Encapsulation of HRP-Immobilized Silica Particles into Hollow-Type Spherical Bacterial Cellulose Gel: A Novel Approach for Enzyme Reactions within Cellulose Gel Capsules
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of Si-HRPs
2.2. Preparation of HSBC Gels Encapsulating Si-HRPs
2.3. Activity Evaluation of Si-HRP-Encapsulated in HSBC Gels
2.4. Discussion
3. Conclusions
4. Materials and Methods
4.1. Materials
4.2. Preparation of HRP-Immobilized Silica Beads
4.3. Preparation of Si-HRP-Encapsulated Hollow-Type Spherical BC Gels
4.4. Preparation of HSBC Aerogel Using Supercritical CO2
4.5. Microstructure Measurements of HSBC Gels
4.6. Evaluation of HRP Activity
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- McIntosh, J.A.; Owens, A.E. Enzyme engineering for biosynthetic cascades. Curr. Opin. Green Sustain. Chem. 2021, 29, 100448. [Google Scholar] [CrossRef]
- Ferrer, M.; Martínez-Martínez, M.; Bargiela, R.; Streit, W.R.; Golyshina, O.V.; Golyshin, P.N. Estimating the success of enzyme bioprospecting through metagenomics: Current status and future trends. Microb. Biotechnol. 2016, 9, 22–34. [Google Scholar] [CrossRef]
- Yushkova, E.D.; Nazarova, E.A.; Matyuhina, A.V.; Noskova, A.O.; Shavronskaya, D.O.; Vinogradov, V.V.; Skvortsova, N.N.; Krivoshapkina, E.F. Application of immobilized enzymes in food industry. J. Agric. Food. Chem. 2019, 67, 11553–11567. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Snajdrova, R.; Moore, J.C.; Baldenius, K.; Bornscheuer, U.T. Biocatalysis: Enzymatic synthesis for industrial applications. Angew. Chem. Int. Ed. 2021, 60, 88–119. [Google Scholar] [CrossRef] [PubMed]
- Maroufi, L.Y.; Rashidi, M.; Tabibiazar, M.; Mohammadi, M.; Pezeshki, A.; Ghorbani, M. Recent advances of macromolecular hydrogels for enzyme immobilization in the food products. Adv. Pharm. Bull. 2022, 12, 309–318. [Google Scholar]
- Liu, D.-M.; Chen, J.; Shi, Y.P. Advances on methods and easy separated support materials for enzymes immobilization. TrAC Trends Anal. Chem. 2018, 102, 332–342. [Google Scholar] [CrossRef]
- Bilal, M.; Zhao, Y.; Rasheed, T.; Iqbal, H.M.N. Magnetic nanoparticles as versatile carriers for enzymes immobilization: A review. Int. J. Biol. Macromol. 2018, 120, 2530–2544. [Google Scholar] [CrossRef] [PubMed]
- Labus, K.; Wolanin, K.; Radosiński, Ł. Comparative study on enzyme immobilization using natural hydrogel matrices-experimental studies supported by molecular models analysis. Catalysts 2020, 10, 489. [Google Scholar] [CrossRef]
- Bilal, M.; Rasheed, T.; Zhao, Y.; Iqbal, H.M.N. Agarose-chitosan hydrogel-immobilized horseradish peroxidase with sustainable bio-catalytic and dye degradation properties. Int. J. Biol. Macromol. 2019, 124, 742–749. [Google Scholar] [CrossRef] [PubMed]
- Du, H.; Shi, S.; Liu, W.; Teng, H.; Piao, M. Processing and modification of hydrogel and its application in emerging contaminant adsorption and in catalyst immobilization: A review. Environ. Sci. Pollut. Res. 2020, 27, 12967–12994. [Google Scholar] [CrossRef] [PubMed]
