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Abstract: Polyvinyl alcohol (PVA)/TiO2/colloidal photonic crystal (CPC) films with photocatalytic
properties are presented, where TiO2 nanoparticles were introduced into the PVA gel network.
Such PVA/TiO2/CPC films possess three-dimensional periodic structures that are supported with a
PVA/TiO2 composite gel. The unique structural color of CPCs can indicate the process of material
preparation, adsorption, and desorption. The shift of diffraction peaks of CPCs can be more accurately
determined using fiber-optic spectroscopy. The effect of the PVA/TiO2/CPC catalyst films showed
better properties as the degradation of methylene blue (MB) by the PVA/TiO2/CPC film catalyst in
4 h was 77~90%, while the degradation of MB by the PVA/TiO2 film was 33% in 4 h, indicating that
the photonic crystal structure was 2.3~2.7 times more effective than that of the bulk structure.

Keywords: PVA; photocatalytic; TiO2; colloidal crystal; photonic crystal

1. Introduction

With the progress of society and the development of industry, the problem of environ-
mental pollution has become more and more serious. Among these, water resources, as
one of the basic resources for human survival, are especially valuable in modern society.
However, the daily activities of human beings and industrialized operations have led to
numerous water pollution problems, especially dye wastewater, which now accounts for a
large proportion of industrial wastewater in China and has become one of the important
pollutants in the environment [1–5]. Methylene blue (MB) is a common industrial dye with
a high dosage and is widely used in industrial production, which can damage water quality
and water ecosystems when it enters water bodies and can cause nausea and vomiting if it
enters the human body [6]. Conventional treatments of organically polluted wastewater
mainly rely on chemical methods (e.g., inputting photocatalysts) and physical adsorption.
Although the chemical methods can decompose organic pollutants by photocatalysis, the
effective recovery of the subsequent photocatalysts is also a problem. Physical adsorption
is the most commonly used method for treating dyestuff wastewater because of its simple
operation, good decolorization efficiency, and the absence of by-products. Conventional
adsorbents mainly include activated carbon, ores, modified biosorbents, and so on [7].

Hydrogels, a kind of material with three-dimensional network structures, are widely
used as an adsorbent due to their transparent and non-toxic properties, high solubility, high
water absorption, and good mechanical properties [8,9]. As one of the oldest hydrogels,
polyvinyl alcohol (PVA) hydrogels have been widely used as research objects due to their
good chemical stability, non-toxicity, good biocompatibility, high solubility, mechanical
properties, and ease of processing [10–12]. Currently, materials prepared based on PVA
hydrogels have been widely studied in the fields of drug carriers, articular cartilage,
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wound dressings, photocatalysts, tissue engineering, and other smart materials such as
self-healing and shape memory materials, supercapacitors, sensors, and so on. With the
development of science and technology, smart gel materials are prevalent, and the devices
developed by combining such gels with photonic crystals have great potential. However,
the current research on materials in this area is still insufficient due to the limitations of the
preparation method. On the one hand, the preparation conditions of photonic crystals are
harsh. On the other hand, photonic crystals need to be composited with the gel material
without destroying their original functions during the process. Efforts on the physical and
chemical modification of PVA to prepare a series of PVA-based hydrogels with a range of
functionalities by combining it with colloidal photonic crystals (CPC) [13–18], the structural
color, slow photon effect, and other optical properties of the CPC are utilized to develop
functional photonic hydrogel materials. These photonic gel materials can be applied
practically in solution detection, temperature response, photocatalysis, and other fields.

In recent decades, more and more articles have reported on the introduction of photo-
catalytic titanium dioxide (TiO2) nanoparticles into hydrogel systems, where the hydrogel
acts as a backbone to adsorb organic dyes in wastewater, and TiO2 nanoparticles act as
photocatalysts to effectively adsorb degraded organic dyes [19–21]. These hydrogel pho-
tocatalysts are widely used because the photocatalyst nano-TiO2 can be easily recovered
from water bodies, and the hydrogel as the skeleton material is non-toxic, biocompatible,
and green. However, the photocatalyst nano-TiO2 has a low absorption of UV light from
natural light and also has a series of drawbacks, such as small adsorption, small specific
surface area, and low catalytic activity, which greatly limit its practical application [22]. In
recent years, some researchers have found that the slow photon effect of photonic crystals
can effectively enhance the photocatalytic efficiency of nano-TiO2 photocatalysts, mainly
because the opal structure of photonic crystals lengthens the propagation distance of light
in the material and slows down the speed of photons at the edges of their blocking bands,
which increases the light absorption efficiency of the photocatalysts and thus improves the
catalytic activity [23].

