Chitosan/Poly(maleic acid-alt-vinyl acetate) Hydrogel Beads for the Removal of Cu2+ from Aqueous Solution
Abstract
:1. Introduction
2. Results and Discussion
2.1. Preparation and Characterization of CS/MA-VA Beads
2.2. Cu2+ Sorption
2.2.1. Influence of Initial pH
2.2.2. Sorption Kinetics
2.2.3. Sorption Isotherms
2.2.4. Adsorption Thermodynamics
2.2.5. Characterization of the Beads after Sorption
2.2.6. Reusability
3. Conclusions
4. Materials and Methods
4.1. Materials
4.2. Beads Preparation
4.3. Beads Characterization
4.4. Cu2+ Sorption
4.5. Regeneration and Reusability
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, Y.; Wang, H.; Cui, Y.; Chen, N. Removal of Copper Ions from Wastewater: A Review. Int. J. Environ. Res. Public Health 2023, 20, 3885. [Google Scholar] [CrossRef]
- Rehman, M.; Liu, L.; Wang, Q.; Saleem, M.H.; Bashir, S.; Ullah, S.; Peng, D. Copper environmental toxicology, recent advances, and future outlook: A review. Environ. Sci. Pollut. Res. 2019, 26, 18003–18016. [Google Scholar] [CrossRef]
- Zhang, L.; Zeng, Y.; Cheng, Z. Removal of heavy metal ions using chitosan and modified chitosan: A review. J. Mol. Liq. 2016, 214, 175–191. [Google Scholar] [CrossRef]
- Hu, Q.; Lan, R.; He, L.; Liu, H.; Pei, X. A critical review of adsorption isotherm models for aqueous contaminants: Curve characteristics, site energy distribution and common controversies. J. Environ. Manag. 2023, 329, 117104. [Google Scholar] [CrossRef] [PubMed]
- Darban, Z.; Shahabuddin, S.; Gaur, R.; Ahmad, I.; Sridewi, N. Hydrogel-based adsorbent material for the effective removal of heavy metals from wastewater: A comprehensive review. Gels 2022, 8, 263. [Google Scholar] [CrossRef] [PubMed]
- Dragan, E.S.; Dinu, M.V. Advances in porous chitosan-based composite hydrogels: Synthesis and applications. React. Funct. Polym. 2020, 146, 104372. [Google Scholar] [CrossRef]
- Liu, C.; Liu, H.; Zheng, Y.; Luo, J.; Lu, C.; He, Y.; Pang, X. Schiff base crosslinked graphene/oxidized nanofibrillated cellulose/chitosan foam: An efficient strategy for selective removal of anionic dyes. Int. J. Biol. Macromol. 2023, 252, 126448. [Google Scholar] [CrossRef]
- Balakrishnan, A.; Appunni, S.; Chinthala, M.; Jacob, M.M.; Vo, D.V.N.; Reddy, S.S.; Kunnel, E.S. Chitosan-based beads as sustainable adsorbents for wastewater remediation: A review. Environ. Chem. Lett. 2023, 21, 1881–1905. [Google Scholar] [CrossRef]
- Guibal, E. Interactions of metal ions with chitosan-based sorbents: A review. Sep. Purif. Technol. 2004, 38, 43–74. [Google Scholar] [CrossRef]
- Chelu, M.; Musuc, A.M.; Popa, M.; Calderon Moreno, J.M. Chitosan hydrogels for water purification applications. Gels 2023, 9, 664. [Google Scholar] [CrossRef]
- Varma, A.J.; Deshpande, S.V.; Kennedy, J.F. Metal complexation by chitosan and its derivatives: A review. Carbohydr. Polym. 2004, 55, 77–93. [Google Scholar] [CrossRef]
- Boamah, P.O.; Huang, Y.; Hua, M.; Zhang, Q.; Wu, J.; Onumah, J.; Sam-Amoah, L.K.; Boamah, P.O. Sorption of heavy metal ions onto carboxylate chitosan derivatives—A mini-review. Ecotoxicol. Environ. Saf. 2015, 116, 113–120. [Google Scholar] [CrossRef]
