology, GelMA can be combined with CaSiO3 (CS), a bioactive
ion-releasing medium that has been shown to promote adipogenesis and angiogenesis, to
form composite scaffolds with customizable architecture for personalized breast reconstruc-
tion [17]. This composite scaffold supported adipogenesis and effectively stimulated the
vascularization of adipose tissues in vitro and in vivo under the skin of mice. In another
study, GelMA loaded with adipose tissue-derived stem cells (ASCs) were combined with
methacrylated κappa-carrageenan (CarMA) via 3D printing [18,19]. CarMA is a natural-
origin polymer that closely mimics the glycosaminoglycan structure, one of the important
constituents of mammalian native tissues ECM [20]. The combined platform exhibited
structural stability and mechanical properties akin to native breast tissues and cell viability
and proliferation rates similar to those in GelMA scaffolds. ASCs were able to differentiate
into adipogenic lineage on the hydrogel blend scaffolds, although their differentiation
potential was lower in GelMA combined with CarMA [21]. With a slight variation from
GelMA, Zhu et al. generated an injectable nontoxic foamed GelMA (f-GelMA) hydrogel
using gas-foaming and light-cured techniques [21]. The f-GelMA acted as a cell carrier
and promoted adipose-derived stem cell spheroid (s-ADSC) adipogenic differentiation,
anti-apoptosis ability, and tissue graft vascularization in mice.

Despite its potential for versatile formulations, GelMA generation results in high
levels of free radicals that damage the cells in the culture and create more heterogeneous
polymer networks. To circumvent these shortcomings, a photo-click scaffold was pro-
duced using norbornene-functionalized gelatin (GelNB) and thiolated gelatin (Gel-SH) [22].
This method generates porous scaffolds with more homogenous networks, augmented
cell attachment and proliferation, and fewer free radicals compared to the GelMA model.
Gelatin hydrogels can also be integrated with 3D-printed encapsulated filaments with
alginate-based microbeads [23]. This forms microstructures that resemble the microar-
chitecture of human fatty tissues and microvessels, allowing for vascularization through
anastomosis with the patient’s own blood vessels which is crucial for breast adipose recon-
struction [24]. The scaffold’s porous structure with hollow channels facilitates nutrient and
oxygen diffusion, promoting cell viability and tissue integration. Natural hydrogels have
the advantages of good biocompatibility with native tissues, having native tissue mechani-
cal, structural, and mechanical properties, and supporting tissue cell survival and growth
for tissue regeneration purposes. However, their scalability, long-term stability, mechanical
performance, production expenses, and in vivo induction of immune responses need to be
further evaluated. Integration of synthetic hydrogels into natural gels can be a solution to
resolve some of the disadvantages of natural hydrogels in translational applications.
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2.1.2. Synthetic Hydrogels

Synthetic hydrogels are usually made from non-natural polymers, such as poly(ethyhilene
glycol) (PEG), poly(lactic-co-glycolic acid) (PLGA), polycaprolactone (PCL), polyacrylamide
(PAM), polyvinyl alcohol (PVA), and Pluronic F127 (PF) [6,25–28]. They have been explored
for breast implantation due to their tunable properties, ease of synthesis [6,28] and higher
mechanical stability and durability compared to natural polymers [27]. Their controllable
chemical and physical flexibility allow for the achievement of optimal porosity, surface
characteristics, and degradation rate, with low variability between models [29]. However,
biocompatibility challenges prompt the necessity to enhance their suitability for long-term
use in breast tissue engineering and regeneration [7,29,30].

Several recent advancements have been made with PCL-based hydrogels. They can be
fabricated to mimic tissue composition and characteristics in several ways. Mohseni et al.
printed patient-specific 3D porous scaffolds using medical grade PCL (mPCL) hydrogel
and fused filament fabrication (FFF) [31]. The design addresses biomechanical and biolog-
ical requirements for large-volume tissue regeneration. The external structure provides
mechanical stability while the internal structure provides porosity and interconnectivity
for tissue formation. Meng et al. developed a technique that allows for tuning of the elastic
properties and flexibility of PCL scaffolds using selective laser sintering and sinusoidal
filament networks [32], with a goal of fabricating biodegradable scaffolds with mechanical
properties comparable to various native soft tissues. Using a similar approach, additively
3D-printed mPCL scaffolds were implanted under the panniculus carnosus muscle along
the flanks of the pig for scaffold-guided breast tissue engineering (SGBTE) [33]. Clinically
relevant volumes of soft tissues were obtained without wound complications in a period of
12 months, implying a translational potential of the technology.

PCL hydrogels can be combined with other biomaterials for better tissue integration.
Griffin et al. made scaffolds with varying pore architectures using PCL and Fused Depo-
sition Modeling (FDM) [34]. They coated the scaffolds with platelet-rich plasma (PRP) to
enhance 3T3-L1 adipocyte proliferation. The scaffold with compressive properties like
human breast tissues had 40% porosity. The PRP coating enhanced adipocyte formation,
tissue integration, and vessel formation in mice. Jwa et al. fabricated PCL scaffolds in the
presence or absence of collagen or breast tissue fragments and implanted the scaffolds in
breast-defective rat [35]. After 6 months of implantation, the restoration of breast tissues
and the expression of collagen were observed in the PCL scaffolds. The addition of collagen
to the PCL scaffolds increased fibrous tissues and decreased inflammation. However,
neither collagen nor breast tissue fragment addition to the PCL scaffolds restored breast
soft tissues in the study. Despite this, the approach showed the potential of repairing tissue
defects after partial mastectomy.

Ouyang H et al. created hydrogels with poly(hydroxyethyl methacrylate) (PHEMA) to
mimic breast tissues [36]. By mixing hydroxyethyl methacrylate (HEMA) with maleic acid
(MA), they reinforced hydrogen bonds and stopped phase separation. These hydrogels
have great mechanical properties, with a tensile strength of up to 420 kPa, a fracture
strain of 293.4%, a tensile modulus of 770 kPa, and a toughness of 0.86 MJ/m3. Their
compression modulus is similar to that of silicone breast prostheses, making them feel
natural. They also have excellent self-recovery and fatigue resistance, keeping their strength
after 1000 compression cycles. Lab and animal tests show they are biocompatible and stable,
making them a promising option for breast reconstruction implants [36].

Recently, a synthetic hydrogel composed of polyvinyl alcohol, collagen, and PLGA
copolymer/polycaprolactone/gelatin (PVA/COL/PPG) was created to study breast re-
construction [37]. The incorporated PPG nanofibers formed amide bonds with PVA and
COL in the composite scaffold that were enhanced by 1-ethyl-(3-dimethyl aminopropyl)
carbodiimide (EDC) and N-hydroxysuccinimide (NHS) cross-linking, leading to improved
mechanical strength, structural integrity, thermal stability, and cell adhesion, proliferation,
and 3D growth. This platform overcomes PVA hydrogel’s limitations of missing bioactive
factors and poor structural stability. Depending on the polymers or chemical materials used,
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synthetic hydrogel production can be complex and cumbersome. While synthetic gels are
disadvantageous in biocompatibility, they may not trigger immune system overresponse
to reject the synthetic implants either. In addition, the long-term degradation parameters
and translational validations of synthetic hydrogel prostheses in animal models need to be
further assessed.