In this work, we used a colorless, nontoxic, abrasion-resistant, and biodegradable
water-soluble organic polymer polyvinyl alcohol (PVA) hydrogel as the adsorbent skeleton.
Titanium dioxide (TiO2) nanoparticles were used as the photocatalyst combined with CPCs
with structural colors and slow photon effects to prepare a novel photonic crystal gel
thin-film photocatalyst; we investigated the adsorption of the film photocatalyst on the
efficiency of the photocatalytic adsorption of MB dye from wastewater.

2. Results and Discussion
2.1. Preparation and Characterization of PVA/TiO2/CPC Thin Films

In order to confirm whether there is a new chemical bond formation between TiO2
and PVA molecules in the composite films prepared by the simple composite method,
the materials were characterized by infrared spectroscopy, and the results are shown in
Figure 1. The infrared spectra of our prepared PVA/TiO2 and pure PVA samples showed
similar profiles, with important characteristic peaks at the same positions, and no new
peaks appeared, which was a different phenomenon from that of the PVA/TiO2 composite
films obtained by high-temperature heat treatment. During the high-temperature heat
treatment, Ti-O-C chemical bonds are usually formed between PVA and TiO2 molecules.
In contrast, during the simple composite method in our experiment, the nano-TiO2 was
simply embedded in the PVA matrix, and no new chemical bond was formed between both
materials, a phenomenon that has been reported elsewhere [24]. The results showed peaks
at 1450 cm−1 and 2950 cm−1, which correspond to the C–H bending (alkane, -CH3, and
-CH2) and the C–H stretching vibration from PVA, respectively.
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Figure 1. (a) Infrared spectra of the PVA, TiO2, and mixture of PVA/TiO2; (b) Scanning electron
microscopy (SEM) image of PVA/TiO2. The inset is the optical photograph of the sample.

For the preparation of PVA/TiO2/CPC films with fewer defects, the preparation of
CPC templates is particularly important. The CPC templates with fewer defects provide a
good basis for their subsequent penetration of the PVA/TiO2 precursor solution into the
CPC template interstitials as well as for easy unwinding from the glass slide to prepare
high-quality films. As shown in Figure 2a–c, the morphology of the laboratory-synthesized
polystyrene (PS) colloids (186 nm, 209 nm, and 252 nm in diameter) have uniform particle
sizes. The hexagonally arranged structure consisted of the typical face-centered cubic (FCC)
lattice, and thus, the photonic crystal templates prepared by the vertical deposition method
were well-structured. In addition, the inset in the upper-right corner shows their single
bright structural color.

In addition, the proper tilt angle of the PVA/TiO2 precursor when it penetrates the
CPC template was also conducive to the penetration of the precursor into the interstitial
space of the CPC template. From experimental experience, a tilt angle of less than 30◦

will result in the slow penetration of the PVA/TiO2 precursor into the CPC template, and
the PVA/TiO2 precursor will lack mobility and solidify into a gel before it completely
penetrates the gap of the CPC template. As the tilt angle is more than 30◦, it will lead to
the fast penetration of the PVA/TiO2 precursor into the CPC template, and the PVA/TiO2
precursor will not completely penetrate the gap of the CPC template. The PVA/TiO2
precursor solution will be slowly flowed down along the glass slide and penetrate the
filling of the CPC gap; the uniformly PVA/TiO2 precursor-filled CPC slide was put into the
oven at 37 ◦C for 12 h to cure into a film. The resulting high-quality PVA/TiO2/CPC film
can be conveniently peeled off from the glass slide.