- He, J.; Sun, F.; Han, F.; Gu, J.; Ou, M.; Xu, W.; Xu, X. Preparation of a novel polyacrylic acid and chitosan interpenetrating network hydrogel for removal of U(vi) from aqueous solutions. RSC Adv. 2018, 8, 12684. [Google Scholar] [CrossRef]
- Kumararaja, P.; Manjaiah, K.M.; Datta, S.C.; Ahammed Shabeer, T.P.; Sarkar, B. Chitosan-g-poly(acrylic acid)-bentonite composite: A potential immobilizing agent of heavy metals in soil. Cellulose 2018, 25, 3985–3999. [Google Scholar] [CrossRef]
- Zhang, L.; Tang, S.; He, F.; Liu, Y.; Mao, W.; Guan, Y. Highly efficient and selective capture of heavy metals by poly(acrylic acid) grafted chitosan and biochar composite for wastewater treatment. Chem. Eng. J. 2019, 378, 122215. [Google Scholar] [CrossRef]
- Dong, L.; Shan, C.; Liu, Y.; Sun, H.; Yao, B.; Gong, G.; Jin, X.; Wang, S. Characterization and mechanistic study of heavy metal adsorption by facile synthesized magnetic xanthate-modified chitosan/polyacrylic acid hydrogels. Int. J. Environ. Res. Public Health 2022, 19, 11123. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Dang, Q.; Liu, C.; Cha, D.; Zhang, H.; Zhu, W.; Zhang, Q.; Fan, B. Preparation and characterization of poly(maleic acid)-grafted cross-linked chitosan microspheres for Cd(II) adsorption. Carbohydr. Polym. 2017, 172, 28–39. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, A.G.; Saleh, A.S.; Elsharma, E.M.; Metwally, E.; Siyam, T. Chitosan-g-maleic acid for effective removal of copper and nickel ions from their solutions. Int. J. Biol. Macromol. 2019, 121, 1287–1294. [Google Scholar] [CrossRef]
- Chiţanu, G.C.; Carpov, A. Ecologically benign polymers: The case of maleic polyelectrolytes. Environ. Sci. Technol. 2002, 36, 1856–1860. [Google Scholar] [CrossRef]
- Popescu, I. Pharmaceutical applications of maleic anhydride/acid copolymers. In Handbook of Polymers for Pharmaceutical Technologies; Thakur, V.K., Thakur, M.K., Eds.; Scrivener Publishing LLC: Beverly, MA, USA, 2015; Volume 2, pp. 281–309. [Google Scholar]
- Popescu, I.; Suflet, D.M.; Pelin, I.M.; Popa, M.I. Influence of the comonomer on the dissociation of some alternating maleic acid copolymers. J. Macromol. Sci. B 2012, 51, 590–604. [Google Scholar] [CrossRef]
- Paoletti, S.; Delben, F. A spectroscopic investigation of complexes of divalent metal ions with maleic acid copolymers. Eur. Polym. J. 1975, 11, 561–564. [Google Scholar] [CrossRef]
- Mazi, H.; Gulpinar, A. Cu(II), Zn(II) andMn(II) complexes of poly(methyl vinyl ether-alt-maleic anhydride, Synthesis, characterization and thermodynamic parameters. J. Chem. Sci. 2014, 126, 239–245. [Google Scholar] [CrossRef]
- Amjad, Z.; Koutsoukos, P.G. Evaluation of maleic acid based polymers as scale inhibitors and dispersants for industrial water applications. Desalination 2014, 335, 55–63. [Google Scholar] [CrossRef]
- Saraydin, D.; Karadağ, E.; Güven, O. Adsorptions of some heavy metal ions in aqueous solutions by acrylamide/maleic acid hydrogels. Sep. Sci. Technol. 1995, 30, 3287–3298. [Google Scholar] [CrossRef]
- Roy, P.K.; Rawat, A.S.; Choudhary, V.; Rai, P.K. Synthesis and analytical application of a chelating resin based on a crosslinked styrene/maleic acid copolymer for the extraction of trace-metal ions. J. Appl. Polym. Sci. 2004, 94, 1771–1779. [Google Scholar] [CrossRef]