2.1.3. Natural vs. Synthetic Hydrogels

Scaffold provision is a major method by which hydrogels can be applied for breast
tissue regeneration. Synthetic hydrogels are particularly versatile in this respect, as they
can be made with specific mechanical properties and stability, such as those made from PCL
using techniques like fused filament fabrication (FFF) and selective laser sintering [31,32].
Their customizability allows them to be tuned to achieve desired porosity, surface character-
istics, and degradation rates for optimal scaffold functions [6,25–28]. The synthetic nature
allows for excellent mechanical properties, durability, and fatigue resistance, which are
essential for applications requiring long-term stability and load-bearing capacity, such as
breast implants [36]. Natural hydrogels can also fulfill this application by being 3D-printed
for creating scaffold structures. Due to their more biomimetic properties, they also can
support cell viability and mimic the microarchitecture of human tissues [17–19,23,24].

In addition to scaffold provision, the actual integration and tissue regeneration follow-
ing the implant are other major applications for which natural hydrogels have particular
potential. Their ability to closely mimic the ECM of native tissues provides a natural
environment for growth and regeneration [12,13]. Their ability to be combined with
bioactive materials, such as CaSiO3 and methacrylated κappa-carrageenan, allows for
the enhancement of adipogenesis and angiogenesis, which are crucial for breast tissue
regeneration [17–19]. Several techniques, such as using f-GelMA and GelNB, allow for
stem cell differentiation and free radical protection [17–19,21]. Synthetic hydrogels can also
mimic these properties by being combined with other biomaterials such as collagen and
PRP to improve tissue integration and functionality, enhancing properties like adipocyte
proliferation and tissue formation [34,35].

Various challenges exist in both types of hydrogels. Despite their advantages in bio-
compatibility, natural hydrogels face challenges such as scalability, long-term stability,
production expenses, and potential immune responses that need further evaluation [23,24]
(Table 1). Synthetic hydrogels face challenges in biocompatibility and long-term degrada-
tion, necessitating further assessment of their suitability for translational applications in
breast tissue engineering and regeneration [7,30,31,33,37] (Table 1). Further optimization of
both types of hydrogels is necessary for clinical translation in breast tissue regeneration.
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Table 1. Survey of hydrogels recently studied for breast tissue reconstruction. Comparison of recent studies on natural and synthetic hydrogels used for breast tissue
engineering with respect to material sources, composition, and features of the hydrogel studied.

Source Material Modification Combination Study Type Advantages Disadvantages Ref.

Natural Collagen/Gelatin GelMA GelMA/CS In vivo

• Versatility
• Adipogenesis
• Vascularization
• Porosity

• Degradation
• Biocompatibility
• Mechanical stability under

physiological stress
• High cost

[17]

Natural Collagen/Gelatin GelMA GelMA/CarMA In vitro

• Cell viability
• Proliferation rate
• Structural stability
• Mechanical properties like breast

• Poor differential potential
compared to GelMA

• Uncertain stability
[19]

Natural Collagen/Gelatin f-GelMA - In vitro

• High bio-compatibility
• Adipogenic differentiation
• Enhanced vascularization
• Minimal cell damage
• Higher cell survival rates

• Integration complexity
• Need for further validation
• Technical challenges
• Uncertain long-term stability

and functionality in vivo
• Scalability

[21]

Natural Collagen/Gelatin GelNB GelSH - In vitro

• Cell-interactivity
• Reduced phase separation risk
• Homogeneous network

formation
• Better physicochemical

characteristics
• Enhanced adipogenic

differentiation potential

• Scalability
• Uncertain long-term stability

and functionality in vivo
• Vascularization complexity

[22]
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Table 1. Cont.

Source Material Modification Combination Study Type Advantages Disadvantages Ref.

Natural Collagen/Gelatin Gelatin Gel/alginate In vitro

• Mimicked tissue architecture
• Pre-vascular channels
• Cytocompatible method
• Mechanical mimicry
• Successful differentiation
• In vitro blood flow

• Vascularization complexity
• Scalability
• Long-term stability

[23]

Synthetic PHEMA - Maleic acid In vitro/In vivo

• High tensile strength
• High fracture strain
• Compliance similar to silicone

breast prosthesis
• Self-recovery ability
• Fatigue resistance
• Biocompatibility in vivo

• Fabrication complexity
• Limited translational validation
• Long-term durability and

stability in clinical use
[36]

Synthetic Polyvinyl/Alcohol - PVA/COL/PPG In vitro

• Improved mechanical properties
• Enhanced thermal stability
• Enhanced cell adhesion sites
• Three-dimensional cell growth

support

• Fabrication complexity
• Variability in scaffold

performance
• Long-term stability in

clinical use

[37]
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2.2. Breast Tissue Restoration Techniques

Restoring breast function and aesthetics after lumpectomy or mastectomy involves a
range of surgical techniques and approaches tailored to meet the needs of the patients [38].
Currently, limited cosmetic surgical options, such as tissue flaps or fat grafts, exist for
post-lumpectomy patients [39]. Following a mastectomy, patients face options that require
balancing physical limitations and personal preferences. Immediate breast reconstruc-
tion, increasingly popular, offers psychological benefits and improved aesthetic outcomes.
However, it entails greater surgical complexity and risks due to combined procedures [40].

Currently, the primary approaches for breast reconstruction are synthetic implants
and autologous tissue flaps. Synthetic implants, such as silicone gel-filled or saline-filled
bags, are relatively straightforward but may lead to complications like implant contracture
and leakage [40]. Autologous reconstruction uses the patient’s own tissues, which involves
longer surgeries and recovery, but provides better regeneration [41]. Techniques like the
transverse rectus abdominis myocutaneous (TRAM) flap from the abdomen or latissimus
dorsi flap from the back are utilized, but they can lead to donor site complications [41].
The deep inferior epigastric artery perforator (DIEP) flap method can have long-term
results with a natural appearance and tactile sensation. Alternative flap options such as
the profunda artery perforator (PAP) flap and lateral thigh perforator (LTP) flap provide
additional choices for patients who may not be suitable candidates for abdominal-based
reconstructions due to anatomical constraints or personal preferences [42].

An emerging method for breast reconstruction involves using hydrogels as a platform
for autologous fat transplantation, vascularization, and tissue engineering in breast recon-
struction. These approaches have not been used in standard clinical care and yet offer a
new realm of methods for reconstruction involving the use of hydrogels [28,39,43].