As shown in Figure 2d–f, the SEM result showed that the PVA/TiO2/CPC films
prepared using the CPC templates remained in their ordered hexagonal pattern, and the
encircling of the PVA/TiO2 precursor solution did not affect the periodic structure of the
CPC template. Comparing the insets between Figures 2a–c and 2d,e, it can be observed
that the structural color of the CPC templates changed significantly after the infiltration
and filling of the PVA/TiO2 precursor solution. The characterization of the fiber optic
spectrometer revealed that the reflection peaks had undergone different degrees of red-
shift phenomena, in which the reflection peak of CPC-186 was red-shifted from 471 nm
to 481 nm, the reflection peak of CPC-209 was red-shifted from the original 524 nm to
560 nm, and the reflection peak of CPC-252 was shifted from 636 nm to 671 nm. The ∆λ

for CPC-186, CPC-209, and CPC-252 were 10 nm, 36 nm, and 35 nm, respectively. For the
same reason as above, the diffraction wavelengths of the material and its average refractive
index were positively correlated due to the same lattice spacing of photonic crystals. The
refractive index of nano-TiO2 was 2.5, and the refractive index of PVA was 1.49, which is
greater than the refractive index of air (1.0). After filling the CPC template gap with the
precursor solution of PVA/TiO2, the diffraction wavelengths were red-shifted when the
average refractive index increased [25,26].
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The PVA, PVA/TiO2, and PVA/TiO2/CPC films were thermally analyzed using a com-
prehensive thermal analyzer. As can be seen in Figure 3a, below 250 °C, each film showed 
a similar behavior. Over 250 °C, the retained weight of the three films declined differently. 
The weight of pure PVA and PVA/TiO2 films dropped dramatically, while the 
PVA/TiO2/CPC composite film dropped less than the other two films. It can also be seen 
that with the addition of CPC, the melting temperature of the composite film increased, 
which indicates that the thermal stability of the composite film was improved. The better 
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Figure 2. SEM of the prepared samples: (a) CPC-186; (b) CPC-209; (c) CPC-252; (d) PVA/TiO2/CPC-
186; (e) PVA/TiO2/CPC-209; (f) PVA/TiO2/CPC-252. The insets in the upper right corner are
the corresponding structural colors of the samples, respectively. (g) Diffraction spectra compari-
son of CPC: before and after infiltration of PVA/TiO2 (solid line: before infiltration; dashed line:
after infiltration).

The PVA, PVA/TiO2, and PVA/TiO2/CPC films were thermally analyzed using a
comprehensive thermal analyzer. As can be seen in Figure 3a, below 250 ◦C, each film
showed a similar behavior. Over 250 ◦C, the retained weight of the three films declined
differently. The weight of pure PVA and PVA/TiO2 films dropped dramatically, while the
PVA/TiO2/CPC composite film dropped less than the other two films. It can also be seen
that with the addition of CPC, the melting temperature of the composite film increased,
which indicates that the thermal stability of the composite film was improved. The better
property of the PVA/TiO2/CPC is due to the fact that the CPC in the composite film of
PVA/TiO2/CPC is formed because of the hydrogen bonding force to form a dense stacking
structure. In addition, we also carried out relevant tensile property tests on the films using
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a universal material testing machine; Young’s modulus of the films was calculated from the
slope of the linear part of the stress–strain curve.
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Figure 3b shows that the strain-at-break of pure PVA was 280.31% and the tensile
strength was 1.43 MPa; the elongation-at-break of the composite film PVA/TiO2 was
277.20% and tensile strength was 1.83 MPa; the elongation-at-break of the PVA/TiO2/CPC
was 330.53% and tensile strength was 2.84 MPa (c.f., Table 1). Pure PVA films are semi-
crystalline polymers with more amorphous structural domains than ordered structural
domains at room temperature, so the extension in the tensile direction and the arrangement
of the lattice units of the PVA film are due to the plastic deformation of the structure. The
ductility of the stress–strain curve of the pure PVA film in Figure 3b is mainly due to the
amorphous chains. After the incorporation of TiO2 nanoparticles into PVA, the intermolec-
ular interactions were increased, and thus, the tensile strength of the composite film was
improved. While there was a slight decrease in its strain-at-break, the tensile strength of its
composite film PVA/TiO2 was increased from 1.43 to 1.83 MPa. The elongation-at-break
was decreased from the original 280.31% to 277.20% because the addition of nanoparticles
increases the stiffness of the composite film while decreasing its ductility. Subsequently,
combining the CPC template with the PVA/TiO2 composite film further increased the
strain-at-break and tensile strength of the composite film, which increased the elongation-
at-break from 280.31% to 330.65% and the tensile strength from 1.83 to 2.84 MPa, which
significantly affected the mechanical properties of the PVA/TiO2 composite film. This is
due to the tightly ordered arrangement of PS colloids in the CPC template so that they are
uniformly dispersed into the PVA/TiO2 composite film. The CPC template plays the role of
an active filler so that the macromolecules in the composite film form a stable structure, the
interchain force increases, and the intermolecular force required to overcome the external
force is greater. The addition of CPC templates increases the fracture strain of the composite
film, enhances the structural rigidity of the molecular chains, and tightens the network.
This improves the mechanical properties of the composite film, thus showing an obvious
rise in stress–strain behavior.

