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Abstract: HA (hyaluronan) has been considered in recent years as a naturally occurring
modifiable gel-like scaffold that has the capability to absorb and release drugs over an
extended period of time making it suitable as a potential chemotherapeutic delivery agent.
Considering the limited treatment options available in the treatment of glioblastoma, in
this review, we discuss the novel utilisation of ultra-high molecular weight HA—originally
identified as a mechanism for maintaining longevity in the naked mole-rat—as both a
protective and extracellular matrix-optimizing colloidal scaffold, and a means to deliver
therapy in resected brain tumours. The unique properties of this unique form of HA
cross-linked gel indicate potential future use in the prevention and treatment of both
proliferative-based and inflammation-driven disease.
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1. Introduction and Background
Glioblastomas (GBMs) are the most common malignant brain tumours, constituting

16% of all primary central nervous system (CNS) malignancies. They can emerge de novo
or through the malignant transformation of more benign tumours, primarily affecting the
brain, with 61% located in the frontal, temporal, parietal, and occipital lobes. Standard
treatment involves surgical resection followed by radiotherapy and chemotherapy with
temozolomide. The annual incidence is approximately 3.2 cases per 100,000 in the USA,
according to the Central Brain Tumor Registry of the USA (CBTRUS 2016). Despite op-
timal surgical interventions and postoperative adjuvant therapies, GBMs remain almost
invariably fatal due to their aggressive and invasive nature. The 5-year survival rate for
GBM patients in the USA is about 5.5%, with a median overall survival (OS) of roughly
one year. The median OS for patients undergoing gross total resection is reported to be
15.5 months, compared to 11.7 months for those with subtotal resection and 5.9 months
for those without resection. Recent research indicates that GBMs may originate from var-
ious cell types with neural progenitor-like properties, ranging from neural stem cells to
glial cells, each exhibiting different alterations in the signalling pathways. This finding
challenges the previous belief that all GBMs arise exclusively from glial cells [1,2].

There remain significant challenges in GBM treatment including incomplete resection,
significant genetic heterogeneity affecting response to treatment, the restrictive blood–brain
barrier (BBB), and an immunosuppressive microenvironment. Glioblastoma is also known
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for its highly invasive and therapy-resistant nature, and although in the last decade, there
has been a gradual increase in clinical trials testing new drugs, particularly those focused
on immunotherapy and targeted therapies, there has been limited success to date [3,4].

Surgical resection and radiotherapy are standard procedures for glioblastoma treat-
ment, but there are several options for chemotherapy. Temozolomide is considered the
most effective, as it significantly improves overall survival (circa 3 months) when used
in conjunction with radiotherapy. Other chemotherapeutic agents are available, although
they may not provide the same level of efficacy as temozolomide. These alternatives are
valuable, especially in regions where temozolomide is not available. Notable examples
include Gliadel, which is a biodegradable implant that releases carmustine directly at the
tumour site, and lomustine, commonly used in Europe as an alternative to bevacizumab,
which is more frequently used in the US and Canada [5,6].

However, the primary challenge, regardless of the efficacy or mechanism of the se-
lected chemotherapeutic agent, is its ability to reach the tumour site and then maintain an
effective concentration. The BBB poses a significant obstacle. Various therapeutic strategies
have been proposed to address this issue, including drug delivery using biological scaf-
folds (the subject of this review), and nanoparticle-based modulation, for example, using
intravenously delivered ultrasound microbubbles, or optical enhancement to break down
the BBB-associated tight junctions [7].

HA has gathered significant interest among researchers in recent years due to its
unique hydrogel-like properties and capacity for drug absorption and release. Its prevalence
in the extracellular matrix of the brain positions it as a highly attractive option for the
creation of novel, modified scaffolds that could be used in drug delivery for enhanced
targeting in brain cancer treatment.

2. Hyaluronan—More than a Naturally Occurring Scaffold?
HA is a polysaccharide prominently found in the ECM throughout the human body.