2.2.1. Adipogenesis

The human breast is largely composed of vascularized adipose tissue [41], where
adipocytes take up 90% of the tissue volume and less than 15% of cellular content [44,45].
Adipogenic engineering or transplantation is thus essential for breast tissue restoration,
which requires scaffolds to support adipocyte survival and proliferation. Natural scaffolds
derived from ECM components, such as collagen and hyaluronic acid, or decellularized
tissues have been explored for their ability to mimic the natural microenvironment and
promote tissue integration in breast reconstruction [46]. These scaffolding matrices serve
as soil to grow and reestablish breast tissue cell populations. Various cell types, including
preadipocytes, smooth muscle cells, and stem cells that serve as seeds, can be implanted into
the natural scaffolds to enhance tissue regeneration and improve aesthetic and functional
outcomes [46].

Louis et al. showed a method using collagen microfiber (CMF) bio-ink to encapsulate
mature adipocytes, ADSCs, and human umbilical vein endothelial cells (HUVECs) for
in vitro adipose tissue regeneration [47]. This approach enables the generation of multi-
layered constructs with a dense vascularized network resembling in vivo adipose tissue
structure and essential for graft survival. Ni et al. demonstrated a bottom-up approach
using dual micro-tissues composed of ADSCs and HUVECs on collagen microgels [48].
This approach spawned significantly better adipose tissue regeneration and neo-vessel
formation compared to single micro-tissue-based grafts and allows for building a large
volume of tissue constructs by assembling micro-tissues [49].

2.2.2. Vascularization

Adipose tissues are highly vascularized. The vasculature in adipose tissues is essential
for adipocyte survival in vivo, with special regard to its metabolism, endocrine bioactivities,
and for maintaining the tissues’ homeostasis. Vascular-associated cells, such as vascular
endothelial cells, smooth muscle cells, and pericytes, account for approximately 70% of
adipose tissue cell populations and form fenestrated capillaries around cell clusters [44,48]
and are indispensable along with supportive roles from pre-adipocytes, fibroblasts, and
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hematopoietic cells. Establishing functional vasculatures in adipose breast tissues has been
a prominent and challenging topic in the field.

Morrison et al. introduced techniques to address vascularization and tissue regen-
eration challenges using tissue-engineering chamber models [50]. The approaches create
environments that promote blood vessel formation and support adipose tissue growth.
Chhaya et al. showed a method involving delayed fat injection into patient-specific scaffolds
fabricated using additive biomanufacturing technology [51]. Successful angiogenesis and
adipose tissue regeneration were observed in all constructs, with the pre-vascularization
plus lipoaspirate group exhibiting outcomes comparable to native breast tissues. Puls et al.
introduced a regenerative tissue filler for breast-conserving surgery (BCS) that induces a
regenerative healing response characterized by rapid cellularization, vascularization, and
progressive breast tissue neogenesis [52]. The collagen-based filler demonstrated transla-
tional potential for soft tissue reconstruction, maintaining tissue volume, and inducing
complex tissue regeneration without inflammation.

2.3. Regulatory Status of Hydrogels for Tissue Regeneration

Hydrogels are rapidly evolving in the clinical setting due to ongoing research of new
types and formulations. They are widely implemented in clinical settings for a variety
of applications with the most common being used for soft contact lenses [53,54]. It was
discussed in a review by Clegg J et al. that over 100 hydrogel products, derived from natural
materials, synthetic materials, or their combination, have been approved by the Food and
Drug Administration (FDA) and European Medicines Agency (EMA) for medical purposes,
particularly tissue regeneration following ocular application [55]. These clinically approved
tissue regeneration applications portend to a variety of systems such as the cardiovascular,
orthopedic, integumentary, and genitourinary systems are also prominent [55].

For uses specifically in breast implantation, traditional silicone-based implants are the
main FDA-approved applications [55]. However, tissue regeneration-focused hydrogels
made with chitosan, alginate, and polyethylene glycol, as well as a variety of other natural
and synthetic materials have been FDA-approved for other purposes such as cartilage,
periodontal, and bone regeneration [54,55]. In particular, a heart failure intervention
involving implantation in the ventricular myocardium with a bulk collagen hydrogel made
with induced pluripotent stem cell (iPSC) cardiac myocyte is in an active clinical trial
with an identifier NCT04396899. This method of regeneration shares similarities with the
incorporation of ASCs into GelMA scaffolds for breast tissue regeneration [18,19].

3. Breast Cancer 3D Hydrogel Models in Precision Medicine
3.1. Breast Cancer 3D-Modeling Using Hydrogels

Modeling breast cancer using 3D hydrogel aims to replicate the tumor microenvi-
ronment (TME) by incorporating or directly utilizing bioactive ECM or ECM-mimicking
components [56]. For instance, chitosan, alginate, hyaluronic acid, cellulose, collagen,
gelatin, and silk fibroin have been used to mimic crucial aspects of in vivo TME to study
cell–cell or cell–matrix interactions, gene expression alterations, and tissue structural het-
erogeneity and complexity [57]. Through formulating the compositions and proportions of
bioactive polymers, hydrogel-based systems enable fine-tuning of the mechanical proper-
ties and, to some extent, the biochemical properties of native tissue ECM mimicries and
cell adhesion dynamics, optimizing cell growth within the 3D TME (Table 2).

Collagens, especially type I collagen, are the most abundant ECM proteins in both
normal and cancerous breast tissues [12,58–60]. They are essential for the ECM structures
and acini structural maintenance [12]. Thus, integration of the major collagen types, such
as Type I, II, III, and V collagens, commonly found in human, pig, and mouse breast
ECM [12,58,59], in bioprinting or 3D culture platforms may better mimic the TME and
induce biologically relevant phenotypes of the cultured cells. Shi et al. demonstrated the
use of low-concentration collagen-based bio-inks for bioprinting breast tumor organoids,
enabling the creation of vascularized tumor models and advancing drug discovery re-
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search [61]. It is worth noting that the elastic moduli of normal or tumoral breast tissues or
ECM are important parameters for modeling the native tissues [59,62,63]. While Keller et al.
stressed the importance of tissue ECM microstructures in engineering pathophysiologically
relevant TME for cell growth and interactions [62], Ruud et al. highlighted the significance
of different ECM on cancer cell morphological, proliferation, differentiation, migration, and
invasion phenotypes [63]. These native tissue-derived total ECM 3D culture models are
fundamentally important as they preserve the compositional and structural properties of
native tissues for optimal cellular functions that are important for precision medicine test-
ing. Besides the native ECM- and collagen-based hydrogels that are increasingly applied in
breast cancer modeling, there are other types of natural or non-natural hydrogel types that
can be used for the same purpose and have been intensively reviewed previously [8,64–67].