Table 1. Summary of tensile test data for PVA, PVA/TiO2, and PVA/TiO2/CPC films.

Sample Elongation (%) Tensile Strength (Mpa) Young’s Modulus (Mpa)

PVA 280.31 1.43 0.44 ± 0.001
PVA/TiO2 277.20 1.83 0.49 ± 0.003

PVA/TiO2/CPC 330.65 2.84 0.72 ± 0.006
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2.2. Dark Adsorption–Photocatalytic Degradation of MB Dye by PVA/TiO2/CPC Film

Prior to the photocatalytic degradation experiments, dark adsorption experiments
were carried out on PVA/TiO2 and PVA/TiO2/CPC (186 nm, 209 nm, 252 nm) films. In the
experiments, PVA/TiO2 and PVA/TiO2/CPC films were cut into the same size and placed
in 10 mL of a 10 mg/L MB dye solution and then placed in a shaker at 35 ◦C for 60 min,
then the surface of the films was wiped and weighed to calculate the equilibrium degree.
The experimental results are shown in Figure 4a. The lowest equilibrium swelling rate of
PVA/TiO2/CPC (186 nm, 209 nm, 252 nm) films was higher than that of PVA/TiO2 films.
On one hand, the presence of PS colloids during infiltration increased the loose network
structure of the films, resulting in more hydrophobic channels of the films. On the other
hand, the PS colloids showed excellent binding capacity and high adsorption efficiency for
certain dyes, affinity ligands, and substances. Thus, the PVA/TiO2/CPC films had better
adsorption ability for MB compared to that of PVA/TiO2. As shown in Figure 4b, with the
same regularity as Figure 4a, the ratio of final concentration to initial concentration after
60 min of dark adsorption of PVA/TiO2/CPC films was 0.59, 0.48, 0.36, respectively, while
that of the PVA/TiO2 films was 0.80. In comparison with the PVA/TiO2 films, the dark
adsorption removal rate of MB dye in the PVA/TiO2/CPC films was 2–3.2 times higher.
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Figure 4. (a,b) The equilibrium swelling and rate profiles of dark adsorption of PVA/TiO2 and
PVA/TiO2/CPC (186 nm, 209 nm, and 252 nm) films, respectively.

To investigate the difference in photocatalytic efficiency between PVA/TiO2 and
PVA/TiO2/CPC films for the degradation of MB dye, we first subjected the PVA/TiO2 and
PVA/TiO2/CPC films to dark adsorption in a 10 mg/L MB dye solution for 60 min in a
constant temperature shaker at 35 ◦C and then continued to conduct the photocatalytic
degradation experiments using a 10 W UV lamp. As shown in Figure 5a, the dark blue
color of the 10 mg/L MB dye solution without dark treatment was gradually lightened
by the dark treatment of PVA/TiO2 and PVA/TiO2/CPC composite films for 60 min. The
color of the MB dye solution was the lightest after the dark treatment of the composite film
PVA/TiO2/CPC-252. The color of the MB dye solution was consistent with the effect of
the dark treatment we mentioned above. After 4 h of photocatalytic experiments, the MB
dye was further degraded, and the color of its dye solution was further lightened. It can be
seen that the MB dye solution changed from dark blue to light blue after photocatalysis
by the PVA/TiO2 film, while the MB dye solution after photocatalytic degradation by the
PVA/TiO2/CPC composite film showed different degrees of light blue, and its overall color
was lighter than that of the dye after photocatalysis by the PVA/TiO2 film.
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MB dye by (b) PVA/TiO2, (c) PVA/TiO2/CPC-186, (d) PVA/TiO2/CPC-209, and (e) PVA/TiO2/CPC-
252 films, respectively.