- Gonte, R.; Balasubramanian, K. Heavy and toxic metal uptake by mesoporous hypercrosslinked SMA beads: Isotherms and kinetics. J. Saudi Chem. Soc. 2016, 20, S579–S590. [Google Scholar] [CrossRef]
- Popescu, I.; Suflet, D.M.; Pelin, I.M.; Trunfio-Sfarghiu, A.M. Crosslinked maleic anhydride copolymers microspheres for dye adsorption. Rev. Roum. Chim. 2018, 63, 953–963. [Google Scholar]
- Popescu, I.; Popa, M.I.; Chiţanu, G.C. Supramolecular systems from natural polymers and maleic polyelectrolytes. Macromol. Symp. 2008, 272, 125–131. [Google Scholar] [CrossRef]
- Krayukhina, M.A.; Samoilova, N.A.; Erofeev, A.S.; Yamskov, I.A. Complexation of chitosan with maleic acid copolymers. Polym. Sci. Ser. A 2010, 52, 243–250. [Google Scholar] [CrossRef]
- Saleh, A.S.; Ibrahim, A.G.; Elsharma, E.M.; Metwally, E.; Siyam, T. Radiation grafting of acrylamide and maleic acid on chitosan and effective application for removal of Co(II) from aqueous solutions. Radiat. Phys. Chem. 2018, 144, 116–124. [Google Scholar] [CrossRef]
- Abdelmonem, I.M.; Elsharma, E.M.; Emara, A.M. Radiation synthesis of chitosan/poly(acrylamide-co-maleic acid) hydrogel for the removal of 152+154Eu (III) ions. Appl. Radiat. Isot. 2023, 197, 110801. [Google Scholar] [CrossRef] [PubMed]
- Wei, L.; Chen, Y.; Tan, W.; Li, Q.; Gu, G.; Dong, F.; Guo, Z. Synthesis, characterization, and antifungal activity of pyridine-based triple quaternized chitosan derivatives. Molecules 2018, 23, 2604. [Google Scholar] [CrossRef] [PubMed]
- Sethi, S.; Thakur, S.; Sharma, D.; Singh, G.; Sharma, N.; Kaith, B.S.; Khullar, S. Malic acid cross-linked chitosan based hydrogel for highly effective removal of chromium (VI) ions from aqueous environment. React. Funct. Polym. 2022, 177, 105318. [Google Scholar] [CrossRef]
- Miao, W.; Cheng, W.; Song, W. The influence of poly(maleic anhydride-co-vinyl acetate) on polylactide/wood flour/calcium carbonate composites. Polym. Test. 2023, 120, 107945. [Google Scholar] [CrossRef]
- Luna, C.B.; da Silva Barbosa Ferreira, E.; Siqueira, D.D.; dos Santos Filho, E.A.; Araújo, E.M. Additivation of the ethylene–vinyl acetate copolymer (EVA) with maleic anhydride (MA) and dicumyl peroxide (DCP): The impact of styrene monomer on cross-linking and functionalization. Polym. Bull. 2022, 79, 7323–7346. [Google Scholar] [CrossRef]
- Liu, S.; Zhang, H.; Ahlfeld, T.; Kilian, D.; Liu, Y.; Gelinsky, M.; Hu, Q. Evaluation of different crosslinking methods in altering the properties of extrusion-printed chitosan-based multi-material hydrogel composites. Bio-Des. Manuf. 2023, 6, 150–173. [Google Scholar] [CrossRef]
- Dinu, M.V.; Humelnicu, I.; Ghiorghita, C.A.; Humelnicu, D. Aminopolycarboxylic acids-functionalized chitosan-based composite cryogels as valuable heavy metal ions sorbents: Fixed-bed column studies and theoretical analysis. Gels 2022, 8, 221. [Google Scholar] [CrossRef]
- Bashir, S.; Hina, M.; Iqbal, J.; Rajpar, A.H.; Mujtaba, M.A.; Alghamdi, N.A.; Wageh, S.; Ramesh, K.; Ramesh, S. Fundamental concepts of hydrogels: Synthesis, properties, and their applications. Polymers 2020, 12, 2702. [Google Scholar] [CrossRef]
- Kessler, M.; Yuan, T.; Kolinski, J.M.; Amstad, E. Influence of the degree of swelling on the stiffness and toughness of microgel-reinforced hydrogels. Macromol. Rapid Commun. 2023, 44, 2200864. [Google Scholar] [CrossRef]
