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Abstract: The formation of an aluminosilicate gel structure made of alkali-activated mate-
rials (AAMs) was conducted through an alkali-activation reaction of the solid precursors
(fly ash, metakaolin, and wood ash). Fly and wood ash are by-products of the burning
process of coal and wood, respectively. Alkali-activated materials of aluminosilicate origin,
made from the different ashes, fly and wood, are very attractive research targets and can be
applied in various technological fields due to their thermal stability, resistance to thermal
shock, high porosity, high sustainability, and finally, low energy loss during production.
In this paper, we evaluate physico-chemical properties, microstructure, and radiological
environmental impacts when wastes that contain elevated levels of naturally occurring
radionuclides (NORs) such as fly ash and wood ash are made into “green cements” such as
AAMs. The determination of radionuclide content was performed by means of gamma-ray
spectrometry. Results showed that the AAMs have a lower value in the activity con-
centration of radionuclides than raw materials. The external absorbed gamma dose rate
was 74.7–107.3 nGy/h, and the external radiation hazard index values were in range of
0.445–0.628 Bq/kg. The results of the activity concentration measurements for alkali-
activated materials indicate the potential of their safe application in building construction.
In terms of the structural characterizations, the obtained alkali-activated materials were
examined using XRD, DRIFT, FESEM, and TEM analyses.

Keywords: fly ash; wood ash; metakaolin; gel structure; natural radioactivity

1. Introduction
The rapid growth of industrial development has led to a significant increase in waste

production, making environmental management a critical challenge. The improper stor-
age of fly ash, an industrial by-product, has contributed to land contamination issues.
However, these by-products hold potential as secondary raw materials in construction,
supporting the circular economy and helping to prevent environmental degradation. One
promising solution is the development of alkali-activated materials (AAMs), which can
serve as alternatives to traditional cements. AAMs are aluminosilicate-based materials that
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offer numerous advantages, including reduced environmental pollution and lower CO2

emissions during production [1,2]. These materials are highly valued for their excellent
mechanical strength, durability, thermal stability, and fire resistance. Furthermore, their
manufacturing process requires less energy, making them a sustainable choice for modern
construction needs [3,4].

Alkali-activated materials (AAMs) are synthesized using solid waste materials as
precursors, such as fly ash (FA) and wood ash (WA), which are by-products of coal and
wood combustion, respectively. The improper disposal of these waste materials, particularly
fly ash, can lead to significant environmental challenges [5]. The formation mechanism
consists of three to four stages such as the dissolution of raw materials, the polymerization
of silica and alumina (gel phases I and II), condensation through the process of gelation,
and reorganization. The time required for the supersaturated aluminosilicate solution
to form a continuous gel varies significantly depending on the type of raw material, the
composition of the alkali-activated solution, and the process conditions. Geopolymers
made from metakaolin are consistent and predictable in both their preparation and property
development. Although particle dispersion during mixing slightly affects the rheology
and reactivity of the gel structure, the reaction of metakaolin-based geopolymers is not
significantly influenced by variations in the raw material’s surface area. However, the
extent of the reaction is impacted by the soluble silicate and alkali content in the activating
solution [6]. On the other hand, fly ash is an industrial by-product without a clearly defined
starting composition. It primarily consists of silicon, aluminum, and iron oxides, with
Class C ashes [7] containing notable amounts of calcium. Fly ash particles are typically
spherical but heterogeneous, containing both glassy and crystalline phases, such as mullite
and quartz. Due to this variability, attention is required to optimize mixture designs when
using fly ash for geopolymer production.

Candamano et al. (2017) investigated the partial replacement of metakaolin with wood
ash and found that it improves the material’s workability. This improvement is attributed
to the enhanced dissolution of metakaolin in mixtures with higher alkalinity due to the
presence of wood ash. However, materials containing wood ash exhibit a more porous and
uneven matrix, leading to higher sorptivity. The altered pore structure, combined with
increased drying shrinkage, suggests that wood ash influences the material’s physical prop-
erties [8]. These findings indicate that wood ash can serve as a viable partial substitute in
alkali-activated metakaolin-based materials. According to our previous research [9], wood
ash contains a high percentage of CaO, and the incorporation of calcium in various forms
during the synthesis of AAMs affects the reaction pathway. This results in increased mate-
rial strength, expanding the potential applications of AAMs in the construction sector [10].
Duxon et al. (2007) emphasized the importance of calcium content in raw materials in defin-
ing the reaction pathway and the physical characteristics of the resulting geopolymer [11].
In particular, the alkalinity affects the stability of several calcium-containing residues [12].
Lee and van Deventer (2007) [13] observed that minor insertions of soluble calcium to a
fly ash-based geopolymer importantly diminished the setting time of geopolymers. Con-
struction materials as well as these other materials contain natural radioisotopes [14]. The
dose of exposure to radiation largely depends on the physical and chemical properties
of radionuclides. The effects of radiation depend on various factors, such as the variety
of radiation, the energy extent, and whether it influences the human body externally or
internally [15].