We used the prepared PVA/TiO2 and PVA/TiO2/CPC films to degrade the initial
concentration of a 10 mg/L MB dye solution, respectively. Figure 5b–e plots the UV–visible
absorption result of PVA/TiO2 and PVA/TiO2/CPC composite films that degraded the MB
dye after dark adsorption (60 min)–photocatalysis (4 h), in which the absorbance of the MB
dye was 1.203 after dark adsorption of the PVA/TiO2 film for 60 min, which reduced to
1.097 after 4 h of photocatalysis.

Meanwhile, the absorbance after dark adsorption of PVA/TiO2/CPC-186, PVA/TiO2/
CPC-209, and PVA/TiO2/CPC-252 films was 0.725, 0.307, and 0.225, respectively, which
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decreased to 0.327, 0.174, and 0.111, respectively, after 4 h of photocatalysis. The 4 h
photocatalytic degradation of MB by PVA/TiO2/CPC films was significantly better than
that of PVA/TiO2 films, with the PVA/TiO2/CPC-186 film having the best photocatalytic
effect, with approximately three times higher catalytic efficiency than that of PVA/TiO2
films. This is because of the unique structure of composite CPCs. On the one hand,
its PS colloids have a negative charge, which has an excellent binding ability for the
dye molecules and improves the photocatalytic efficiency of TiO2 nanoparticles. On the
other hand, it is due to the slow photon effect on the optical property of the photonic
crystals [27], which is generated by the interactions between the wave packets reflected
from the photonic bandgap (PGB) and those that are non-reflective (i.e., transmissive).
This can effectively promote the interaction between light and material, i.e., when the
low-frequency or high-frequency edges of these slow photons overlap with the electronic
band gaps (EBGs) of the photocatalysts prepared by combining photonic crystals, the
photocatalytic activity can be significantly improved by increasing the effective optical
path length. Briefly, the slow photon effect of photonic crystals improves the photocatalytic
efficiency of TiO2 nanoparticles and thus enhances the photocatalytic degradation efficiency
of MB in PVA/TiO2/CPC films.

2.3. Cycling Performance (Repeatability) Study

The PVA/TiO2/CPC film catalysts were prepared by combining the PVA/TiO2 with
the CPC template. The microstructure of the final PVA/TiO2/CPC thin film catalyst
is a three-dimensional periodic photonic crystal. PVA/TiO2 and PVA/TiO2/CPC films
were reused as reusable experimental objects. Following the steps of the adsorption–
photocatalysis experiments described above, the films were reused three times to explore
and compare the differences in cycling performance between the four films and the dif-
ferences in adsorption–photocatalysis performance between each cycle. The degradation
effect of each adsorption catalysis is shown in Figure 6a.

As shown in Figure 6b, in the first adsorption–photocatalytic degradation of MB ex-
periment, the degradation rate of PVA/TiO2/CPC film catalysts for MB was approximately
77~90% in 4 h, while the degradation rate of PVA/TiO2 films for MB was approximately
33% in 4 h. After four cycles of adsorption–photocatalysis, the dark adsorption and photo-
catalytic abilities of the four films decreased (Figure 6c). The photocatalytic activity was
weakened, which was attributed to the fact that with the increase in the number of dark
adsorption times, the internal gel pores of the films became smaller, and the solubilization
and adsorption capacity was almost saturated, making it impossible for dye molecules in
solution to diffuse sufficiently. Therefore, it occupied part of the active sites on the TiO2
surface, which led to a decrease in the catalytic activity of the film and the weakening of the
degradation ability of the dye. However, the degradation efficiency of the PVA/TiO2/CPC
films for MB dye remained above 56~70%, which was 2.3~2.7 times higher than that of the
PVA/TiO2 films.

