Cyclodextrin—Polymethylsilsesquioxane Combined System as a Perspective Iron Delivery System for Oral Administration
Abstract
:1. Introduction
2. Results and Discussion
2.1. Structure and Physical Properties of Synthetized Hydrogels
2.2. Physico-Chemical Studies of Complex Formation between Iron Salts and HPCD
2.3. Study of the Ferrous D-Gluconate + HPCD Complexes’ Sorption by PMSSO Hydrogels
2.4. Study of Iron Release from the PMSSO-Based Systems
3. Conclusions
4. Materials and Methods
4.1. Materials
4.2. Methods
4.2.1. Synthesis of Polymethylsilsesquioxane (PMSSO) Hydrogels
4.2.2. Nuclear Magnetic Resonance
4.2.3. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Trivedi, R.; Barve, K. Delivery systems for improving iron uptake in anemia. Int. J. Pharm. 2021, 601, 120590. [Google Scholar] [CrossRef] [PubMed]
- Zhu, A.; Kaneshiro, M.; Kaunitz, J.D. Evaluation and treatment of iron deficiency Anemia: A gastroenterological perspective. Dig. Dis. Sci. 2010, 55, 548–559. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Ramírez, S.; Brilli, E.; Tarantino, G.; Muñoz, M. Sucrosomial® iron: A new generation iron for improving oral supplementation. Pharmaceuticals 2018, 11, 97. [Google Scholar] [CrossRef]
- Kononova, I.N.; Kareva, E.N.; Dobrokhotova, Y.u.E. Fourth-generation folic acid active metabolite Quatrefolic® and micronized, microencapsulated iron Lipofer®: Innovative approaches for iron and folic acid deficiencies in women (a review). Russ. J. Woman Child Health 2022, 5, 18–27. [Google Scholar] [CrossRef]
- Lin, H.M.; Deng, S.G.; Huang, S.B.; Li, Y.J.; Song, R. The effect of ferrous-chelating hairtail peptides on iron deficiency and intestinal flora in rats. J. Sci. Food Agric. 2016, 96, 2839–2844. [Google Scholar] [CrossRef] [PubMed]
- Cui, J.; Li, Y.; Yu, P.; Zhan, Q.; Wang, J.; Chi, Y.; Wang, P. A novel low molecular weight Enteromorpha polysaccharide-iron (III) complex and its effect on rats with iron deficiency anemia (IDA). Int. J. Biol. Macromol. 2018, 108, 412–418. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.P.; Zhang, Y.; Dai, L.Q.; Wang, K.P. Effect of Angelica sinensis polysaccharide-iron complex on iron deficiency anemia in rats. Chin. J. Integr. Med. 2007, 13, 297–300. [Google Scholar] [CrossRef]
- Rahul, B.S.; Lakshmi, S.; Sneha Letha, S.; Sidharth Mohan, M.; Rosemary, M.J. Mucoadhesive microspheres of ferrous sulphate—A novel approach for oral iron delivery in treating anemia. Colloids Surf. B Biointerfaces 2020, 195, 111247. [Google Scholar] [CrossRef]
- Zheng, W.; Tarr, M.A. Evidence for the existence of ternary complexes of iron, cyclodextrin, and hydrophobic guests in aqueous solution. J. Phys. Chem. B 2004, 108, 10172–10176. [Google Scholar] [CrossRef]
- Diab, R.; Canilho, N.; Pavel, I.A.; Haffner, F.B.; Girardon, M.; Pasc, A. Silica-based systems for oral delivery of drugs, macromolecules and cells. Adv. Colloid Interface Sci. 2017, 249, 346–362. [Google Scholar] [CrossRef]
- Abbasi, F.; Mirzadeh, H.; Katbab, A.A. Modification of polysiloxane polymers for biomedical applications: A review. Polym. Int. 2001, 50, 1279–1287. [Google Scholar] [CrossRef]
- Kon’kova, T.V.; Gordienko, M.G.; Alekhina, M.B.; Men’Shutina, N.V. Synthesis of silica gels with a controlled porous structure. Russ. J. Inorg. Chem. 2014, 59, 1214–1218. [Google Scholar] [CrossRef]