The main natural radionuclides of the Earth are 238U, 232Th and its progeny, and 40K,
which constitute the primary sources of external gamma radiation exposure to humans.
The accumulation of radioactive pollutants exerts dangerous effects on the population,
animals, and environments [16]. Waste produced from burning coal or other similar
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materials in thermal power plants contains trace elements as well as specific concentrations
of radionuclides. It is necessary to learn the radiological characteristics of combustion
by-products to estimate their capacity for advanced uses, such as in construction. Insight
into their radiological characteristics enables greater verification of radiation exposure
levels [17,18].

Coal contains significant amounts of natural radionuclides, and its combustion in
power plants generates ash that poses environmental and health risks to surrounding
populations [19]. Ignjatiović et al. [20] found that the natural radionuclide content in all
tested concrete samples remained below the recommended threshold. Alkali-activated
materials (AAMs) derived from aluminosilicate sources, such as various types of ash and
metakaolin, exhibit desirable properties that make them suitable for numerous technologi-
cal applications. These include thermal stability, resistance to thermal shock, high porosity,
large specific surface area, sustainability, and low energy requirements during production.
AAMs intended for the construction sector can be tailored by modifying synthesis param-
eters, such as the type of precursor or the molarity of the alkaline activator, facilitating a
“green” and efficient production process.

It has been shown in our earlier studies [9] that the alkaline activation of alumi-
nosilicate precursors affects the reduction in radionuclide activity more compared to the
precursors. The aim of this research, in addition to examining the structural characteristics
of AAMs, is to investigate the possibility of using fly and wood ash in the construction
sector from a radiological point of view.

2. Results and Discussion
The process of geopolymerization involves the formation of a gel-like network struc-

ture through the chemical activation of aluminosilicate materials, typically in the presence
of an alkaline solution. The primary mechanism begins with the dissolution of the raw
materials, such as metakaolin, fly ash, in the alkaline medium, resulting in the release of
silica (SiO2) and alumina (Al2O3) species into the solution. These species then undergo
polymerization reactions, forming a gel network composed of Si-O-Al bonds. As the re-
action progresses, the gel structure become more interconnected, creating a rigid, solid
matrix that binds the aluminosilicate particles together. The formation of this geopolymer
gel is strongly influenced by factors such as the pH of the solution, the Si/Al ratio, and the
presence of additional ions or compounds like calcium, which can modify the gel structure
and its properties. The final product is a stable, durable material that exhibits similar
characteristics to those of traditional cement, but with a lower environmental impact. The
investigation of geopolymerization was focused on the specific and unique phenomena that
occur under reaction conditions, including low-temperature synthesis, highly concentrated
slurries, the formation of an amorphous three-dimensional gel structure, and varying raw
materials for creating amorphous products [11,21].

2.1. XRF Analysis

Table 1 presents the chemical composition of the AAMs, which was determined
through X-ray fluorescence (XRF) analysis. The chemical composition of the solid precur-
sors, FA, MK, and WA, was published in our previous article [22].

It can be observed that the AAMs containing WA have a two to three times higher CaO
content compared to AFA50MK50. This is, of course, directly related to the CaO content in
WA as a raw material. The results of these measurements can be found in our reference [9].
Regarding the SiO2/Al2O3 ratio, it ranges from 2.30 (AWA10MK90) to 2.75 (AWA10FA90),
while the samples AWA10FA45MK45 and AFA50MK50 have approximately the same values
for this ratio, which is expected, with values of 2.50 and 2.62, respectively.
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Table 1. Chemical composition of alkali-activated materials.