The difference in the cycling performance between the PVA/TiO2 films and the
PVA/TiO2/CPC (186, 209, 252 nm) films in terms of cycling performance for the same
reasons is mentioned above. The cycling performance showed that the PVA/TiO2/CPC
films prepared in this experiment could carry out the adsorption–photocatalytic degra-
dation reaction many times and have good photocatalytic reusability performance. In
addition, this experiment did not require the aid of centrifugation and other operations for
the recovery of the adsorbent during the recycling process. Finally, the composite material
was simple and convenient to recover and had good recyclability.
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3. Conclusions

In this work, we used a simple composite method combining a CPC template with
PVA/TiO2 to prepare PVA/TiO2/CPC film catalysts with a three-dimensional periodic
structure, which consisted of PS colloids with uniform particle size and neatly arranged
interconnections; the interspaces of the colloids were filled with PVA/TiO2 composite
gels. The degradation of MB by the film catalyst showed that the degradation rate of
ordinary PVA/TiO2 films for MB was approximately 33% within 4 h, while the degradation
rate of PVA/TiO2/CPC film catalysts for MB was approximately 77~90% within 4 h. The
adsorption–photocatalytic degradation of MB by the latter film catalyst was approximately
2.3~2.7 times higher than that of the former film catalyst. The main reasons were that the
PS colloids of PVA/TiO2/CPC film were rich in negative charges, which have an excellent
binding ability for MB-positive dye, and the PS colloids were highly reactive on the surface
with high adsorption efficiency. Moreover, the slow photon effect of periodic PS colloid
structures increases the optical range length of the irradiated light wave in the material,
which promotes the interaction between the light and the material and is conducive to
the improvement of the catalytic degradation of the photocatalytic system. Therefore, the
introduction of the opal structure of photonic crystals into the photocatalytic system could
effectively enhance the photocatalytic activity. In this study, it was demonstrated that
the introduction of the CPC structure into the photocatalytic thin film species effectively
enhanced the adsorption and photocatalytic degradation of dyes in the film.
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4. Materials and Methods
4.1. Materials

Styrene, ammonium persulfate (APS), methacrylic acid (MAA), and PVA (99% hy-
drolyzed, DP = 1750 ± 50) were obtained from Shanghai Chemical Agent Co., Ltd.,
Shanghai, China. Nano-TiO2 (99 wt%, 20~40 nm) and methylene blue (≥95%) was pur-
chased from Titan Scientific Co., Ltd., Shanghai, China). All other chemicals were ob-
tained from Sinopharm Chemical Reagent Co., Ltd., Shanghai, China. Ultrapure water
(18.2 MΩ·cm) was used in all experiments. All materials were used as received without
further purification.

4.2. Synthesis of PS Monodisperse Colloids

Monodisperse PS colloids were prepared by boiling emulsifier-free polymerization [28].
At a stirring rate of 380 R/min, 5 mL of MAA and 100 mL of deionized water were added
to a three-necked flask, followed by adding 40 mL of styrene (washed with 10% NaOH
solution prior to use), and the mixture was heated to boiling. A total of 0.1 g of APS was
added to the mixture to initiate the reaction, and the reaction was continued for 30~60 min.
The flask was then moved to an ice water bath to terminate the polymerization. Finally,
the latex was poured into a dialysis bag and dialyzed against deionized water for at least
7 days to remove impurities.

4.3. Preparation of CPC Template

A total of 0.5 mL of the above dialyzed PS latex was placed into a beaker and diluted
to 50 mL with deionized water, and the glass slides were vertically placed in the diluted
latex. The beaker was placed in a 65 ◦C oven for 48 h. After the evaporation of the water,
the PS colloids self-assembled onto the glass slide due to capillary forces, and the artificial
CPC templates were finally prepared after further heating at 80 ◦C for 8 h while the bright
structure diffraction color could be observed.