- Kireev, V.V.; D’yachenko, B.I.; Rybalko, V.P. The structure and thermooxidative transformations of polymethylsilsesquioxanes. Polym. Sci. Ser. A 2008, 50, 394–402. [Google Scholar] [CrossRef]
- Meshkov, I.B.; Mazhorova, N.G.; Zhemchugov, P.V.; Kalinina, A.A.; Vasilev, S.G.; Bystrova, A.V.; Lyubimov, S.E.; Tereshchenko, A.S.; Muzafarov, A.M. Iron-Containing Polymethylsilsesquioxane Hydrogels as Polymer Bases for sorbents of Hydrogen Sulfide from Environment. INEOS OPEN 2019, 2, 140–144. [Google Scholar] [CrossRef]
- Howell, C.A.; Mikhalovsky, S.V.; Markaryan, E.N.; Khovanov, A.V. Investigation of the adsorption capacity of the enterosorbent Enterosgel for a range of bacterial toxins, bile acids and pharmaceutical drugs. Sci. Rep. 2019, 9, 5629. [Google Scholar] [CrossRef] [PubMed]
- Orlova, P.D.; Meshkov, I.B.; Latipov, E.V.; Vasil’ev, S.G.; Kalinina, A.A.; Muzafarov, A.M.; Le-Deygen, I.M. Functional Design of Peroral Iron Compound Delivery Systems Based on Polymethylsilsesquioxane Hydrogels for the Therapy of Iron Deficiency Anemia. Russ. J. Inorg. Chem. 2024, 69, 428–438. [Google Scholar] [CrossRef]
- Alfuraydi, R.T.; Al-Harby, N.F.; Alminderej, F.M.; Elmehbad, N.Y.; Mohamed, N.A. Poly (Vinyl Alcohol) Hydrogels Boosted with Cross-Linked Chitosan and Silver Nanoparticles for Efficient Adsorption of Congo Red and Crystal Violet Dyes. Gels 2023, 9, 882. [Google Scholar] [CrossRef] [PubMed]
- Loghin, D.F.; Bazarghideanu, M.M.; Vasiliu, S.; Racovita, S.; Zaharia, M.-M.; Vasiliu, T.; Mihai, M. Hydrogel Beads of Amidoximated Starch and Chitosan as Efficient Sorbents for Inorganic and Organic Compounds. Gels 2022, 8, 549. [Google Scholar] [CrossRef]
- Iacovino, R.; Rapuano, F.; Caso, J.V.; Russo, A.; Lavorgna, M.; Russo, C.; Isidori, M.; Russo, L.; Malgieri, G.; Isernia, C. β-cyclodextrin inclusion complex to improve physicochemical properties of pipemidic acid: Characterization and bioactivity evaluation. Int. J. Mol. Sci. 2013, 14, 13022–13041. [Google Scholar] [CrossRef]
- Novac, M.; Musuc, A.M.; Ozon, E.A.; Sarbu, I.; Mitu, M.A.; Rusu, A.; Petrescu, S.; Atkinson, I.; Gheorghe, D.; Lupuliasa, D. Design and Evaluation of Orally Dispersible Tablets Containing Amlodipine Inclusion Complexes in Hydroxypropyl-β-cyclodextrin and Methyl-β-cyclodextrin. Materials 2022, 15, 5217. [Google Scholar] [CrossRef]
- Skuredina, A.A.; Le-Deygen, I.M.; Belogurova, N.G.; Kudryashova, E.V. Effect of cross-linking on the inclusion complex formation of derivatized β-cyclodextrins with small-molecule drug moxifloxacin. Carbohydr. Res. 2020, 498, 108183. [Google Scholar] [CrossRef] [PubMed]
- Trucillo, P. Drug Carriers: A Review on the Most Used Mathematical Models for Drug Release. Processes 2022, 10, 1094. [Google Scholar] [CrossRef]
- Jain, A.; Jain, S.K. In vitro release kinetics model fitting of liposomes: An insight. Chem. Phys. Lipids 2016, 201, 28–40. [Google Scholar] [CrossRef] [PubMed]
- Le-Deygen, I.; Safronova, A.; Mamaeva, P.; Khristidis, Y.; Kolmogorov, I.; Skuredina, A.; Timashev, P.; Kudryashova, E. Liposomal Forms of Fluoroquinolones and Antifibrotics Decorated with Mannosylated Chitosan for Inhalation Drug Delivery. Pharmaceutics 2023, 15, 1101. [Google Scholar] [CrossRef]