- Domard, A. pH and c.d. measurements on a fully deacetylated chitosan: Application to CuII-polymer interactions. Int. J. Biol. Macromol. 1987, 9, 98–104. [Google Scholar] [CrossRef]
- Zhang, F.; Wang, M.; Zhou, L.; Ma, X.; Zhou, Y. Removal of Cd(II) from aqueous solution using crosslinked chitosan–zeolite composite. Desalin. Water Treat. 2014, 54, 2546–2556. [Google Scholar] [CrossRef]
- Dinu, M.V.; Dragan, E.S. Evaluation of Cu2+, Co2+ and Ni2+ ions removal from aqueous solution using a novel chitosan/clinoptilolite composite: Kinetics and isotherms. Chem. Eng. J. 2010, 160, 157–163. [Google Scholar] [CrossRef]
- Yu, J.; Zheng, J.; Lu, Q.; Yang, S.; Zhang, X.; Wang, X.; Yang, W. Selective adsorption and reusability behavior for Pb2+ and Cd2+ on chitosan/poly(ethylene glycol)/poly(acrylic acid) adsorbent prepared by glow-discharge electrolysis plasma. Colloid. Polym. Sci. 2016, 294, 1585–1598. [Google Scholar] [CrossRef]
- Hernández, R.B.; Yola, O.R.; Mercê, A.L.R. Chemical equilibrium in the complexation of first transition series divalent cations Cu2+, Mn2+ and Zn2+ with chitosan. J. Braz. Chem. Soc. 2007, 18, 1388–1396. [Google Scholar] [CrossRef]
- Rhazi, M.; Desbrieres, J.; Tolaimate, A.; Rinaudo, M.; Vottero, P.; Alagui, A. Contribution to the study of the complexation of copper by chitosan and oligomers. Polymer 2002, 43, 1267–1276. [Google Scholar] [CrossRef]
- Wang, J.; Guo, X. Adsorption kinetic models: Physical meanings, applications, and solving methods. J. Hazard. Mater. 2020, 390, 122156. [Google Scholar] [CrossRef] [PubMed]
- Weber, W.J.; Morris, J.C. Kinetics of adsorption on carbon from solution. J. Sanit. Eng. Div. 1963, 89, 31–39. [Google Scholar] [CrossRef]
- Meetam, P.; Phonlakan, K.; Nijpanich, S.; Budsombat, S. Chitosan-grafted hydrogels for heavy metal ion adsorption and catalytic reduction of nitroaromatic pollutants and dyes. Int. J. Biol. Macromol. 2024, 255, 128261. [Google Scholar] [CrossRef]
- Zhang, M.; Liu, Y.; Yin, Z.; Feng, D.; Lv, H. Preparation and adsorption properties of magnetic chitosan/sludge biochar composites for removal of Cu2+ ions. Sci. Rep. 2023, 13, 20937. [Google Scholar] [CrossRef]
- Shaaban, A.F.; Fadel, D.A.; Mahmoud, A.A.; Elkomy, M.A.; Elbahy, S.M. Synthesis of a new chelating resin bearing amidoxime group for adsorption of Cu(II), Ni(II) and Pb(II) by batch and fixed-bed column methods. J. Environ. Chem. Eng. 2014, 2, 632–641. [Google Scholar] [CrossRef]
- Dahri, M.K.; Kooh, M.R.R.; Lim, L.B.L. Application of Casuarina equisetifolia needle for the removal of methylene blue and malachite green dyes from aqueous solution. Alex. Eng. J. 2015, 54, 1253–1263. [Google Scholar] [CrossRef]
- Dragan, E.S.; Apopei Loghin, D.F.; Cocarta, A.I. Efficient sorption of Cu2+ by composite chelating sorbents based on potato starch-graft-polyamidoxime embedded in chitosan beads. ACS Appl. Mater. Interfaces 2014, 6, 16577–16592. [Google Scholar] [CrossRef] [PubMed]
- Campos, N.F.; Barbosa, C.M.B.M.; Rodríguez-Díaz, J.M.; Duarte, M.M.B. Removal of naphthalenic acids using activated charcoal: Kinetic and equilibrium studies. Adsorpt. Sci. Technol. 2018, 36, 1405–1421. [Google Scholar] [CrossRef]