4.4. Preparation of PVA/TiO2/CPC Adsorption Photocatalytic Films

A total of 6 mg of nano-TiO2 was placed in 10 mL of deionized water and ultrasonicated
for 1 h to make the nano-TiO2 uniformly dispersed in the deionized water. A total of 2 g of
PVA was added into the above uniformly dispersed aqueous solution of nano-TiO2, and
then 8 g of deionized water was added into a beaker and heated and stirred at 100 ◦C for
2 h until the PVA was completely dissolved; the PVA/TiO2 precursor solution with a PVA
concentration of 10 wt% was prepared. At room temperature, 0.5 mL of 25% glutaraldehyde
was added to the PVA/TiO2 precursor solution, and to prevent excessive cross-linking
of PVA, the PVA/TiO2 precursor solution was immediately infiltrated into the interstitial
space of the CPC templates prepared in advance after stirring for 5 min at room temperature.
The glass slide covered with CPC arrays on the surface was tilted at 30◦, and a pipette was
used to aspirate the above PVA/TiO2 precursor solution, which flowed down slowly along
the glass sheet and penetrated to fill into the CPC gap. The uniformly filled CPC glass sheet
containing the PVA/TiO2 precursor solution was dried in an oven at 37 ◦C for 12 h to form
a film. The PVA/TiO2/CPC film was removed from the glass sheet and sealed for storage.
Without penetrating the PVA/TiO2 precursor solution into the interstitial space of the
CPC template, the PVA/TiO2 film was prepared under the same experimental conditions
and stored in a sealed condition at room temperature. The whole preparation process of
PVA/TiO2/CPC films is shown in Figure 7.
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4.5. PVA/TiO2/CPC Dark Adsorption–Photocatalytic Degradation of MB

The 1 × 2 cm PVA/TiO2 film and PVA/TiO2/CPC film of the same size were placed
in 10 mL of MB solution with an initial concentration of 10 mg/L and then dark adsorbed
for 60 min in a constant temperature shaker at 35 ◦C in a closed and dark environment with
shaking at 120 r/min. Then, the 1 × 2 cm dark adsorbed PVA/TiO2 film and the 1 × 2 cm
dark adsorbed PVA/TiO2/CPC film, with a UV lamp with a power of 10 W as a light
source, were dark-adsorbed in the dark adsorption process after 60 min. After 60 min of
dark adsorption, the 1 × 2 cm PVA/TiO2 film and the PVA/TiO2/CPC film of the same
size were subjected to photocatalytic degradation of 10 mL of MB solution with an initial
concentration of 10 mg/L.

4.6. Characterization

Microstructural photographs of the samples were taken using a scanning electron
microscope (Hitachi, S-4800, Tokyo, Japan). Fourier transform infrared (FTIR) spectroscopy
(Nicolet, iS10, Waltham, MA, USA) was used to analyze the chemical bonding between
the PVA carriers and the TiO2 nanoparticles. An integrated thermal analyzer (TGA400
PC, NETZSCH, Selb, Germany) was used with a temperature increase rate of 10 ◦C and
a temperature scanning range from 25 ◦C to 600 ◦C to measure the heat weight loss and
energy change data of each specimen film. The diffraction spectra of the samples were
determined by a fiber optic spectrometer (Ocean Optics, USB 4000-XR1-ES, Winter Park,
FL, USA), with the reflectance spectra ranging between 400 and 800 nm. The absorbance
of MB was tested with a UV–Vis spectrophotometer (Shimadzu, UV 2600, Tokyo, Japan)
between 200 nm and 800 nm using deionized water as a blank reference sample, and the
test results were recorded. Since the MB showed specific absorbance at 664 nm, whose
intensity was related to the concentration of MB, the corresponding concentration can be
calculated from the experimental values. The standard curve determined and used in this
experiment is shown in Figure 8. Equation (1) shows the relationship between absorbance
and concentration:

A = 0.1718 C + 0.00866 (1)

where A is the absorbance and C is the concentration.
Optical photographs of the samples were taken by a digital camera (Canon, EOS 6D,

Tokyo, Japan) with a macro lens (Tamron, 272E, Tokyo, Japan). The films were cut into
standard sample sizes of 20 × 10 mm (length × width). The tensile stress δ (MPa) and
tensile strain ε were tested with a Shimadzu AGS-X universal material testing machine
(Kyoto, Japan) with a tensile speed of 100 mm/min and a clamp distance spacing of 30 mm
at a testing temperature of 25 ◦C.
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The tensile stress was calculated by Equation (2):
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F

a × b
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where F is the fracture load (N), a is the width of the sample (mm), and b is the thickness of
the sample (mm).

The tensile strain was calculated by Equation (3):
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where L is the entire stroke fracture or yielding (mm) and L0 is the original distance (mm).
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