Its molecular mass ranges between around 400 Da (one disaccharide), and 10 MDa, and
its physiological properties are influenced by its polyelectrolyte and polymeric charac-
teristics, as well as its viscous nature. Along with HA, the extra cellular matrix (ECM)
also contains proteoglycans (versican, neurocan, aggrecan, etc.), link proteins and other
glycosaminoglycans such as chondroitin sulphate, keratan sulphate and heparan sulphate.
HA is composed of multiple units of D-glucuronic acid and N-acetyl-D-glucosamine to
which different proteins and proteoglycans can attach, resulting in a three-dimensional (3D)
network. HA is biocompatible and frequently interacts with various cell receptors, as a
ligand for the CD44 glycoprotein and the receptor for HA-mediated cell motility RHAMM
to facilitate cell communication and behaviour [8]. Moreover, HA can undergo a variety of
relatively simple chemical modifications that enable cross-linking between polymer chains
and the formation of highly tuneable scaffolds [9,10].

Proteoglycans, (of which HA is a major component), are the most prevalent
biomolecules within the brain ECM, and their molecular weight dictates their behaviour
and properties [11]. Due to this abundance, HA is critically involved in modulating and
maintaining balance within numerous processes, including cell migration, proliferation, dif-
ferentiation, maturation of neural stem cell progenitors (NSCP) during brain development
and repair, and other cellular behaviours [10,12].

The potential of HA for enhancing drug delivery is well-established and has been
extensively explored. HA is characterised as a matrix suitable for controlled drug release
and has already been widely used in various biomedical applications, where chemical cross-
linking or conjugation with a range of bio-macromolecules, allows it to encapsulate different
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drugs, even at the nanoscale. For a review, see [13]. This capability is exemplified by the
findings in wound healing/tissue protection and repair as described in the examples below.

2.1. Tissue Repair and Regeneration

Xu et al. assessed the chondrogenic potential of hybrid HA-based hydrogel particles
containing varying amounts of heparin (HP), [synthesised by inverse emulsion crosslinking]
and loaded with bone morphogenetic protein-2 (BMP-2) [14]. They showed in vitro that
by varying the concentration of heparin within the gel, the storage and release rate of
BMP-2 could be fine-tuned to optimally upregulate the release of murine chondrocyte-
C3H10T1 cell differentiation markers including aggrecan, Sox-9 and collagen type-II. This
type of novel scaffold could be utilised in supporting cartilage regeneration and repair in
meniscal tear injuries, preventing the development of osteoarthritis, as has been partially
demonstrated within animal models [15]. Moreover, in respect of CNS tumours, supplying
concerted targeted drug release and/or promoting the natural immune response as was
observed in gelatin-HA hybrids loaded with tumour antigen MAGE-A5. This effectively
killed melanoma B16-derived tumours in a rabbit model and the rationale could legitimately
be applied to glioblastoma therapy [16].

The treatment of infected wounds presents significant challenges, primarily due
to the inherently unfavourable microenvironment and the prevalence of drug-resistant
bacteria. To model these conditions, Huang et al. induced infected wounds in rats and
treated them with hydrogels composed of carboxymethyl chitosan (CC) and aldehyde HA
(AHA) combined with vancomycin and polylactide-co-glycolide (PLGA) microspheres.
These novel drug-loaded hydrogels enabled effective wound healing through substantial
granulation tissue formation, reductions in inflammatory markers at the wound site (IL-12,
IL-1α, IL-10, and TNF-α), enhanced angiogenesis, and significant reductions in wound
size [17].

Similarly, Deng et al. developed a multifunctional hydrogel by encapsulating ul-
trasmall silver nanoclusters (AgNCs; antimicrobial) and deferoxamine (DFO; angio-
genic) within polydopamine-coated hollow mesoporous manganese dioxide nanoparticles
(PDA/H-mMnO2; for controlled release). Using a rat model of infected wounds, they
showed that in the presence of this gel, ROS was effectively converted to oxygen concomi-
tantly with increased vascularization enabling effective healing, whilst terminating the
original infection [18].