With the advancement of chemical or biochemical engineering, functionalized hydro-
gels have become popular to be used to address broad or specific biological questions. For
instance, Collodet et al. functionalized recombinant spider silk with a cell adhesion motif
Arg-Gly-Asp (RGD) from fibronectin to maintain characteristic cell marker expression
and support patient-derived cell growth [68]. Similarly, elastin-like recombinamer (ELR)
hydrogels, composed of ELR polypeptides with MMP-degradable sequence (HE5) and cell-
adhesive motif (RGD), were produced as a breast cancer ECM resemblance to grow cancer
cells [69]. High cell viability and proliferation rates as well as notable drug resistance were
observed for both tumorigenic and non-tumorigenic breast cells in this system, implicating
its potential for drug screening assays. While these functionalized gel systems focus on
improving cell viability and mimicking the native ECM microenvironment, the non-human
or -mammalian tissue ECM protein aspects of the mimicries are their shortcomings that
may affect their translational applications.

Tumors are heterogeneous tissues containing both cancer and stromal cells, such as
tumor-associated fibroblasts (TAFs) or macrophages (TAMs). In addition to modifying
the ECM-mimicking hydrogels at structural and compositional levels, efforts have been
made to improve the cellular diversity in 3D hydrogel culture models so that cancer cell
responses to treatment could be better reflected. Pierantoni et al. made enzymatically
crosslinked silk fibroin hydrogels to coculture breast cancer cells and fibroblasts [70]. They
found that, in addition to ECM modifications exerted by the two types of cells that are
different from culturing cancer cells alone, the presence of fibroblasts in the culture seemed
to endow chemoresistance to the cancer cells over an extended culture period, a phenotype
like that seen in native tumor treatment. Xu et al. made an alginate cryogel model to
coculture organoids comprising breast cancer cells and monocyte-induced macrophages,
which induced an in vitro immune microenvironment [71]. The direct coculture system
supported enhanced organoid growth and cancer-aggressive phenotypes. However, the
therapeutic testing potential of this model remains to be demonstrated. Moghimi et al., on
the other hand, introduced an integrated 3D bioprinted and microfluidic device to coculture
breast cancer cells and normal cells to mimic tumor heterogeneity [72]. This device allows
the observation of cell migration in the microfluidic chamber towards the chemoattractant.
Again, the use of the platform for drug or precision medicine testing is vague. Future works
integrating the different cell populations present in a tumor into advanced 3D hydrogel
culture systems may discover cancer cell phenotypes that are closer to those displayed
in native tumors and provide upgraded therapeutic testing modalities, where cancer cell
resistance to drug treatment could be more pronounced than that exhibited in the single or
double cell type culturing models.

Recently, hydrogel models have advanced to ex vivo and patient-derived scaffold
(PDS) levels that reflect higher levels of heterogeneity of breast cancer tissues and its com-
plex treatment responses compared to that of single- or double-cell line-based models.
Koch et al. showed an ex vivo culture model using star-shaped PEG and maleimide-
functionalized heparin hydrogels that support the viability of human mammary tissues
for up to 3 weeks, though the epithelial phenotype and hormonal receptors were only
maintained for 2 weeks [73]. Gustafsson et al., on the other hand, used decellularized
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patient tumor tissues as scaffolds to culture breast cancer cells, which exhibited significant
resistance to endocrine therapeutics and cell cycle inhibitors compared to that of the cells
cultured on 2D surfaces [74]. These advances underscore the importance of incorporating
patient-specific features into breast cancer models for personalized and precision therapeu-
tic strategies, which can provide more accurate platforms for studying tumor progression
and treatment responses at individual levels.

Table 2. Summary of the composition, characteristics, and applications of the different types of
hydrogels in breast cancer 3D modeling.

Hydrogel Model Composition Characteristics Applications Reference

ECM and
collagen-based Type I, II, III, V collagen

Mimics native tissue ECM;
preserves compositional and
structural properties for
optimal cell functions

Bioprinting, 3D culture
platforms [12,58–63]

Functionalized

Recombinant spider silk with
RGD motif, ELR hydrogels
with MMP-degradable
sequence and RGD motif

Mimics ECM
microenvironment;
maintains cell marker
expression; enhances
patient-derived cell growth
and drug resistance

Drug screening assays.
Addressing biological
questions

[68,69]

Coculture
systems Silk fibroin, alginate cryogels

Incorporates stromal cells
such as fibroblasts and
macrophages; enhances
chemoresistance and cancer
cell phenotypes

Studying cell–cell
interactions and
chemoresistance

[70–72]

Ex vivo and PDS

Star-shaped PEG,
maleimide-functionalized
heparin, decellularized
patient tumor tissues

Incorporates patient-specific
features; reflects
heterogeneity and complex
treatment responses

Studying personalized and
precision therapeutic
strategies

[73,74]

3.2. 3D Hydrogel Applications in Antineoplastic Precision Medicine

Despite continuous improvement in antineoplastic regimens, cancer patients often
develop resistance to treatments, especially in the case of metastatic disease [75–77]. This is
largely due to tumor heterogeneity and genomic instability [78–80]. 3D culture has high
biological relevance in mimicking the TME, maintaining natural cell shapes, heteroge-
neous interface with medium, and cell–cell junctions that are essential for the cells in the
culture to exhibit their natural phenotypes. These properties of 3D culture models are
advantageous over 2D cultures for drug testing in vitro. In the last 16 years, 3D organoid
models have become a powerful tool for therapeutic screening and precision medicine
testing for cancer treatment [81,82]. Addressing the high genomic instability and altered
phenotypes of cells grown in 2D cultures, patient-derived organoid (PDO) 3D cultures
effectively retain the characteristics of a patient’s original tumor [83–89]. For instance,
breast cancer organoids in hydrogels demonstrated increased chemoresistance compared
to those in 2D cultures, like those observed in other 3D culture platforms [58,74,90,91].
This enhanced chemoresistance, resembling that in a native tumor, is mainly rooted in the
heterogeneous properties of the 3D tumorous structures at multiple levels, such as native
tissue cell genetic, ECM structural, mechanical, or compositional heterogeneity, cellular
metabolic, differentiation, proliferation, or molecular activity heterogeneity, and the cell
population heterogeneity [8,92]. Another advantage of organoids is their biobankability for
extended research or therapeutic testing [93]. The advancements in the versatile biomimetic
3D in vitro tumor models and organoid generation have made the combination of in vivo-
like TME and organoids in one system possible and offered unprecedented opportunities
for antineoplastic drug evaluations.
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Sachs et al. tested breast cancer organoid responses to chemotherapeutic drugs and
demonstrated a good match of the treatment responses with that of the respective pa-
tients [93]. At the same time, the study highlighted the challenge of testing over the
surgically removed tumor-derived organoids as their responses to drug treatment would
not be able to map back to the treatment on the patients because of tumor removal. Dif-
ferential response of organoids derived from different patients to drug treatments was
also observed, reflecting a reality of interpersonal differences in response to the same drug
treatment and highlighting the importance of personalized medical treatment of human
cancers. In a clinical trial study, Divoux et al. proposed to use patient-derived tumor
organoid (PDTO) from triple-negative breast cancer (TNBC) patients’ biopsies and test the
PDTOs’ responses to chemotherapy and immune checkpoint blocker (ICB) in comparison
to the responses of the patients [94]. It will be interesting to see if the TNBC PDTOs would
display similar responses to the drug treatment as seen in the studies of Sachs et al. de-
scribed above. Wu et al. produced PDOs from 75 patients’ biopsies or surgical specimens
and cultured in Cultrex basement membrane extract (BME) for treatment testing with
chemo, endocrine, targeted, or herb-derived drugs [95]. By comparing with the treatment
responses in patients, the authors indeed confirmed the feasibility and the advantage of
using PDOs for individualized drug efficacy evaluation and regimen optimization that
are very useful for improving therapeutic strategies against recurrent, metastatic, and
treatment-resistant breast cancers. In a similar study, Chen et al. established 99 breast
cancer samples with drug-resistant and metastatic backgrounds for drug screening [96].
High reproducibility of drug screen using the PDOs was achieved, and multidrug resis-
tance was found in a proportion of the organoid lines, suggesting distinct drug responses
across the PDOs from the individual patients. To model microbiome effects on anti-tumor
immunity, Shelkey et al. established an immune-enhanced tumor organoid (iTO) model
using 4T1 mouse TNBC and spleen-derived immune cells encapsulated in methacrylated
collagen and thiolated hyaluronic acid to examine the impact of bacterial metabolites on
immune checkpoint blockade response for cancer cell apoptosis induction [97]. Though
the system lacks macrophage, which is a major immune respondent, and uses the mouse
instead of human breast cancer cells, this study demonstrated a synergistic effect of the
immunomodulatory host microbiome analog found in bacteria and ICB on cancer cell apop-
tosis. Again, the hydrogel-based 3D organoid model was shown to be an effective platform
for precision therapeutic testing. To study dynamic interactions between immune cells and
PDO, Dekkers et al. developed a BEHAV3D system, which could live-track the efficacy and
mode of action of cellular immunotherapy on PDO grown in BME [98]. This model not
only showed the potential of using hydrogel-cultured PDOs in maintaining tumor-specific
inflammatory features but also highlighted the feasibility of using the system or others
alike in modeling cancer cell responses to immunotherapy in a patient-specific way.