- Allen, S.J.; Mckay, G.; Khader, K.Y.H. Intraparticle diffusion of a basic dye during adsorption onto Sphagnum peat. Environ. Pollut. 1989, 56, 39–50. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, V.C.; Swamy, M.M.; Mall, I.D.; Prasad, B.; Mishra, I.M. Adsorptive removal of phenol by bagasse fly ash and activated carbon: Equilibrium, kinetics and thermodynamics. Colloids Surf. A Physicochem. Eng. Asp. 2006, 272, 89–104. [Google Scholar] [CrossRef]
- Hinz, C. Description of sorption data with isotherm equations. Geoderma 2001, 99, 225–243. [Google Scholar] [CrossRef]
- Samadi, N.; Hasanzadeh, R.; Rasad, M. Adsorption isotherms, kinetic, and desorption studies on removal of toxic metal ions from aqueous solutions by polymeric adsorbent. J. Appl. Polym. Sci. 2015, 132, 41642. [Google Scholar] [CrossRef]
- Ali, E.A.; Elkholy, S.S.; Morsi, R.E.; Elsabe, M.Z. Studies on adsorption behavior of Cu (II) and Cd (II) onto aminothiophene derivatives of styrene maleic anhydride copolymer. J. Taiwan Inst. Chem. Eng. 2016, 64, 325–335. [Google Scholar] [CrossRef]
- Abo-Baker, E.; Elkholy, S.S.; Elsabee, M.Z. Modified poly (styrene maleic anhydride) copolymer for the removal of toxic metal cations from aqueous solutions. Am. J. Polym. Sci. 2015, 5, 55–64. [Google Scholar] [CrossRef]
- Chen, A.H.; Liu, S.C.; Chen, C.Y.; Chen, C.Y. Comparative adsorption of Cu(II), Zn(II), and Pb(II) ions in aqueous solution on the crosslinked chitosan with epichlorohydrin. J. Hazard. Mater. 2008, 154, 184–191. [Google Scholar] [CrossRef]
- Machado, M.O.; Lopes, E.C.N.; Sousa, K.S.; Airoldi, C. The effectiveness of the protected amino group on crosslinked chitosans for copper removal and the thermodynamics of interaction at the solid/liquid interface. Carbohydr. Polym. 2009, 77, 760–766. [Google Scholar] [CrossRef]
- Wan Ngah, W.S.; Teong, L.C.; Toh, R.H.; Hanafiah, M.A.K.M. Comparative study on adsorption and desorption of Cu(II) ions by three types of chitosan–zeolite composites. Chem. Eng. J. 2013, 223, 231–238. [Google Scholar] [CrossRef]
- Rahman, A. Promising and environmentally friendly removal of copper, zinc, cadmium, and lead from wastewater using modified shrimp-based chitosan. Water 2024, 16, 184. [Google Scholar] [CrossRef]
- Vareda, J.P.; Matias, P.M.C.; Paixão, J.A.; Murtinho, D.; Valente, A.J.M.; Durães, L. Chitosan–silica composite aerogel for the adsorption of cupric ions. Gels 2024, 10, 192. [Google Scholar] [CrossRef]
- Laus, R.; de Fávere, V.T. Competitive adsorption of Cu(II) and Cd(II) ions by chitosan crosslinked with epichlorohydrin–triphosphate. Biores. Technol. 2011, 102, 8769–8776. [Google Scholar] [CrossRef]
- El-Sherbiny, I.M. Synthesis, characterization and metal uptake capacity of a new carboxymethyl chitosan derivative. Eur. Polym. J. 2009, 45, 199–210. [Google Scholar] [CrossRef]
- Dragan, E.S.; Apopei Loghin, D.F. Fabrication and characterization of composite cryobeads based on chitosan and starches-g-PAN as efficient and reusable biosorbents for removal of Cu2+, Ni2+, and Co2+ ions. Int. J. Biol. Macromol. 2018, 120 Part B, 1872–1883. [Google Scholar] [CrossRef]