These results provide supporting evidence that combinations of materials and active
molecules can be effectively integrated with HA scaffolds to provide targeted and regulatory
benefits, directly influencing tissue protection and recovery after CNS injury or for example
tumour resection, where hypoxia-associated neurovascular decoupling via haemorrhage or
other BBB disruption is the major source of cell death and morbidity [19].

2.2. Neurological Protection/Regeneration

Implementing protective strategies within the CNS is challenging in part due to its
limited response to treatment, and, to date, no effective therapies have been identified
that can successfully functionally repair CNS injuries which therefore ultimately leads to
impairment of neurological functions in corresponding sites of injury (e.g., traumatic injury
or tumour formation with mass effect) [20]. HA hydrogels, however, have demonstrated
success in treating spinal cord injuries (SCI) and stroke in experimental animals.

Mothe et al. utilised a hydrogel blend of HA and methyl cellulose (HAMC) injected
with adult brain-derived NSPCs in a subacute rat SCI model. The HAMC hydrogel was
covalently modified with recombinant rat platelet-derived growth factor-A (rPDGF-A) to
promote oligodendrocytic differentiation. They showed a reduced cavitation, improved
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graft survival, increased oligodendrocytic differentiation, and preservation of peri-lesional
host oligodendrocytes, indicating that HAMC-rPDGF-A could be a promising vehicle for
cell delivery in spinal cord injuries [21].

Besides oligodendrocytes, other glial cells such as astrocytes have an important role in
the formation of debilitating scar tissue that is present at the level of SCI and within the
brain after injury. For neurons to heal, they need to penetrate through the scar tissue that
develops around the injured area. High molecular weight HA, the major constituent of the
ECM of the CNS, may be protective in this regard.

Khaing ZZ et al. [22] showed that high molecular weight HA was able to lower the
total number of glia/astrocytes, decrease the amount of chondroitin sulphate proteoglycan
(CSPG), and ultimately protect the lesion against gliosis-mediated scar formation in a rat
model of dorsal spinal hemi section, suggesting a direct protective capability and rationale
for its application as a stabilizing matrix following brain or other CNS tissue disruption.

Moshayedi et al. used an HA hydrogel to deliver human neural progenitor cells (iPS-
NPCs) transplanted into a mouse cortical model of photothrombotic stroke. The optimised
HA hydrogel significantly extended the survival time of iPS-NPCs and influenced cell fate,
by promoting glial, neuronal, and stem cell progenitor phenotypes. The fate of the stem
cells within the hydrogel was tracked in vivo using MRI and confirmation was made that
the system was effective in selectively controlling stem cell survival and differentiation,
indicating it could be used as a therapeutic adjunct that could help to maintain tissue and
cellular integrity within the brain after surgical intervention [23].

With this in mind, the potential capacity of HA matrices to support and protect the
brain parenchyma needs to be considered in greater detail, including the characterisation
of the associated signalling mechanisms, interactions with the major cell receptors, and
particularly taking into account any potential adverse interactions that could actually
promote tumour growth or stimulate neuroinflammation.

3. Hyaluronan in the Glioblastoma Microenvironment
The majority of interactions between GBM cells and HA within the brain ECM are

mediated through interaction with its receptors which orchestrate the major vascular and
tumour cell activity, therefore potentially representing a viable therapeutic target.

Whilst CD44 is the major cell surface receptor responsible for cell–cell interaction,
cell adhesion and migration (and the main subject of this review), HA also binds to other
relevant receptors such as the receptor for HA-mediated cell mobility, also known as
RHAMM, located in the cell cytoplasm and exposed at the cell surface in response to injury
or cytokines such as TGF-β [24]; and tumour necrosis factor (TNF)-stimulated gene-6 (TSG-
6), a protein produced mainly by mesenchymal stem cells (MSC) [25], which is involved in
both anti-inflammatory/tissue protective properties as a key molecule in disease pathology.