Hormone therapies are a major domain of breast cancer treatment in addition to
chemotherapy and immunotherapy [99]. Tamoxifen (Nolvadex or Soltamox), fulvestrant,
and palbociclib are estrogen receptor blockers used to treat estrogen receptor-positive (ER+)
breast cancer, which is a subtype of breast cancer that uses estrogen for cancer cell prolifer-
ation and disease progression [100]. These receptor blockers inhibit cancer cell growth and
alter the cells’ gene expression. Hogstrom et al. developed a PDO and matching CAF cocul-
ture model, where the organoids and cells were derived from hormone receptor-positive
breast cancers and cocultured in BME, to study endocrine therapy resistance [101]. They
found that their PDO model retained ER expression and ER responsiveness well during
prolonged culture periods for over one year. CAF-secreted cytokine-mediated resistance
to estrogen receptor antagonist fulvestrant was observed, reminiscent of what happens
in cancer patients. In support of hormone therapy testing models, an ER+ breast cancer
organoid medium (BTOM-ER), which conserves ER expression, estrogen responsiveness,
and dependence as well as sensitivity to endocrine therapy of ER+ PDO, was developed
by Oliphant et al. [102]. The medium can promote the generation and maintenance of
ER+ breast cancer organoids and, thus, facilitate studies of ER+ cancer cell responses to
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hormone therapies and improvement of therapeutic regimens. These therapeutic-testing
PDO models collectively emphasize the power of bioengineered hydrogel platforms in sup-
porting native tumor-like 3D cancer biology that will transform the future drug screening
practice and improve the treatment efficacies of therapeutic regimens.

Though organoid models are promising for precision medicine testing, certain re-
maining challenges limit their broad clinical applications to benefit patients in the real
world. First of all, as realized in the Sachs et al. study discussed above [93], although the
surgically removed tumors can be used for drug testing in PDO systems, the model-based
treatment regimens are hardly applicable to the patients where the tissues are collected
from because there are no tumors in the patients anymore, unless there are recurrences
later on, at which point the status of the tumor could be different than the primary tumors.
Second, core needle biopsy tumor specimens are alternative options for PDO generation
and therapeutic testing. Yet, the small amount and heterogeneity of the tissue samples,
which may contain only a small number of cancer, stromal, and immune cells, make it
difficult to perform sufficient multidrug testing in PDO cultures and to draw a confident
conclusion from the testing. Third, most of the hydrogels currently used for PDO cultures
are remote to native tissue ECM that may not provide the TME conditions matching with
those in a patient’s tumor. Therefore, further development and optimization of the PDO
and other hydrogel-based 3D culture models are necessary for clinical translation of the
current hydrogel platforms for precision medicine testing.

4. Hydrogels in Antineoplastic Delivery

Hydrogels have drug delivery capabilities and controllable drug release kinetics.
These hydrogel properties allow for the accommodation of a wide range of therapeutic
agents, including chemotherapeutics and immunosuppressants or immune-promoting
agents, facilitating a cascade of therapeutic modalities for integrated cancer treatment ap-
proaches [103–105]. They are available in various particle sizes, from macrogels (>100 µm)
to microgels (0.5–10 µm) and nanogels (<200 nm), and can be administered through multi-
ple delivery routes, such as intravenous injection, in situ implantation, transdermal delivery,
oral delivery, pulmonary delivery, and transarterial chemoembolization. These versatilities,
tunabilities, and applying flexibilities enable more precise and effective targeting of cancer
sites, ensuring continuous and controlled drug delivery while minimizing systemic toxicity
and reducing the required drug dosage [104,106–111].

The responsiveness to internal and external stimuli of hydrogels also enables the con-
trolled release of anti-cancer agents based on specific TME cues, such as variations in pH,
temperature, redox potential, and reactive oxygen levels. This responsive behavior provides
room for enhancing therapeutic efficacy while minimizing damage to normal tissues, thereby
improving patient outcomes. Injectable hydrogels are also being explored as localized drug
delivery methods in cancer therapy, offering targeted drug delivery with reduced forces and
increased adaptability to tumor resection cavities. The incorporation of silicate nanoparti-
cles into these hydrogels further expands their biomedical applications, underscoring the
versatility and promise of hydrogels in antineoplastic drug delivery [106–111].