- Wu, Z.C.; Wang, Z.Z.; Liu, J.; Yin, J.H.; Kuang, S.P. Removal of Cu(II) ions from aqueous water by L-arginine modifying magnetic chitosan. Coll. Surf. A Physicochem. Eng. Asp. 2016, 499, 141–149. [Google Scholar] [CrossRef]
- Verma, R.; Asthana, A.; Singh, A.K.; Prasad, S. An arginine functionalized magnetic nano-sorbent for simultaneous removal of three metal ions from water samples. RSC Adv. 2017, 7, 51079–51089. [Google Scholar] [CrossRef]
- Yan, H.; Dai, J.; Yang, Z.; Cheng, R. Enhanced and Selective dsorption of Copper(II) Ions on Surface Carboxymethylated Chitosan Hydrogel Beads. Chem. Eng. J. 2011, 174, 586–694. [Google Scholar] [CrossRef]
- Zhang, Y.; Lin, S.; Qiao, J.; Kołodyńska, D.; Ju, Y.; Zhang, M.; Cai, M.; Deng, D.; Dionysiou, D.D. Malic acid-enhanced chitosan hydrogel beads (mCHBs) for the removal of Cr(VI) and Cu(II) from aqueous solution. Chem. Eng. J. 2018, 353, 225–236. [Google Scholar] [CrossRef]
- Wang, X.; Zheng, Y.; Wang, A. Fast removal of copper ions from aqueous solution by chitosan-g-poly(acrylic acid)/attapulgite composites. J. Hazard. Mater. 2009, 168, 970–977. [Google Scholar] [CrossRef]
- Qi, X.; Wang, Z.; Ma, S.; Wu, L.; Yang, S.; Xu, J. Complexation behavior of poly(acrylic acid) and lanthanide ions. Polymer 2014, 55, 1183–1189. [Google Scholar] [CrossRef]
- Gamzazade, A.I.; Slimak, V.M.; Skljar, A.M.; Stykova, E.V.; Pavlova, S.S.A.; Rogozin, S.V. Investigation of the hydrodynamic properties of chitosan solutions. Acta Polym. 1985, 36, 420–424. [Google Scholar] [CrossRef]
- Chiţanu, G.C.; Popescu, I.; Carpov, A. Synthesis and characterization of maleic anhydride copolymers and their derivatives. 2. New data on the copolymerization of maleic anhydride with vinyl acetate. Rev. Roum. Chim. 2006, 51, 915–921. [Google Scholar]
- Aida, H.; Yoshida, T.; Matsuyama, A. Dilute solution properties of maleic anhydride-vinyl acetate copolymer. Fukui Daigaku Kogakubu Kenkyo Hokoku 1968, 16, 103–107. [Google Scholar]
- Leane, M.M.; Nankervis, R.; Smith, A.; Illum, L. Use of ninhydrin assay to measure the release of chitosan from oral solid dosage forms. Int. J. Pharm. 2004, 271, 241–249. [Google Scholar] [CrossRef]
- Prochazkova, S.; Vårum, K.M.; Østgaard, K. Quantitative determination of chitosans by ninhydrin. Carbohydr. Polym. 1999, 38, 115–122. [Google Scholar] [CrossRef]
- Shao, H.; Ding, Y.; Hong, X.; Liu, Y. Ultra-facile and rapid colorimetric detection of Cu2+ with branched polyethylenimine in 100% aqueous solution. Analyst 2018, 143, 409–414. [Google Scholar] [CrossRef]
Sample | Initial Reaction Mixture | Beads Characterization | |||
---|---|---|---|---|---|
NH2/Maleic Units Molar Ratio | CS/Maleic Copolymer (wt/wt) | NH2 Content (meq g−1) Before/After Thermal Treatment | Crosslinking Degree of Amine Groups (%) | Gel Fraction (%) | |
CS/MA-VA1 | 1/1 | 53.4/46.6 | 0.75 ± 0.02/0.64 ± 0.02 | 14.6 ± 5.0 | 81.7 ± 1.5 |
CS/MA-VA3 | 1/3 | 27.7/72.3 | 0.48 ± 0.01/0.38 ± 0.02 | 20.8 ± 5.9 | 99.1 ± 0.4 |
CS/MA-VA1 | CS/MA-VA3 | |
---|---|---|
qe,exp (mg g−1) | 96.3 | 137.5 |
PFO model | ||
qe,calc (mg g−1) | 93.4 | 123.4 |
k1 (min−1) | 0.018 | 0.018 |
R2 | 0.984 | 0.987 |
PSO model | ||
qe,calc (mg g−1) | 105.3 | 142.0 |
k2 (g mg−1 min−1) | 2.13 | 1.53 |
R2 | 0.995 | 0.997 |
W&M intra-particles diffusion model | ||
kdif,1 (g mg−1 min−0.5) | 8.5 | 13.8 |