HA interactions with RHAMM in the CNS are primarily involved in supporting
plasticity and remodelling after injury. For example, RHAMM-HA binding promotes
astrocyte and microglia motility that is blocked by neutralizing anti-RHAMM antibodies
and by peptides corresponding to the HA-binding domains of RHAMM [26,27]. In the
injured brain there is an increase in low molecular weight HA production, e.g., after a
stroke, and the cellular signalling pathways in neurons and microvessels address the
remodelling process by stimulating angiogenesis and revascularisation, as well as the
survival of susceptible neurons partly through interactions with RHAMM [28].

In tumourigenesis, the over-expression of RHAMM may be an indicator of adverse
prognosis [29] and within the CNS, glioma stem cells (GSC), neural stem and progenitor
cells (NSC/NPC) are amongst the most active in GBM, taking part in the development and
differentiation of the tumour. RHAMM is highly expressed within NSC/NPC and has been
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shown to support the maintenance of GSC stemness, leading to a more aggressive tumour
profile [30,31]. Maintaining the high molecular weight profile of native HA should therefore
also protect against these phenomena but a detailed description of these mechanisms is
beyond the scope of this review.

TSG-6, although constitutively expressed in some tissues, is typically upregulated
in response to inflammation. TSG-6 then interacts with glycosaminoglycans (GAGs),
including HA acting as an enzymatic catalyst, facilitating the covalent transfer of the
heavy chain inter or pre-alpha inhibitor proteins from a chondroitin sulphate chain to its
core structure; and where it may have a role in facilitating astrocyte-mediated glial scar
formation within the spinal cord, and protecting against cognitive impairment following
stroke or traumatic brain injury [32–34]. However, there is currently no evidence linking it
to the pathological processes involved in GBM.

3.1. CD44 the Major Receptor for HA in Tumour Signalling

CD44, the major receptor for HA, is recognised as a marker of mesenchymal GSCs and
the mesenchymal subtype of GBM, associated with poor prognosis and radiation resistance
in human GBMs [35].

Xu et al. reported that CD44 knockdown via lentiviral shRNA reduced both tumour
volume and proliferation rates in subcutaneous tumours of over-expressing U87MG/U251
glioma cell lines, while significantly inhibiting intracranial tumour growth and extending
survival in these intracranial models [36]. In addition, when combined with standard GBM
drugs (temozolomide and carmustine), CD44 depletion induced tumour cell apoptosis
through the activation of caspase-3 and ROS-induced cytotoxic stress, culminating in a
synergistic inhibition of intracranial tumour progression, further prolonging the median
survival time of mice. This and other studies highlight the importance of understanding
the CD44-HA interaction within GBM, since the application of HA scaffolds adjacent to
these tumours could promote growth and invasive capacity.

Both HA concentration and its molecular weight are significant in this regard. For
example, when patient-derived GBM cells were cultured in a 3D matrix with controlled
HA levels, the. HA concentration was found to regulate cell invasion in a biphasic, patient-
specific manner, probably at least partially dependent on the individual level of interaction
with HA receptors on the recipient cells (possibly reflecting tumour sub-type and clinical
outcome). This was further characterised by the identification of HA-phosphorylated ezrin
linking HA-bound CD44 to the actin cytoskeleton, which when perturbed, reduced cell
adhesion and blocked invasive capacity [37].

Hence, although targeting HA-CD44-ezrin complexes may block HA-mediated tu-
mour cell invasion in the brain, we need to be sure that HA acting as a scaffold cannot con-
tribute to this phenomenon. Modification (stabilisation and ultra-high molecular weight)
of the HA 3D structure may provide the answer to this conundrum as we will see later in
the review.