4.1. Hydrogel Delivery of Chemotherapy

Several hydrogels have been explored for chemotherapeutic potential in breast can-
cer treatment. A common material used is chitosan, a natural cationic and hydrophilic
copolymer that can be degraded by human enzymes [112]. This property allows for their
mucoadhesive characteristics from interactions with opposite charges, which provides
the ability of tissue binding for specific drug delivery [113,114]. In a study by Seo et al.,
methacrylated glycol chitosan (MGC) hydrogel with extended release of DNA/doxorubicin
(DOX) complex was made to serve as a local drug delivery platform [115]. They found
patients treated with MGC-DOX exhibited the lowest lung metastasis rate and highest
survival rate compared to other groups (no hydrogel and free DNA/DOX complex). Also,
Yang et al. created a 3D sponge loaded with cisplatin–chitosan (CS)–calcium alginate
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microparticles (MPs) for breast regeneration post-resection of cancer [116]. Their results
indicated that this composite material could treat hemorrhage through its porous structure,
blood absorption capabilities, and enhanced coagulation ascribing to the nature of CS or
gelatin. Additionally, as the concentrations of loaded MPs increased, the antitumor efficacy
also increased [116]. This highlights the potential of this gel in post-mastectomy breast
reconstruction, offering a dual benefit of tumor safety and better regenerative outcomes in
postoperative implants. Along the same goals of regeneration and antitumor properties,
Shi et al. printed 3D intelligent scaffolds (IS) using PLGA, gelatin, and chitosan loaded with
anti-cancer drugs that showed anti-tumor ability for up to 30 days in mice, with effective
tumor growth inhibition, low recurrence, and high survival rate [117]. The IS also exhibited
hemostatic function and good pH sensitivity.

Another material base, silica nanoparticles (SiO2 NPs), is evolving in hydrogel research
due to their biocompatibility, large surface area, and the possible control of their morphol-
ogy. De Melo Santana et al. reported a Pluronic F-127/hyaluronic acid hydrogel containing
nitric oxide (NO) donor S-nitrosoglutathione (GSNO) and silica nanoparticles loaded with
cisplatin (SiO2@CisPt NPs) as a drug-delivery approach for sustained and localized drug
release against tumor cells [118]. A synergistic toxicity of GSNO and SiO2@CisPt on breast
cancer cells represented by pronounced cell death was observed.

Bombyx mori silk fibroin (BMSF) and Antheraea assamensis silk fibroin (AASF) hydro-
gels were also used for localized drug delivery in TNBC therapy post-lumpectomy [119].
This system, loaded with dexamethasone, exhibited sustained release of doxorubicin to
target cancer cells and support differentiation of ADSCs along with vascularization. Addi-
tionally, this system was tested in a 3D in vitro lumpectomy model, which was developed
using the MDA-MB-231 cancer cell line, and exhibited potential to reduce tumor recurrence
and drug toxicity and support adipose tissue regeneration for breast restoration.

With the concept of introducing a dual-effect of chemotherapy and tissue regener-
ation, Balahura et al. created cellulose nanofiber (CNF)-based hydrogels incorporating
5-fluorouracil (5-FU) and alginate/pectin (A.CNF or P.CNF) [120]. This platform showed
improved biocompatibility and cellular properties when pectin was dispersed within CNFs,
effectively suppressing breast cancer cell growth and inducing pyroptosis. The scaffolds
supported the growth of human adipose-derived stem cells, suggesting a role in soft tissue
reconstruction following mastectomy, a potential awaiting to be tested in animal models
before translational applications.

Mifepristone combined with paclitaxel could be an effective strategy for inhibiting
breast cancer metastasis. However, a short half-life in blood circulation and lack of tumor
targeting limit their effectiveness and cause adverse reactions. In a study by Zhao et al.,
paclitaxel (PTX)-conjugated and mifepristone (MIF)-loaded succinic anhydride hydrogel
(PM-nano) was prepared [121]. They found that this hydrogel provides effective drug
delivery and biocompatibility in mice and in vitro. The combination of PTX and MIF in
PM-nano suppressed the expression of metastatic cancer biomarkers (ROR1, MMP2, and
MMP9). These recent drug delivery hydrogel models, representing a portion of existing
hydrogel types that can deliver drugs, collectively showed the diversity, flexibility, capacity,
and compatibility of the engineered hydrogels in incorporating chemotherapeutic drugs
for treatment testing.

4.2. Hydrogel Delivery of Immunotherapy and Chemoimmunotherapy

Cancer immunotherapy involves the use of a medicine to improve a patient’s own
immune functions to eliminate cancer cells. It is used to treat locally advanced or metastatic
breast cancer. The current immunotherapeutics commonly fall into five categories: mono-
clonal antibodies (targeted cancer drugs), checkpoint inhibitors, CAR T-cell, vaccine, and
cytokine. There is a limited report on clinical outcomes of immunotherapy on breast cancer
patients and so is hydrogel-based immunotherapeutics delivery testing in in vivo models.
Yet, there is encouraging research ongoing to fill up the gap. As mentioned above in hy-
drogel delivery of chemotherapeutics, the MGC hydrogel generated by Seo and colleagues
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was shown to act as an antigen source for generating a host antitumor immune response
by mediating immunogenic cell death (ICD), which presumably induced the recruitment
and activation of antigen-presenting cells and activating cytotoxic T lymphocytes [115].

In an in vitro study conducted by Sultan et al., two hydrogels were synthesized:
cisplatin-loaded chitosan nanoparticles (CCNP) and cisplatin-loaded chitosan nanoparticles
surface-linked to rituximab (mAbCCNP) [122]. Here, rituximab, which is a monoclonal
antibody acts to treat cancers via directly binding to CD20 antigen on B cells [123], was
used with the intent of enabling the gel to bind to MCF-7 breast cancer cells with higher
affinity, not as a cytotoxic therapy. After administration of the gels, however, the authors
found that although the rituximab-linked gel (mAbCCNP) could bind to human breast
cancer cells, it did not exhibit expected cytotoxic effects due to insufficient targeting, limited
specificity, inadequate drug release, and possible cellular resistances.

Recently, Mantooth and Zaharoff generated an XCSgel by cross-linking chitosan that
was used to contain interleukin-12 (IL-12) for injection into TNBC tumors in mice [124].
They found that formulated XCSgel-IL-12 delivery eliminated the tumors and stimulated
immune memory, suggesting a neoadjuvant treatment potential of the strategy prior to
breast-conserving surgery.

Integrating immunotherapeutics into chemotherapeutic regimens can potentially bet-
ter combat advanced breast cancers compared to using chemo drugs alone. For instance,
in a clinical trial, breast cancer patients with relatively high levels of programmed death
ligand-1 (PD-L1) protein expression had a close to 43% improvement in overall survival
after treatment with both pembrolizumab (Keytruda), an immunotherapeutic monoclonal
antibody targeting and blocking the programmed cell death protein 1 (PD-1) receptor on
lymphocytes for the protected immune system to attack cancer cells, and chemotherapy
compared to those only received chemotherapy [125]. In another randomized clinical
study, TNBC patients who received pembrolizumab, in addition to chemotherapy, pre-
operatively showed better outcomes than patients who only received the chemotherapy
with a placebo [126]. However, the muti-chemo regimen is rather toxic to patients. The
body conditions of certain patients may not allow for such strong therapeutic combina-
tions, and the overall life quality of the patients could be compromised as a tradeoff of
combination therapy.