Chem. Comp. (wt.%) Na2O MgO Al2O3 SiO2 P2O5 SO3 K2O CaO TiO2 MnO Fe2O3 As2O3 BaO LOI * 950 ◦C

AWA10FA90 8.77 1.35 16.03 43.04 0.153 0.135 1.57 4.68 0.39 0.185 3.29 0.106 0.065 20.10
AWA10MK90 7.19 0.633 20.92 48.16 0.163 0.027 2.26 3.33 0.422 0.168 1.23 0.106 0.047 15.24
AFA50MK50 6.93 0.92 20.37 53.37 0.03 0.02 1.20 1.49 0.44 0.03 2.59 0.16 0.04 12.29

AWA10FA45MK45 8.61 1.02 18.03 45.06 0.14 0.08 1.78 3.75 0.40 0.16 2.29 0.01 0.06 18.39

* loss on ignition.

2.2. DRIFT Analysis

Figure 1 describes the DRIFT spectrum of the investigated AAMs.
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Figure 1. DRIFT spectrum of alkali-activated materials: (a) AWA10FA90, (b) AWA10MK90,
(c) AFA50MK50, and (d) AWA10FA45MK45.

The presence of wide bands in the range of the OH-group vibrations was noted in the
DRIFT spectrum. The band around 3700 cm−1 was derived from the regularly distributed
OH group in the structure, i.e., the H-O-H bending vibration. The small peak at wave
number ~1652 cm−1 indicates adsorbed or associated water molecules or corresponds to
the O-H stretching vibration [23]. Vibrations associated with symmetric and asymmetric
stretches of C-H in the methyl and methylene groups, present in the spectrum, were found
at wavelengths 2922 cm−1 and 2853 cm−1 [24,25], respectively. A small peak at 1736 cm−1

indicated CO3
2− vibrations, and it was noticeable in AWA10FA90 and AWA10FA45MK45

samples [26]. Its presence was not noted in the other two samples, but undoubtedly, this
functional group is present in them as well and was incorporated or overlapped by some
other vibration. The characteristic C=O stretching asymmetric vibrations and carbonate
vibrations at 1456–1472 cm−1 were expected due to the possibility of carbon dioxide forma-
tion [23]. Furthermore, vibrational peaks situated in the 1026–1036 cm−1 region are related
to the Si-O-T asymmetric stretching vibration (where T represents aluminum/silicon)
functional groups, which describe the formation of an amorphous gel to semi-crystalline
aluminosilicate materials, while a vibration at 468 cm−1 indicated Si-O bonds [27]. These
vibrations were the main characteristic of the alkali-activated materials and were shifted
at lower wavenumbers than the raw materials [27]. Additionally, a vibration at 957 cm−1

can be observed in AFA50MK50, which is characteristic of a Si-O-T stretching symmetric
vibration (T = Si, Al) [28]. The refraction peak observed within the wavelength range of
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532–876 cm−1 can be attributed to the Al-O stretching vibrations occurring within the
[AlO6] octahedral, which is consistent with the presence of the mineral phase mullite in the
fly ash composition, which does not dissolve under the applied conditions, but has the role
of a strengthening and refractory phase.

2.3. XRD Analysis

XRD diffractograms of alkali-activated materials derived from metakaolin and fly and
wood ashes are shown in Figure 2.
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In very concentrated solutions, which frequently produce amorphous materials, ionic
species are not fully hydrated. Rather than being quite surrounded by water molecules,
some position in the hydration capsule of alkali cations like Na+ are taken possession of by
silicate anions, resulting in ion pairing. This interaction, along with steric barrier during
precipitate formation, inhibits long-range structural ordering and produces the material
as an amorphous gel state. This is characteristic of geopolymeric gels, as presented in
Figure 2. The reaction mechanisms that lead to the formation of the geopolymer gel phase
also play a role in the appearance of crystalline phases. In addition, research indicates that
even patterns classified as “X-ray amorphous” may express some degree of short-range
structural arrangement, as confirmed by support from the literature [29]. In addition to
the amorphous gel phase in the geopolymer gel, crystalline or semi-crystalline phases are
observed, which originate from the precursors or result from partial crystallization [11,22].