As a rule, high molecular weight HA is more stable, less active and tissue protec-
tive whilst low molecular weight or oligosaccharides of HA are highly angiogenic and
pro-inflammatory. In this regard, Ooki T et al. demonstrated that, specifically, the high-
molecular-weight HA plays a critical role in stimulating tumour-suppressive Hippo sig-
nalling pathways in breast epithelial cells. This tumour-suppressive effect was mediated
through the clustering of the CD44 extracellular domain, a cell-surface glycoprotein known
to interact with HA [38].

In this study (confirmed by others), the clustering of CD44 led to the recruitment of
the polarity-regulating kinase PAR1b via the CD44 intracellular domain and subsequent
disruption of the inhibitory interaction between PAR1b and the MST (mammalian Ste20-
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like kinase) complex, which is a core component of the Hippo pathway. By releasing MST
from this inhibitory complex, high molecular weight HA promotes the activation of Hippo
signalling, leading to the suppression of tumour growth and proliferation.

Conversely, low molecular weight HA exerts a pro-tumourigenic effect, competing
with native-HA for binding to the CD44 receptor, thereby preventing the beneficial cluster-
ing of CD44 and enabling tumour progression by inhibiting Hippo signalling. This dual
role of HA in tumourigenesis highlights the complex and context-dependent nature of its
interactions with cellular signalling pathways in cancer development [36].

3.2. HA-Mediated Targeting for GBM

HA as a scaffold has great potential through chemical addition and modification to be
utilised as a drug carrier and in the targeted sustained delivery of drugs and this could be
of benefit in the treatment of GBM patients.

Lubanska et al. (2022), synthesised spherical diketopyrrolopyrrole-based conjugated
polymer nanoparticles (CPNs) containing fluorescein-conjugated HA, (as a ligand for
the CD44 receptor present on stem cell-like tumour initiating cells) in a patient-derived
Zebrafish xenograft model of glioblastoma. They showed effective BBB permeability of this
system and a concentration- and cell cycle phase-dependent selective uptake of HA-CPNs in
CD44 positive GBM-patient derived cultures, with a concomitant decrease in cell stemness
and capacity for invasion indicating potential use of this system as a therapeutic, but most
importantly, providing a safe solution to the inclusion of HA without tumour-promoting
effects [39].

Similarly, other studies have explored the therapeutic potential of HA-micelles (HA-M)
as a drug delivery system, specifically encapsulating a 1:1 molar ratio of lauroyl-gemcitabine
(Gem-C12) and honokiol (HNK). HA-M bound to the CD44 receptor, (its over-expression
being strongly associated with poor prognosis in GBM), effectively facilitating receptor-
mediated endocytosis delivering the chemotherapeutic drugs into the cells of U87 spheroids
resulting in apoptosis. This targeted delivery enhanced the micelles’ penetration into dense
tumour spheroids, also leading to improved survival rates in mice bearing orthotopic
xenograft glioblastomas as a proof-of-concept model of GBM [40].

These findings underscore the potential of HA scaffolds for enhancing drug delivery
and efficacy in treating aggressive cancers like glioblastoma, where current treatment op-
tions are limited. The importance of stabilisation (e.g., through cross-linking) of such a
3D hydrogel is paramount to avoid hyaluronidase digestion to pro-tumourigenic oligosac-
charides, whilst retaining a self-regulating drug-releasing capacity. In addition, blocking
the interaction of HA with CD44 would be a further requirement of the therapeutic gel
to avoid Hippo pathway signalling. The current state-of-the-art regarding HA hydrogel
manipulation and use in targeted drug delivery is shown in Figure 1.
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Figure 1. HA-based scaffolds for chemotherapeutic drug delivery: Shows a schematic of recent
advances in the use of high molecular weight-HA for enhanced targeted drug delivery in cancer.
HA hydrogels modified with chitosan (CH-HA) created a slow-release drug-hybrid system that
secreted doxorubicin (DOX) and killed GBM cells [41]. Similarly, a combination of temozolomide
with quercertin in a HA gel was effective in killing GBM cells in a CD44-dependent mechanism [42]
More complex modifications have been tested primarily in vitro to date, that impart sensitivity to
pH, magnetism, light and ultrasound, creating an active drug-delivery system via incorporation
into the cancer cell membrane through specific receptors including CD44 (see ref [43] for a thorough
review). All of these systems are targetable, with nanoparticle-based theranostic formulations being
image guidable as demonstrated with magnesium dioxide (MnO2)-gold (AU)-HA [44] and other
examples shown in [45–47]. The importance of HA-CD44 interaction should not be underestimated
and suppression of CD44 binding remains as the cornerstone of tumour inhibition during utilization
and optimization of these novel GBM and other tumour regulating composite gels.