- Naghdi, M.; Taheran, M.; Brar, S.K.; Kermanshahi-Pour, A.; Verma, M.; Surampalli, R.Y. Fabrication of nanobiocatalyst using encapsulated laccase onto chitosan-nanobiochar composite. Int. J. Biol. Macromol. 2019, 124, 530–536. [Google Scholar] [CrossRef] [PubMed]
- Lim, F.S.; Sun, A.M. Microencapsulated islets as bioartificial endocrine pancreas. Science 1980, 210, 908–910. [Google Scholar] [CrossRef] [PubMed]
- O’Shea, G.M.; Goosen, M.F.; Sun, A.M. Prolonged survival of transplanted islets of Langerhans encapsulated in a biocompatible membrane. Biochim. Biophys. Acta 1984, 804, 133–136. [Google Scholar] [CrossRef] [PubMed]
- Vaithilingam, V.; Bal, S.; Touch, B.E. Encapsulated Islet Transplantation: Where Do We Stand? Rev. Diabet. Stud. 2017, 14, 51–78. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Lacik, I.; Brissová, M.; Anilkumar, A.V.; Prokop, A.; Hunkeler, D.; Green, R.; Shahrokhi, K.; Powers, A.C. An encapsulation system for the immunoisolation of pancreatic islets. Nat. Biotechnol. 1997, 15, 358–362. [Google Scholar] [CrossRef] [PubMed]
- de Vos, P.; Lazarjani, H.A.; Poncelet, D.; Faas, M.M. Polymers in cell encapsulation from an enveloped cell perspective. Adv. Drug Deliv. Rev. 2014, 67–68, 15–34. [Google Scholar] [CrossRef] [PubMed]
- Trojanowska, A.; Nogalska, A.; Valls, R.G.; Giamberini, M.; Tylkowski, B. Technological solutions for encapsulation. Phys. Sci. Rev. 2017, 2, 20170020. [Google Scholar]
- Fery, A.; Dubreuil, F.; Möhwald, H. Mechanics of artificial microcapsules. N. J. Phys. 2004, 6, 18. [Google Scholar] [CrossRef]
- Choudhury, N.; Meghwal, M.; Das, K. Microencapsulation: An overview on concepts, methods, properties and applications in foods. Food Front. 2021, 2, 426–442. [Google Scholar] [CrossRef]
- Song, J.; Babayekhorasani, F.; Spicer, P. Soft bacterial cellulose microcapsules with adaptable shapes. Biomacromolecules 2019, 20, 4437–4446. [Google Scholar] [CrossRef] [PubMed]
- Merkel, T.J.; Jones, S.W.; Herlihy, K.P.; Kersey, F.R.; Shields, A.R.; Napier, M.; Luft, J.C.; Wu, H.; Zamboni, W.C.; Wang, A.Z.; et al. Using mechanobiological mimicry of red blood cells to extend circulation times of hydrogel microparticles. Proc. Natl. Acad. Sci. USA 2011, 108, 586–591. [Google Scholar] [CrossRef] [PubMed]
- Cui, J.; Björnmalm, M.; Liang, K.; Xu, C.; Best, J.P.; Zhang, X.; Caruso, F. Super-Soft Hydrogel Particles with Tunable Elasticity in a Microfluidic Blood Capillary Model. Adv. Mater. 2014, 26, 7295–7299. [Google Scholar] [CrossRef] [PubMed]
- Klemm, D.; Heublein, B.; Fink, H.-P.; Bohn, A. Cellulose: Fascinating Biopolymer and Sustainable Raw Material. Angew. Chem. Int. Ed. 2005, 44, 3358–3393. [Google Scholar] [CrossRef] [PubMed]
- Czaja, W.; Romanovicz, D.; Brown, R.M., Jr. Structural Investigations of Microbial Cellulose Produced in Stationary and Agitated Culture. Cellulose 2004, 11, 403–411. [Google Scholar] [CrossRef]