X-ray diffraction results reveal that geopolymer samples AWA10FA90 and AWA10MK90

(Figure 2 (a) and (b), respectively) activated with an alkali activator do not show significant
differences in mineralogical composition. However, the first samples (a) exhibit slightly
more pronounced mullite peaks (PDF No. 01-070-975), consistent with the literature
findings [30], while in the second sample (b), a phase of kaolinite can be identified (PDF No.
01-072-5860), which originates from kaolin. Sample AWA10FA90 (Figure 2 (a)), an alkali-
activated raw mixture of WA10FA90, exhibits the highest background intensity, between
20◦ and 40◦ 2θ, indicative of its amorphous-phase content. The baseline (diffractogram
b) is shifted and its range is narrower than that of the previous sample (diffractogram
a), suggesting a decreased presence of the amorphous phase, which was observed in the
15◦-to-40◦ 2θ range. Additionally, peaks corresponding to calcite (PDF No. 01-078-4616)



Gels 2025, 11, 57 6 of 17

are identified in the AAMs which contain wood ash. The dominant crystalline phase
detected in AFA50MK50 (Figure 2 (c)) and AWA10FA45MK45 (Figure 2 (d)) is quartz (PDF
No. 00-033-1161), but the presence of calcite (PDF No. 01-078-4616) can be also observed,
as an additional effect of WA in the AWA10FA45MK45 sample. Additionally, albite (PDF No.
01-078-1995) is present in all investigated samples.

2.4. FESEM/EDS

The morphology of the synthesized samples was examined using FESEM/EDS. The
results are shown in Figure 3 (left side). As for the basic AMK100 and AFA100, there is
no considerable difference in the morphology of the samples. The high porosity and
somewhat different shapes of the particles in these two samples are characteristic of these
two materials. EDS analysis was performed to evaluate the chemical composition of the
samples, and the results are shown in Figure 3 (right side). EDS spectra were recorded
within the energy range of 0.1–10 keV. The results indicate that the examined materials
mainly consisted of oxygen (O), aluminum (Al), silicon (Si), carbon (C), potassium (K), and
sodium (Na). Furthermore, some additional peaks were detected, including those related
to magnesium (Mg), iron (Fe), and calcium (Ca).
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corresponding EDS spectra.

The prepared AAM samples were analyzed to investigate possible changes in their
morphology due to different mixtures of precursors, i.e., how the addition of WA affects
FA and MK individually, as well as its effect on alkali-activated mixtures of these two
precursors (FA and MK) in an equal ratio.

The SEM micrographs shown in Figure 4 (left side) display the microstructures of wood
ash/metakaolin (Figure 4a), wood ash/fly ash (Figure 4b), metakaolin/fly ash (Figure 4c),
and wood ash/metakaolin/fly ash (Figure 4d) alkali-activated materials. The microstruc-
tures presented in Figure 4a,b,d show a greater extent of heterogeneity introduced by the
precipitation of high-Ca phases, originating from wood ash, throughout the geopolymer gel
matrix. The formation of calcium compounds in geopolymers is greatly dependent on the
pH and Si/Al ratio [12,31]. Fly ashes generally contain appreciable levels of iron in various
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forms, either as a network former or a network modifier, in the glassy phases [32]. This
is a similar effect to that of calcium with regard to the precipitation of calcium hydroxide,
which removes hydroxide ions from the solution phase, and affects the setting behavior and
material properties. In Figure 4a, the gel structure is observed to have unevenly distributed
particles of irregular shapes and sizes below 1 micron on its surface. The microstructure
of the surface of the AWA10MK90 sample, shown in Figure 4b, is entirely different from
the surface of the sample in Figure 4a. A large number of very fine particles, smaller than
100 nm, are grouped (agglomerated) and densely packed across the entire surface. Alkali
activation of an equal proportion of MK and FA precursors resulted in the AAM whose
surface is shown in Figure 4c. This combination of precursors yields an AAM surface
that is relatively homogeneous, with sporadic and randomly distributed pores through
an amorphous (aluminosilicate gel) structure. The addition of wood ash to this system
(Figure 4d) slightly disrupts its homogeneity. Furthermore, rod-shaped particles appear,
growing up to a size of 1 micron. EDS results of the presented area show approximately
the same Ca content for all three samples with added WA. Figure 4c indicates about a three
times lower Ca content for AFA50MK50 compared to all other samples.
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2.5. TEM Analysis

The microstructure of the samples was analyzed using conventional transmission elec-
tron microscopy (TEM). Additionally, selected area electron diffraction (SAED) and high-
angle annular dark-field imaging in scanning transmission electron microscopy (STEM)
mode were conducted. Figure 5 presents the TEM analysis of the AFA50MK50 sample.
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Figure 5. TEM analysis of AFA50MK50: (a) bright-field TEM micrograph, (b) SAED pattern, and
(c) HR-TEM image.