4. The Potential of Ultra-High Molecular Weight [Naked Mole-Rat]
Hyaluronan in Targeted Cancer Therapy

Whilst the utilisation of high molecular weight HA (around 2 MDa) appears successful,
a remarkable species of rat, the naked mole-rat (NMR) is uniquely able to synthesize what
has become known as ultra-high molecular weight HA, and this may hold the key to
providing an optimal treatment strategy in GBM, as described below.

4.1. HA, the NMR and Extraordinary Consequence

The NMR is a remarkable species, notable for its adaptation to low oxygen levels and
exceptional cancer resistance. Its subterranean lifestyle has led to elevated levels of high
molecular weight HA in its tissues. This adaptation confers numerous benefits, including
preserved skin elasticity, youthful appearance, accelerated wound healing, protection
against oxidative stress, and resistance to cancer and arthritis. It lives up to 40 years
(10 times longer than other rodent species)! [48].

The high molecular weight HA present in the ECM of the NMR brain appears to form
three-dimensional folded structures that resemble the macroscopic configuration of the
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gyri and sulci observed in the human brain [49]. The NMR fibroblasts secrete very high
molecular weight HA (6–12 MDa), almost five times larger than mouse HA (0.5–3 MDa) [50]
and human (0.5–2 MDa) [51]. The three main synthases involved in the production of HA
are HAS1, HAS2 and HAS3, all having distinct functionality and regulatory mechanisms,
but in the NMR, their expression is much higher (particularly HAS3), ensuring no loss of
concentration over time [52].

This characteristic of the naked mole-rat brain’s HA appears at least in part to provide
resistance by these mammals to the development of various forms of cancer, potentially
including GBM and other CNS tumours. One of the processes involved in the resistance
to cancer developed by the NMR is contact inhibition, a key anticancer mechanism that
halts the cell cycle upon contact between cells. In humans, this process is mainly regulated
by the p27 cyclin-dependent kinase inhibitor. NMR exhibit heightened sensitivity to this
process, known as early contact inhibition (ECI), which prevents cell proliferation even
with minimal contact. The ECI is thought to be modulated by HA, as it represents a critical
component of the ECM [50]. In the NMR, the cyclin-dependent kinase inhibitor acts as a
secondary defence, only engaging if ECI fails, offering extra protection against excessive
cell division [53].

4.2. Studies Implicating NMR-HA in Cancer Protection

Tian X et al. [50] demonstrated that the naked mole-rat has extremely high molecular
weight HA compared to mice, concomitant with increased binding to the CD44 receptor. In
addition, the expression of hyaluronidase is also lower, and concomitantly, transmembrane
protein-2 (TMEM2) a specific hyaluronidase that breaks down HA in other rodents, is
modified in the NMR, with amino acid substitutions that nullify its normal catalytic activity,
thereby protecting against HA breakdown [54]. All these characteristics play a role in
mediating the cancer resistance of the NMR. When compared with other rodents (rat,
mouse, guinea pig) examined by immunohistochemistry, the NMR showed the highest
levels of HA, the strongest signals being in the epidermis, renal glomeruli and lymph nodes,
and that high molecular weight HA was dominant compared to low molecular weight HA,
potentially accounting for anti-aging and anti-cancer effects [55].