- Putra, A.; Kakugo, A.; Furukawa, H.; Gong, J.P.; Osada, Y. Tubular Bacterial Cellulose Gel with Oriented Fibrils on the Curved Surface. Polymer 2008, 49, 1885–1891. [Google Scholar] [CrossRef]
- Nimeskern, L.; Ávila, H.M.; Sundberg, J.; Gatenholm, P.; Müller, R.; Stok, K.S. Mechanical Evaluation of Bacterial Nanocellulose as an Implant Material for Ear Cartilage Replacement. J. Mech. Behav. Biomed. Mater. 2013, 22, 12–21. [Google Scholar] [CrossRef] [PubMed]
- Hoshi, T.; Yamazaki, K.; Sato, Y.; Shida, T.; Aoyagi, T. Production of hollow-type spherical bacterial cellulose as a controlled release device by newly designed floating cultivation. Heliyon 2018, 4, e00873. [Google Scholar] [CrossRef] [PubMed]
- Hoshi, T.; Suzuki, M.; Ishikawa, M.; Endo, M.; Aoyagi, T. Encapsulation of micro- and milli-sized particles with a hollow-type spherical bacterial cellulose gel via particle-preloaded droplet cultivation. Int. J. Mol. Sci. 2019, 20, 4919. [Google Scholar] [CrossRef] [PubMed]
- Hoshi, T.; Endo, M.; Hirai, A.; Suzuki, M.; Aoyagi, T. Encapsulation of Activated Carbon into a Hollow-Type Spherical Bacterial Cellulose Gel and Its Indole-Adsorption Ability Aimed at Kidney Failure Treatment. Pharmaceutics 2020, 12, 1076. [Google Scholar] [CrossRef] [PubMed]
- Hirai, A.; Suzuki, M.; Sato, K.; Hoshi, T.; Aoyagi, T. Adsorption capacity of activated carbon-encapsulated hollow-type spherical bacterial cellulose gels for uremic toxins in a simulated human gastrointestinal environment. Gels 2024, 10, 417. [Google Scholar] [CrossRef] [PubMed]
- Gu, S.; Risse, S.; Lu, Y.; Ballauff, M. Mechanism of the oxidation of 3,3′,5,5′-tetramethylbenzidine catalyzed by peroxidase-like Pt nanoparticles immobilized in spherical polyelectrolyte brushes: A kinetic study. ChemPhysChem 2020, 21, 450–458. [Google Scholar] [CrossRef] [PubMed]
- Brain, A. Solute diffusion within hydrogels. Macromolecules 1998, 31, 8382–8395. [Google Scholar]
- Lustig, S.R.; Peppas, N.A. Solute diffusion in swollen membranes. IX. Scaling laws for solute diffusion in gels. J. Appl. Polym. Sci. 1988, 36, 735–747. [Google Scholar] [CrossRef]
- Johansson, L.; Elvingston, C.; Lofroth, J.-E. Diffusion and interaction in gels and solutions. 3. Theoretical results on the obstruction effect. Macromolecules 1991, 24, 6024–6029. [Google Scholar] [CrossRef]
- Clague, D.S.; Phillips, R.J. Hindered diffusion of spherical macromolecules through dilute fibrous media. Phys. Fluids 1996, 8, 1720–1731. [Google Scholar] [CrossRef]
- Maeda, H.; Nakajima, M.; Hagiwara, T.; Sawaguchi, T.; Yano, S. Preparation and properties of bacterial cellulose aerogel. Kobunshi Ronbunshu 2006, 63, 135–137. [Google Scholar] [CrossRef]
- SIGMA Product Information, Fluorescein Isothiocyanate-Dextran Sigma Stock Nos. FD-4, FD-10S, FD-20S, FD-20, FD-40S, FD-40, FD-70S, FD-70, FD-150S, FD-150, FD-250S, FD-500S, and FD-2000S. Available online: https://www.sigmaaldrich.com/deepweb/assets/sigmaaldrich/product/documents/106/654/fd20spis.pdf (accessed on 1 August 2024).