Figure 5a presents a bright-field TEM micrograph of the sample surface, where parti-
cles with well-defined edges are visible, along with a noticeable layered structure.

The crystal structure of the sample (Figure 5b) was confirmed using electron diffraction
from a selected surface area. The presence of diffraction rings indicates that the material is
polycrystalline. The measured diameters of the diffraction rings are 0.423 nm, 0.246 nm,
0.163 nm, 0.145 nm, and 0.122 nm, which correspond to (100), (102), (113), (203), and (220)
crystallographic planes of quartz (PDF No. 00-033-1161), which is consistent with our XRD
analysis. Figure 5c presents the corresponding HR-TEM image of AFA50MK50, showing
good crystallinity with clearly defined planes. The interplanar distance of 0.325 nm matches
well with the d-spacing for albite (PDF No. 01-078-1995).

Figure 6 presents the STEM/HAADF images and the corresponding EDS mapping of
AFA50MK50.

Figure 6 shows that the distribution of elements in the sample is generally uniform,
with the exception of iron, which is concentrated in one part of the specimen.

Figure 7 represents the TEM analysis of the AWA10FA45MK45 sample.
Based on Figure 7, the measured diameters of the diffraction rings are 0.324 nm,

corresponding to the (006) crystallographic plane of muscovite (PDF No. 01-076-0928);
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0.202 nm, corresponding to the (202) crystallographic plane of calcite (PDF No. 01-078-
4616); and 0.244 nm, 0.232 nm, and 0.134 nm, corresponding to the (110), (102), and (203)
crystallographic planes of quartz (PDF No. 00-033-1161), respectively. The HR-TEM image
presented in Figure 7c indicates good crystallinity of the sample, with clearly defined
planes. The measured interplanar spacing of 0.385 nm matches the characteristic d-values
for the calcite crystal plane (PDF No. 01-078-4614).
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Figure 8 shows the STEM/HAADF image of AWA10FA45MK45 with corresponding
EDS mapping.
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Based on the EDS maps (Figure 8), an even distribution of all elements on the surface
of the sample can be observed.

2.6. Radiological Characterization of AAMs

Alkali-activated materials, made from industrial by-products, require careful consider-
ation of their natural radioactivity levels. Evaluating the radioactivity of these materials
is essential to determine the potential radiological risks they may pose to human health
in both indoor and outdoor environments [14,33]. Understanding the radiation doses a
person might be exposed to under specific conditions is crucial for evaluating the associ-
ated risks and potential effects on the human body. The activity concentration of naturally
occurring radionuclides (226Ra, 232Th, and 40K) in the raw mixture and alkali-activated
materials is presented in Tables 2 and 3, respectively. Radium equivalent activity (Raeq),
external hazard index (Hex), external absorbed dose rate (
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values for the corresponding AAMs are within the range of 74.7 nGy/h for
AFA50MK50 and up to 107.3 nGy/h for AWA10MK90. The values of the annual effective
dose rate for all AAMs are below effective dose rate level of 1 mSv/y [39]. Lower values
of Raeq, Hex,
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, and EDR for AAMs compared to those of the corresponding raw mixtures
from which they were obtained are to be expected, as all these values clearly depend
on the activity concentration of 226Ra, 232Th, and 40K. This was also demonstrated in the
research by Fidanchevski et al. (2021) [36]. The activity concentration of naturally occurring
radionuclides is consistent with the grain size [36] of the material, and since the ashes
and metakaolin have smaller grain sizes [22], they are expected to have a higher content
of radionuclides and therefore higher values of Raeq, Hex,
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, and EDR. This is one of the
possible explanations for the obtained results of the mentioned parameters.