Trastuzumab–deruxtecan (Enhertu) is an antibody–drug conjugate (mixed therapy) [127]
for HER2+ breast cancer patients. Trastuzumab, the immunotherapy portion of this mixed
therapy, binds to the extracellular domain of HER2 with relatively high affinity [128]. This
binding inhibits the growth and the proliferation of HER2+ cells by the delivery of the
chemotherapy portion of the conjugate, deruxtecan—an exatecan derivative that kills cancer
cells by inhibiting DNA topoisomerase I [129] (Figure 2). The DESTINY-PanTumor02 Phase
II clinical trial of the trastuzumab and deruxtecan drug conjugate illustrated significant
clinical survival outcomes such as overall survival benefits in patients with HER2+ solid
tumors [130]. In a study conducted by Gréa et al., spatiotemporal release of monoclonal
antibodies including trastuzumab and rituximab was shown to be successful via the use of
a chitosan-based hydrogel [131].

Cai et al. applied an injectable Pluronic F-127 hydrogel, made of polyethylene oxide
and polypropylene oxide [132], infused with chemoimmunotherapeutics triptolide and
IFN-γ to treat TNBC in mice [133]. The injected therapeutic hydrogel was shown to reverse
IFN-γ-inducible PD-L1 expression and activate antitumor immunity in vivo. Moreover, the
treatment led to a significant increase in the amount of CD8+ helper T cells in the spleen
when compared to either drug used in isolation. This suggests an enhanced activation of
antitumor immunity as a result of the local hydrogel delivery of the chemoimmunotherapy.
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4.3. Hydrogel Delivery of Other Cancer Therapies

Although the mainstay treatment for breast cancer involves surgery, chemotherapy,
and immunotherapy, other therapies, especially hormone therapy, are widely applied in
breast cancer treatment [134]. In a study on tamoxifen performed by Mondal et al., a
temperature-sensitive hydrogel (Tam-Gel) was developed. The Tam-Gel exhibited a trans-
formation from liquid to gelatin at room temperature and another transformation when
exposed to body heat, releasing tamoxifen in a well-controlled way. This room-to-body
heat temperature transformation of the Tam-Gel hydrogel makes it a good candidate for
controlled delivery of tamoxifen, as well as other hormonal and non-hormonal therapeu-
tics [135].

Photothermal therapy (PTT) is an antineoplastic method that involves using electro-
magnetic radiation to treat cancer. This process delivers energy directly into the tumor
mass that is skin penetrating near-infrared irradiation (NIR). This laser delivered to the tar-
geted tumor cells can induce localized photochemical, photomechanical, and photothermal
reactions that can kill the cells [136]. With this therapy, Yang et al. developed an injectable
hybrid hydrogel platform (IR820/Mgel) that integrates indocyanine green (IR820) and
MPs for photothermal therapy of breast cancer [137]. IR820/Mgel exhibited rapid heating
above 50.0 ◦C under near-infrared (NIR) irradiation, effectively killing 4T1 breast cancer
cells in vitro and preventing post-surgical tumor recurrence in vivo. This platform was
minimally invasive and capable of filling irregularly shaped defects post-surgery, with the
MPs enhancing gel strength for sustained in situ function [137].

Qi et al. investigated photothermal photodynamic therapy using bovine serum
albumin-modified molybdenum disulfide nanoflakes (BSA-MoS2 NFs), which were loaded
in an injectable polysaccharide hydrogel [138]. The nanocomposite hydrogel had signif-
icant photothermal conversion properties and generated reactive oxygen species under
808 nm NIR laser irradiation. In vivo anticancer studies indicated that the hydrogel can
be directly injected into tumors and can remain there to achieve synergistic antitumor
photothermal-photodynamic therapeutic effects.

Combining photothermal therapy with immunotherapy, Shen et al. developed an
injectable copper (Cu)-induced hydrogel combined with a nitric oxide (NO) donor and
PD-L1 antibody [139]. The hydrogel had persistent photothermal effects upon NIR laser
irradiation, inducing immunogenic cell death (ICD) and modulating the TME to promote
immune cell infiltration and reduce immunosuppression. The authors’ in vitro and in vivo
studies demonstrated the hydrogel’s ability to enhance therapeutic efficacy and decrease
tumor recurrence.

With a focus on integrating photothermal therapy along with tissue regeneration,
Luo et al. utilized a 3D-printed scaffold composed of dopamine-modified alginate and
polydopamine (PDA) for breast cancer therapy and tissue repair [140]. This scaffold
exhibited NIR-induced photothermal effects and demonstrated flexibility and modulus
like those of native breast tissues. It promoted the adhesion and proliferation of normal
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breast epithelial cells and supported tissue repair post-surgery. The scaffold’s performance
could be tracked using magnetic resonance and photoacoustic dual-modality imaging,
underscoring its potential for clinical treatment of breast cancer [140].

Li et al. created a self-healing hydrogel incorporating graphene nanoparticles and
chondroitin sulfate multialdehyde (CSMA), along with branched polyethyleneimine (BPEI)
and BPEI-conjugated graphene (BPEI-GO), for preventing postoperative recurrence of
breast cancer [141]. This hydrogel combined regeneration, photothermal therapy, and
chemotherapy into one system and demonstrated excellent self-healing properties and
mechanical strength, which facilitated sustained drug delivery and NIR-triggered pho-
tothermal effects. In their mouse models, a combinational therapy using Doxorubicin
(DOX), and photothermal therapy showed significantly reduced tumor recurrence com-
pared to controls. This implicates the potential of applying the CSMA/BPEI/BPEI-GO
hydrogels for effective breast cancer therapy and demonstrates the capability of hydrogels
in incorporating multifaceted treatment methods.

Curcumin is a polyphenol extracted from the rhizomes of the turmeric plant, Cur-
cuma longa, which has anti-inflammatory and anticancer properties via its action on the
regulation of various immune modulators, including cytokines, cyclooxygenase-2, and
reactive oxygen species. Clinical trials of curcumin are either completed or ongoing for
various types of cancer. Shpaisman et al. studied a curcumin-derived hydrogel cross-linked
with carbonate linkages for targeted anticancer drug delivery [142]. The hydrogel incorpo-
rated curcumin into its polymer backbone, protecting it from oxidation and degradation.
Controlled release studies showed selective cytotoxicity against the MDA-MB-231 breast
cancer cells but not quiescent human dermal fibroblasts. This model may be applicable as a
filler for post-surgical breast tissues, demonstrating its potential in both therapeutic and
reconstructive applications.

Hydrogel-based anticancer drug delivery approaches, though have started emerging
in clinical trials, are still in an infant phase of development. The current clinically tested
hydrogel delivery systems are mostly applied locally at or around the lesion sites. The
benefit of systemic delivery of drugs with hydrogels is not clear yet. Though controlled drug
release is an advantage of hydrogel-based drug delivery models, the long-term benefits
of the delivering methods and the side effects associated with the hydrogel materials or
their degradation products on human patients remain to be revealed in the coming years
of studies. Additionally, only limited drug types have been tested in hydrogel delivery
in animals or clinical trials. Whether hydrogel delivery is suitable for any given drug is
waiting to be tested. Hydrogel material selections, delivery methods, drug doses, and drug-
loading/releasing capacities of the hydrogels need to be studied in more detail, optimized,
and standardized over time.