- Hestrin, S.; Schramm, M. Synthesis of cellulose by Acetobacter xylinum. 2. Preparation of freeze-dried cells capable of polymerizing glucose to cellulose. Biochem. J. 1954, 58, 345–352. [Google Scholar] [CrossRef] [PubMed]
- Sakuragawa, A.; Taniai, T.; Okutani, T. Fluorometric determination of microamounts of hydrogen peroxide with an immobilized enzyme prepared by coupling horseradish peroxidase to chitosan beads. Anal. Chim. Acta 1998, 374, 191–200. [Google Scholar] [CrossRef]
- Sakurai, K.; Kitada, K.; Takahashi, T. Preparation of porous chitosan beads as supports for immobilization of β-galactosidase. Mem. Fac. Eng. Fukui Univ. 1989, 37, 173–182. [Google Scholar]
- Gorton, L.; Ögren, L. Flow injection analysis for glucose and urea with enzyme reactors and on-line dialysis. Anal. Chim. Acta 1981, 130, 45–53. [Google Scholar] [CrossRef]
- Buchtová, N.; Budtova, T. Cellulose aero-, cryo- and xerogels: Towards understanding of morphology control. Cellulose 2016, 23, 2585–2595. [Google Scholar] [CrossRef]
- Bos, E.S.; van der Doelen, A.A.; van Rooy, N.; Schuurs, A.H.W.M. 3,3′,5,5′-Tetramethylbenzidine as an ames test negative chromogen for horse-radish peroxidase in enzyme-immunoassay. J. Immunoass. 1981, 2, 187–204. [Google Scholar] [CrossRef] [PubMed]
Sample Name | Weight Loss (wt%) | Organic/Residue (wt%) |
---|---|---|
Si-NH2 | 18.0 ± 0.1 | 21.9 ± 0.1 |
Si-GA | 31.5 ± 0.5 | 46.1 ± 0.8 |
Si-HRP | 32.7 ± 0.2 | 48.6 ± 0.3 |
Sample Name | Molecular Weight (g/mol) | Temp. (°C) | Hydrodynamic Radius (nm) | Diffusion Coefficient * (m2/s) |
---|---|---|---|---|
FITC-Dextran | 1.0 × 104 | 25.0 | 2.3 [37] | 1.1 × 10−10 |
FITC-Dextran | 1.0 × 104 | 37.0 | 2.3 [37] | 1.4 × 10−10 |
TMB2 | 472.63 | 37.0 | 0.55 ** | 5.9 × 10−10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hoshi, T.; Suzuki, M.; Aoyagi, T. Encapsulation of HRP-Immobilized Silica Particles into Hollow-Type Spherical Bacterial Cellulose Gel: A Novel Approach for Enzyme Reactions within Cellulose Gel Capsules. Gels 2024, 10, 516. https://doi.org/10.3390/gels10080516
Hoshi T, Suzuki M, Aoyagi T. Encapsulation of HRP-Immobilized Silica Particles into Hollow-Type Spherical Bacterial Cellulose Gel: A Novel Approach for Enzyme Reactions within Cellulose Gel Capsules. Gels. 2024; 10(8):516. https://doi.org/10.3390/gels10080516
Chicago/Turabian StyleHoshi, Toru, Masashige Suzuki, and Takao Aoyagi. 2024. "Encapsulation of HRP-Immobilized Silica Particles into Hollow-Type Spherical Bacterial Cellulose Gel: A Novel Approach for Enzyme Reactions within Cellulose Gel Capsules" Gels 10, no. 8: 516. https://doi.org/10.3390/gels10080516
APA StyleHoshi, T., Suzuki, M., & Aoyagi, T. (2024). Encapsulation of HRP-Immobilized Silica Particles into Hollow-Type Spherical Bacterial Cellulose Gel: A Novel Approach for Enzyme Reactions within Cellulose Gel Capsules. Gels, 10(8), 516. https://doi.org/10.3390/gels10080516