3. Conclusions
This study investigated the properties of alkali-activated materials (AAMs) made

from Al- and Si-rich industrial by-products, such as fly ash (FA), which serves as a suitable
alternative to metakaolin (MK) as a precursor of AAMs. Additionally, wood ash (WA) was
included as a part of solid precursor in specific proportions due to its high calcium oxide
content, which has been shown to significantly reduce the setting time of geopolymers. By
employing advanced techniques like XRF, DRIFT, XRD, FESEM, TEM, and radiological
assessments, the study provided crucial insights into their chemical composition, structural
characteristics, and potential radiological risks. XRF and DRIFT analyses confirmed the
consistent oxide content and the presence of functional groups, respectively. The DRIFT
technique indicated successful geopolymer formation. XRD revealed a predominantly
amorphous geopolymer gel matrix, with some crystalline phases identified in all samples.
Most of them, such as quartz, mullite, and kaolinite, originated from the solid precursors
and are not soluble under the applied conditions and activator. FESEM and TEM analyses
demonstrated variations in microstructure, particle morphology, and crystallinity depend-
ing on the precursors used, further corroborating the XRD results. The proportion of fly ash
(FA) in the mixture of metakaolin (MK), wood ash (WA), and FA significantly influences
the physicochemical properties of alkali-activated materials (AAMs). An increase in the
FA content typically enhances certain properties due to its high silica and alumina content,
which plays a crucial role in geopolymerization. A higher FA content contributes to the
formation of a dense amorphous geopolymer matrix and generally leads to a reduced
porosity and a more homogeneous microstructure. However, the incorporation of WA
might introduce heterogeneities due to high-Ca phases.

This study emphasized the importance of radiological evaluations to ensure the safe
application of AAMs. All analyzed samples met safety conditions, as their Hex values
were below the defined limit. The absorbed dose rate (
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Hex, Ḋ, and EDR for AAMs. 

AAMs 226Ra 232Th (228Ac) 40K Iγ Raeq, Bq/kg Hex, Bq/kg Ḋ, nGy/h EDR, mSv/y 
AWA10FA90 95.9 ± 8.7 55.7 ± 3.9 486 ± 26 0.760 213.0 0.575 98.2 0.482 
AWA10MK90 85.7 ± 6.4 68.8 ± 4.6 627 ± 33 0.839 232.4 0.628 107.3 0.526 
AFA50MK50 66.0 ± 5.5 54.5 ± 3.4 271 ± 15 0.583 164.8 0.445 74.7 0.367 

AWA10FA45MK45 72.3 ± 6.3 47.0 ± 3.2 397 ± 21 0.608 170.1 0.459 78.3 0.384 

It can be observed that the activity concentrations of 226Ra, 232Th, and 40K have lower 
values after the alkali activation process for all samples besides the activity concentra-
tion of 226Ra and 40K WA10FA90, and the calculated values of the gamma index of meas-
ured specific activities are lower in the alkali-activated samples. Raeq for all the tested 
samples is lower than 370 Bq/kg, which verifies that the evaluated hazard (gamma dose) 
connected with raw mixtures and AAMs containing 226Ra, 232Th, and 40K is under the 
limit of 1 mSv/y [34]. An additional essential radiological norm to estimate the suitability 
of materials is the external hazard index (Hex), which must be less than 1. All analyzed 
samples meet this condition, as their Hex values are below the defined limit. However, 
the external absorbed dose rate (Ḋ) for the investigated raw mixtures exceed the average 
value of terrestrial outdoor gamma radiation for the human population. The average 
value of terrestrial outdoor gamma radiation is 60 nGy/h, determined by UNSCEAR 
(2000) [35]. In Findanchevski et al.�s research (2021) [36], in a different kind of FA, the 
external absorbed dose rate was in the range from 89.22 to 166.11 nGy/h. According to 
an investigation by Bošković et al. (2018), in alkali-activated red mud and metakaolin, 
the value of Hex and Ḋ were 0.578 Bq/kg and 177.6 nGy/h, respectively [37]. Additionally, 
Sas et al. (2019) inspected alkali-activated fly ash, slag, and red mud, and radiological 
analysis of the different mixtures showed the values to be 41–57 Bq/kg for 226Ra, 34–57 
Bq/kg for 232Th, and 336–490 Bq/kg for 40K [38]. 

) values for the corresponding
AAMs ranged from 74.7 nGy/h for AFA50MK50 up to 107.3 nGy/h for AWA10MK90. The
annual effective dose rate values for all AAMs were below the acceptable threshold of
1 mSv/y. These findings highlight the potential of AAMs as sustainable construction
materials, provided their radiological impacts are carefully managed. Research efforts
toward further optimizing the composition and production conditions of AAMs based on
waste materials rich in Al and Si in this field are ongoing.