4.4. Regulatory Status of Hydrogels for Breast Cancer Therapy

With regard to cancer therapy, injectable hydrogels are the mainstay for use as drug
delivery matrices [54,55]. Two hydrogel types with one using polyethylene glycol have
been FDA- and EMA-approved for prostate cancer treatment. The other gel is made
with hydroxyethyl methacrylate and hydroxypropyl methacrylate and cross-linked with
trimethylolpropane trimethacrylate to release histrelin acetate following subcutaneous
injection for palliative treatment of prostate cancer [54,55]. Outside of FDA regulation,
various hydrogels are in clinical trial testing for cancer applications ranging from cervical,
colorectal, head and neck, and bladder cancers. Most of these are injectable systems loaded
with antineoplastics such as irinotecan and cisplatin [55].

For breast cancer application, one hydrogel tested in a clinical trial with an identifier
NCT04481802 is a high molecular polysaccharide hydrogel called RadiaAce that is obtained
from Aloe Vera gel [55]. This gel functions as a topical agent in preventing radiation
dermatitis. Several other studies involving pain management and radiation-induced skin
toxicities were found with a search through ClinicalTrials.gov. However, there are currently
no active clinical trials of hydrogels being directly applied for treating breast cancer, such as
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with antineoplastics. There are homologous systems that are FDA-approved and in clinical
trial testing. One hydrogel made from Pluronic F-127, PEG-400, and hydroxypropyl methyl-
cellulose has been FDA-approved for the treatment of low-grade upper tract urothelial
cancer in 2020 [54,55,143]. This has similarities to the system by Cai et al. for triple-negative
breast cancer using co-delivery of IFN-γ and triptolide with a Pluronic F127 thermogel
system to activate antitumor immunity [133]. The Cai’s system also shows similarities with
a clinical trial-tested hydrogel called TumoCure with an identifier NCT05200650 which
is a bulk polymer-based gel loaded with cisplatin for local injection to head and neck
tumors [55]. Hydrogel delivery of breast cancer therapy may follow similar directions for
regulatory approval in the clinical setting.

5. Conclusions

Hydrogel implants represent a burgeoning frontier in breast cancer therapy involving
drug delivery and/or post-mastectomy reconstruction. The advancements in natural and
synthetic materials and in bioengineering technologies have triggered diverse clinical needs
for breast cancer treatment. Natural hydrogels, such as collagen or gelatin derivatives like
GelMA, are able to resemble the native breast tissue microenvironment. The biomimetic
properties of biomaterials support adipogenesis and vascularization while offering tunable
mechanical properties through innovative cross-linking techniques [7,8,11,15,16]. Synthetic
hydrogels, including polymers like PCL and PHEMA, provide more enhanced mechanical
stability and durability due to their synthetic nature [6,25–28]. With applications to breast
tissue restoration techniques, these hydrogel platforms play pivotal roles in enhancing
surgical outcomes post-lumpectomy or mastectomy. They facilitate adipogenesis and vas-
cularization, essential for tissue regeneration and aesthetic outcomes [47,48,50,51]. Natural
scaffolds derived from ECM components and decellularized tissues provide a supportive
environment for cell populations crucial in tissue engineering, promoting integration and
functional restoration [46]. Innovative approaches combining collagen microfiber bio-inks
with stem cells and endothelial cells demonstrate promising results in generating vascu-
larized adipose tissues resembling native breast tissue structures [48]. Moving forward,
the clinical translation of these advancements hinges on overcoming challenges such as
degradation rates, biocompatibility concerns, and the need for scalable manufacturing
processes [11,38]. The lack of direct hydrogel applications for breast tissue regeneration
outside of silicone implants prompts the need for more development of these hydro-
gels [54,55]. Further research into refining hydrogel properties and optimizing scaffold
designs will be crucial for further applications in personalized breast cancer therapies and
reconstruction strategies.

Aside from tissue reconstruction, hydrogels, with proper formulation, are suitable
tissue surrogates for studying patient-specific cancer characteristics, particularly in the
realm of assessing treatment efficacy. 3D hydrogel models for breast cancer can replicate
the tumor microenvironment (TME) using bioactive ECM or ECM-mimicking components
like chitosan, alginate, and collagen [56,57]. Collagens, particularly type I, are abundant in
breast tissues and essential for ECM structure and function, making them key in creating
realistic 3D culture platforms [12,58–60]. Recombinant spider silk and enzymatically cross-
linked silk fibroin hydrogels have shown promise for studying cancer progression and
drug responses [68,70]. Incorporating immune cells and PDO into these models enhances
their biological relevance and utility in drug screening, revealing nuanced responses to
treatments and maintaining cellular characteristics [71,73,74,144]. The advances in 3D
modeling, such as the use of ELR hydrogels and PDS, support the study of chemo and
hormone therapy resistance, which highlights the importance of TME properties in drug
efficacy tests [69,70,74]. Since native breast ECM protein compositions and structures, which
are biological ligands and mechanical supports, respectively, are different from collagen,
BME, and non-biological polymers and instructive to native cell receptor expression and
phenotypes, incorporation of native ECM components into breast cancer biological studies
is necessary. Future refining and standardizing the various hydrogel models for breast
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cancer modeling will benefit by incorporating more patient-specific features and enhancing
their precision for personalized medicine and preclinical drug evaluation [99].

Hydrogels have the potential to be used as versatile platforms for the delivery
of diverse antineoplastic drugs and even combined with tissue regeneration proper-
ties. Chitosan-based hydrogels showed promise in sustained drug release and enhanced
hemostasis [115,116]. Silk fibroin hydrogels and 3D-printed PLGA scaffolds also demon-
strated effective localized drug delivery and potential for post-resection breast reconstruc-
tion [117,119]. Silica nanoparticle-enhanced hydrogels loaded with cisplatin and nitric
oxide donors exhibited synergistic toxicity against breast cancer cells [118]. Additionally,
hydrogel systems, such as those incorporating paclitaxel and mifepristone, or combining
chemoimmunotherapy agents like pembrolizumab and IFN-γ, demonstrated potential in
reducing tumor metastasis and enhancing immune responses [121,133]. Other promis-
ing approaches include photothermal and photodynamic therapies using hydrogels with
indocyanine green and molybdenum disulfide nanoflakes with significant antitumor ef-
fects [116,138]. FDA approval and clinical trial testing for these hydrogels specifically in
breast cancer therapy are lacking, prompting further research [54,55]. Future directions
should focus on optimizing these multifunctional hydrogels for the clinical treatment
of breast cancer, improving their biocompatibility, and enhancing their ability to deliver
combined therapies with precision, less toxicity, and more efficacy.
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