- Roveri, N.; Morpurgo, M.; Palazzo, B.; Parma, B.; Vivi, L. Silica xerogels as a delivery system for the controlled release of different molecular weight heparins. Anal. Bioanal. Chem. 2005, 381, 601–606. [Google Scholar] [CrossRef]
- Wang, T.; Li, B.; Si, H.; Lin, L.; Chen, L. Release characteristics and antibacterial activity of solid state eugenol/β-cyclodextrin inclusion complex. J. Incl. Phenom. Macrocycl. Chem. 2011, 71, 207–213. [Google Scholar] [CrossRef]
- Catauro, M.; Naviglio, D.; Risoluti, R.; Vecchio Ciprioti, S. Sol–gel synthesis and thermal behavior of bioactive ferrous citrate–silica hybrid materials. J. Therm. Anal. Calorim. 2018, 133, 1085–1092. [Google Scholar] [CrossRef]
Sample Name | Composition |
---|---|
HG-1 | 1:1 MeSiO1.5/SiO2 links molar ratio |
HG-2 | 1:2 MeSiO1.5/SiO2 links molar ratio |
HG-3 | No extra SiO2 links |
HPCD@D-Glu sol | Guest–host complex of ferrous D-Gluconate and HPCD in molar ratio 1:1 obtained from the aqueous solution |
HPCD@FeCl3 sol | Guest–host complex of FeCl3 and HPCD in molar ratio 1:5 obtained from the aqueous solution |
HPCD@FeCl3 kn | Guest–host complex of FeCl3 and HPCD in molar ratio 1:5 obtained from the kneading |
HG-1@D-Glu | Hydrogel HG-1 loaded with ferrous D-Gluconate |
HG-1@HPCD@D-Glu | Hydrogel HG-1 loaded with complex HPCD@D-Glu sol |
Sample Name | Composition | Sorption Capacity, µmol/g | Specific Surface Area, m2/g |
---|---|---|---|
HG-1 | 1:1 MeSiO1.5/SiO2 links molar ratio | 0.9 | 278.7 ± 4.5 |
HG-2 | 1:2 MeSiO1.5/SiO2 links molar ratio | 0.2 | 313.2 ± 5.6 |
HG-3 | No extra SiO2 links | 4.5 | 620 ± 10.5 |
Hydrogel | Sorption Capacity for Ferrous D-Gluconate, % | Sorption Capacity for HPCD@G-Glu Sol, % |
---|---|---|
HG-1 | 37 ± 4 | 59 ± 6 |
HG-2 | 35 ± 4 | 47 ± 5 |
HG-3 | 33 ± 3 | 63 ± 6 |
Model | R2 |
---|---|
Zero-order | 0.85 |
First-order | 0.8119 |
Higuchi model | 0.9806 |
Korsmeyer–Peppas model | 0.9389 |
Model | R2, Hydrogel Release Area | R2, HPCD Release Area |
---|---|---|
Zero-order | 0.9115 | 0.9981 |
First-order | 0.834 | 0.9968 |
Higuchi model | 0.9803 | 0.9984 |
Korsmeyer–Peppas model | 0.9522 | 0.9962 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Orlova, P.; Meshkov, I.; Latipov, E.; Vasiliev, S.; Mikheev, I.; Ratova, D.-M.; Kalinina, A.; Muzafarov, A.; Le-Deygen, I. Cyclodextrin—Polymethylsilsesquioxane Combined System as a Perspective Iron Delivery System for Oral Administration. Gels 2024, 10, 564. https://doi.org/10.3390/gels10090564
Orlova P, Meshkov I, Latipov E, Vasiliev S, Mikheev I, Ratova D-M, Kalinina A, Muzafarov A, Le-Deygen I. Cyclodextrin—Polymethylsilsesquioxane Combined System as a Perspective Iron Delivery System for Oral Administration. Gels. 2024; 10(9):564. https://doi.org/10.3390/gels10090564
Chicago/Turabian StyleOrlova, Polina, Ivan Meshkov, Egor Latipov, Sergey Vasiliev, Ivan Mikheev, Daria-Maria Ratova, Alexandra Kalinina, Aziz Muzafarov, and Irina Le-Deygen. 2024. "Cyclodextrin—Polymethylsilsesquioxane Combined System as a Perspective Iron Delivery System for Oral Administration" Gels 10, no. 9: 564. https://doi.org/10.3390/gels10090564
APA StyleOrlova, P., Meshkov, I., Latipov, E., Vasiliev, S., Mikheev, I., Ratova, D. -M., Kalinina, A., Muzafarov, A., & Le-Deygen, I. (2024). Cyclodextrin—Polymethylsilsesquioxane Combined System as a Perspective Iron Delivery System for Oral Administration. Gels, 10(9), 564. https://doi.org/10.3390/gels10090564