4. Materials and Methods
4.1. Preparation of Samples

For the synthesis of the alkali-activated materials, as a precursor, blends or mixtures
of fly ash (FA), wood ash (WA), and metakaolin (MK) were used. Fly ash was sourced
from the “Nikola Tesla” power plant in Obrenovac, Serbia; wood ash was derived from the
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combustion of wood in a domestic fireplace; and metakaolin was produced by thermally
treating kaolin (local clay) at 750 ◦C in an air-atmosphere furnace, with a heating rate
of 10 ◦C/min and a one-hour holding time at the target temperature. Alkali-activated
materials were synthesized into a mixture of fly ash, wood ash, and metakaolin and an
alkali activator solution consisting of sodium hydroxide (Sigma-Aldrich, St. Louis, MO,
USA) and a sodium silicate solution (Interhem Company, Belgrade, Serbia). The mix design
of solid precursors for the alkali activation process is presented in Table 4.

Table 4. Mix design of solid precursors.

Raw Mixture
Precursors

WA (%) FA (%) MK (%)

WA10FA90 10 90 0
WA10MK90 10 0 90
FA50MK50 0 50 50

WA10FA45MK45 10 45 45

The concentration of the sodium hydroxide solution was 6 mol/dm3 (6M). The ratio
of the liquid and solid phase was in the interval of 0.8–1.0 as a function of a structure in
a different mixture. The precursors and alkali activator solution were combined, poured
into molds, covered, and left to cure at room temperature for one day. Subsequently, the
mixture was kept at 60 ◦C for two days, followed by approximately four weeks of curing at
room temperature under controlled conditions. The alkali-activated materials were labeled
in the following way: AMx,y, where M represents FA, WA, or MK and the subscript x, y
indicates the percentage of the corresponding precursor in the solid raw mixture.

4.2. Method of Characterizations
4.2.1. XRF Analysis

Chemical composition was conducted through X-ray fluorescence spectroscopy–XRF.
The XRF analysis was performed with a wavelength dispersion (WD XRF) spectroscope
ARL Perform X, manufactured by Thermo Scientific (Houston, TX, USA), with a power
of 2500 W, 5 GN Rh X-ray tube, 4 crystals (AX03, PET, LiF200 and LiF220), two detectors
(proportional and scintillation), and computer program UniQuant 5. The samples were
quartered, dried at 105 ◦C, and calcined at 950 ◦C. For measurement purposes, a fused pellet
was prepared, where 0.7640 g of the sample and 7.64 g of the flux (50% lithium tetraborate
versus 50% lithium metaborate) were melted at 1100 ◦C. The estimated uncertainty of the
measurement was 3.0–5.0%.

4.2.2. DRIFT Analysis

The functional groups of all samples were determined through diffuse reflectance
infrared Fourier transform (DRIFT) spectroscopy. The DRIFT spectra were obtained using
the Perkin–Elmer FTIR spectrometer Spectrum Two (resolution—4 cm−1, mid-IR region
from 4000 to 400 cm−1).

4.2.3. XRD Analysis

Mineralogical characterization of AAMs was examined through X-ray diffraction
(XRD) (Ultima IV Rigaku diffractometer (Rigaku, Tokyo, Japan)—Cu Kα1,2 radiation;
generator voltage—40.0 kV; generator current—40.0 mA; range 2θ—5–80◦; scanning step
size—0.02◦; scan rate—5◦/min) [40,41].

4.2.4. FESEM-EDS Analysis

Field emission scanning electron microscopy with energy-dispersive X-ray spec-
troscopy (FESEM-EDS, FEI Scios2, Dual Beam system, Thermo Fisher Scientific, Houston,
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TX, USA) was used for both the morphological and elemental characterization of the sam-
ples. Prior to imaging, double-sided copper tape was used to attach the powder to a sample
holder. The samples were then sputter-coated with gold to make them conductive. The
micrographs were taken at an acceleration voltage of 10 kV and a chamber pressure of
around 9 × 10−5 Pa.

4.2.5. TEM Analysis

The structural characterization of the AAMS was achieved through transmission elec-
tron microscopy (TEM) in conventional and high-resolution modes, using an FEI Talos
F200X microscope (Thermo Fisher Scientific, Waltham, MA, USA) operated at 200 keV.
Electron diffraction on a selected surface was also performed. The samples for TEM investi-
gation were prepared by dispersing the powder in ethanol, and after dispersion, a drop
of the solution was placed on a carbon-coated copper grid and dried in air. Characteristic
interplanar distances were determined from representative HR-TEM micrographs, using
the ImageJ photo processing program [42].