kdif,2 (g mg−1 min−0.5) | 5.3 | 6.1 |
kdif,3 (g mg−1 min−0.5) | 0.6 | 0.7 |
CS/MA-VA1 | CS/MA-VA3 | |
---|---|---|
Langmuir model | ||
qmax (mg g−1) | 103.7 | 142.2 |
KL (L mg−1) | 0.056 | 0.159 |
R2 | 0.983 | 0.996 |
Freundlich model | ||
KL ((mg g−1)(L mg−1)1/n) | 36.27 | 108.4 |
1/n | 0.158 | 0.041 |
R2 | 0.851 | 0.989 |
Sips model | ||
qmax (mg g−1) | 98.8 | 141.9 |
KS ((L mg−1)1/n) | 0.018 | 0.101 |
1/n | 1.40 | 1.13 |
R2 | 0.993 | 0.996 |
Sorbent | qmax (mg Cu2+ g−1) | Reference |
---|---|---|
Acrylamide/maleic acid hydrogels | 28–81 | [25] |
Poly(maleic acid-alt-styrene) cross-linked with divinylbenzene resin | 15.4 | [26] |
Poly(maleic acid-alt-styrene) cross-linked with divinylbenzene beads | 17.5 | [27] |
Poly(maleic acid-alt-styrene) cross-linked with 1,2-diaminoethane | 49.02 | [58] |
Poly(maleic acid-alt-styrene) modified with aminothiophene | 71–100 | [59] |
Poly(maleic acid-alt-styrene) modified with diamines | 100 | [60] |
CS and cross-linked CS (with epichlorohydrin) | 35.5–37.9 | [61] |
CS and cross-linked CS (with glutaraldehyde) | 61–86 | [62] |
Chemically modified CS | 20.3 | [64] |
CS/silica aerogel | 40 | [65] |
CS/zeolite composites | 14.7–25.6 | [63] |
CS/Fe2O3/sludge biochar | 55.2 | [50] |
Cross-linked CS (with epichlorohydrin and triphosphate) | 130.7 | [66] |
Carboxymethyl chitosan grafted with poly(N-acryloyl glycine) | 85–146 | [67] |
CS/starch-graft-poly(acrylonitrile) beads | 85–101 | [68] |
CS/starch-graft-poly(amidoxyme) beads | 133–233 | [53] |
CS modified with L-arginine/magnetic nanoparticles | 142.8 | [69] |
CS/magnetic nanoparticles modified with L-arginine | 172.4 | [70] |
Carboxymethylated CS beads | 130 | [71] |
CS/malic acid beads | 183.8 | [72] |
CS-g-poly(acrylic acid) | 232.6 | [49] |
CS-g-maleic acid | 305.5 | [18] |
Xanthate-modified CS/poly(acrylic acid) hydrogel | 241 | [16] |
CS-graft-poly(acrylic acid)/biochar composite | 111 | [15] |
CS/MA-VA3 beads | 142.4 | This work |
Sorbent | ΔH (KJ mol−1) | ΔS (KJ mol−1) | ΔG (KJ mol−1) | ||
---|---|---|---|---|---|
298 K | 308 K | 318 K | |||
CS/MA-VA1 | 11.0 | 0.127 | −1.14 | −1.42 | −1.96 |
CS/MA-VA3 | 35.7 | 0.040 | −2.23 | −3.32 | −4.78 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Popescu, I.; Pelin, I.M.; Suflet, D.M.; Stanciu, M.C.; Constantin, M. Chitosan/Poly(maleic acid-alt-vinyl acetate) Hydrogel Beads for the Removal of Cu2+ from Aqueous Solution. Gels 2024, 10, 500. https://doi.org/10.3390/gels10080500
Popescu I, Pelin IM, Suflet DM, Stanciu MC, Constantin M. Chitosan/Poly(maleic acid-alt-vinyl acetate) Hydrogel Beads for the Removal of Cu2+ from Aqueous Solution. Gels. 2024; 10(8):500. https://doi.org/10.3390/gels10080500
Chicago/Turabian StylePopescu, Irina, Irina Mihaela Pelin, Dana Mihaela Suflet, Magdalena Cristina Stanciu, and Marieta Constantin. 2024. "Chitosan/Poly(maleic acid-alt-vinyl acetate) Hydrogel Beads for the Removal of Cu2+ from Aqueous Solution" Gels 10, no. 8: 500. https://doi.org/10.3390/gels10080500
APA StylePopescu, I., Pelin, I. M., Suflet, D. M., Stanciu, M. C., & Constantin, M. (2024). Chitosan/Poly(maleic acid-alt-vinyl acetate) Hydrogel Beads for the Removal of Cu2+ from Aqueous Solution. Gels, 10(8), 500. https://doi.org/10.3390/gels10080500