Zhao Y et al. utilised genetically modified breast cancer cell lines, 4T1/BT549-nmrHas2
to over express ultra-high molecular weight HA in vitro with a molecular weight of around
6Mda (similar to the NMR). The accumulation of HA induced enhanced apoptosis and
inhibited cancer cell proliferation in 2D and 3D spheroid cultures and blocked tumour
formation in nude mice [56]. The presence of ultra-high molecular weight HA was found
to induce higher expression levels of the tumour suppressor protein p53, which in turn pro-
moted the expression of pro-apoptotic proteins, p21 and Bax, thereby facilitating apoptosis.

Similarly, Zhang Z et al. demonstrated cancer resistance and extended lifespan con-
ferred by high molecular weight HA using C57BL/6 transgenic mice overexpressing the
naked mole-rat HA synthase 2 gene (nmrHas2). These genetically modified mice exhibited
increased HA levels in various tissues, reduced incidence of spontaneous (lymphoma) and
induced (skin papilloma’s) cancer, extended lifespan, and improved overall health. The
most notable changes were attenuated systemic inflammation across multiple tissues, and
transcriptomic/epigenetic alterations associated with maintenance of a lower biological age,
suggesting that the longevity mechanisms evolved in the naked mole-rat can be transferred
to other species [57]. It is worthy of note to mention that systemic lowering and avoidance
of chronic inflammation may be one of the most critical factors protecting mammals from
serious disease including cancer, cardiovascular disease and dementia [58].

The importance of the molecular weight of the HA to the overall physiological per-
formance and health is in many ways astonishing, and this was reviewed eloquently by
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Michalczyk et al. (2023). Optimal modulation of the homeostatic balance of HA within an
organism may provide a basis for ensuring stability within the ECM that enables normal
cellular function with minimal stress [59]. Further studies are warranted to fully char-
acterize this phenomenon and understand how to utilize NMR-HA in cancer and more
specifically brain cancer and glioblastoma therapies.

Ultra-high molecular weight HA from the NMR has unique properties including a 3D
conformational structure that mimics the gyri and sulci of the brain, imparting structural
stability and superior retention capabilities acting as a cross-linked scaffold, in part medi-
ated through the expression of TNFAIP6 which helps to prevent HA degradation [60]. The
NMR HA appears to shield or block excessive CD44 binding and support normal cellular
signalling through Src-MAPK, and unique Merlin/NF2-pALTINK4a/b novel signalling
pathways suppressing tumour growth and invasion and instilling contact inhibition of
cells [61]. Regarding repair and protection, the NMR-HA is strongly anti-inflammatory,
inhibiting both IL1-β and TNF-α pathways and reducing potential scarring through the
promotion of TGF-β signalling amongst others. Novel signalling through NMR interac-
tions with HA are reviewed in detail by [49]. The unique characteristics of the HA from
the NMR are highlighted in the green boxes. Abbreviations: TNFAIP6—tumour necro-
sis factor-inducible gene protein-6; pALTINK4a/b—pALT-inhibitors of cyclin-dependent
kinase-4; HAS—hyaluronan synthase; FAK—focal adhesion kinase; HYAL—hyaluronidase;
NF2—neurofibromatosis type 2; IL-1β—interleukin 1β; TNF-α—tumour necrosis factor-α.

5. Conclusions
Ultra-high molecular weight HA may have enhanced stability and offer greater protec-

tion against chronic inflammatory conditions, providing a moderating scaffold that could
also be suitable for extended drug delivery, for example, at sites of injury or for sustained
chemotherapeutic treatment. The mechanisms by which it differs from regular native HA
are primarily regulated by its interaction with the CD44 receptor, triggering distinct biolog-
ical responses, which are also related to the ECI phenomenon observed in the NMR (see
Figure 2 for details). Considering that in most mammalian species the average molecular
weight of HA tends to decrease with age and yet the total amount remains consistent, a
more detailed characterisation of the NMR- HA and its unique properties is required as
it may lend itself to being the ideal scaffold for chemotherapeutic/combinational drug
delivery in novel optimised or stratified GBM therapy.
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