4.2.6. Radiological Characterizations

The activity concentrations of naturally occurring radionuclides (uranium and tho-
rium series, 40K and 235U) in the AAM samples were measured using a high-purity
germanium (HPGe) semiconductor detector. Details of the procedure are provided in our
previous study [9]. Standards for energy and efficiency calibration of the spectrometer
were determined using a certified solution of mixed gamma-emitting radionuclides (241Am,
109Cd, 139Ce, 57Co, 60Co, 137Cs, 113Sn, 85Sr, 51Cr, 210Pb, and 88Y), obtained from the Czech
Metrology Institute (CMI) [43], in accordance with IAEA recommendations [44].

After the samples reached radioactive equilibrium, they were analyzed with spectra,
recorded, and processed using Canberra’s Genie 2000 software. Corrections for background
radiation, dead time, and coincidence summing effects were applied. All calculations were
performed using Mathematica 5.2 software (Wolfram Research, Inc., Champaign, IL, USA).

To evaluate the potential health impacts from exposure to natural radionuclides in
the investigated materials, parameters such as radium equivalent activity Raeq (Bq/kg),
external hazard index Hex (Bq/kg), absorbed gamma dose rate
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(nGyh/h), and annual
effective dose rate EDR (mSv/y) were calculated using the equations provided in Table 5.

Table 5. Equations for dose calculation for investigated materials.

Dose Calculation Formula References

Gamma index Iγ = ARa
300Bq/kg + ATh

200Bq/kg + AK
3000Bq/kg ≤ 1 [33]

Radium equivalent activity Raeq = ARa + 1.43ATh + 0.077AK [33]
External hazard index Hex = ARa

370 + ATh
259 + AK

4810 ≤ 1 [33]

External absorbed gamma dose rate ·
D = 0.462ARa + 0.604ATh + 0.0417AK

[33]

Annual effective dose rates EDR(mSv) =
·

D (nGy/h) × 8760·(h/y) × 0.8 × 0.7 (Sv/Gy) 10−6 [33,45]

ARa, ATh, and AK are activities in Bq/kg of 226Ra, 232Th, and 40K, respectively.

Radium equivalent activity (Raeq) is the index determined to obtain the amount of
activities for the comparison of specific radioactivity of the samples containing various
radionuclides, 226Ra, 232Th, and 40K. We analyzed the characteristics of the samples in order
to estimate the potential of their use as building materials; for limiting the radiation dose
from the building materials, we used the external hazard index (Hex). The value of this
index must be less than 1.0, to remain under the radiation hazard limits, i.e., to retain the
radium equivalent activity and annual dose below the allowed limits of 370 Bq/kg and
1 mSv, respectively [19].
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The external gamma dose rate (
·

D, nGy/h) in air, measured at a height of 1 m above
the ground, was determined based on the radionuclides 226Ra, 232Th, and 40K present in
the analyzed samples. To evaluate potential health risks, the annual effective dose rate was
calculated. This calculation used a conversion factor of 0.7 Sv/Gy to convert the absorbed
dose in air to an effective dose, an indoor occupancy factor of 0.8 (reflecting that people
spend about 80% of their time indoors), and an annual exposure duration of 8760 h (1 year),
as recommended by UNSCEAR (1993) [46].
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5. Turhan, Ş.; Arıkan, İ.H.; Küçükcezzar, R. Radiological Consequencwa of the use of fly ash in construction sector and geotehnical

applications. Indoor Built. Evniron. 2011, 20, 253–258. [CrossRef]
6. Duxson, P.; Lukey, G.C.; Separovic, F.; Van Deventer, J.S.J. The Effect of Alkali Cations on Aluminum Incorporation in Geopoly-

meric Gels. Ind. Eng. Chem. Res. 2005, 44, 832–839. [CrossRef]
7. Cockrell, C.F.; Muter, R.B.; Leonard, J.W.; Anderson, R.E. Study of the Potential for Recovering Unreacted Lime from Lime Stone Modified

Fly Ash by Agglomerate; Final Report; Coal Research Bureau, West Virginia University: Morgantown, WV, USA, 1970; 267p.
8. Candamano, S.; De Luca, P.; Frontera, P.; Crea, F. Production of Geopolymeric Mortars Containing Forest Biomass Ash as Partial

Replacement of Metakaolin. Environments 2017, 4, 74. [CrossRef]
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20. Ignjatović, I.; Sas, Z.; Dragaš, J.; Somlai, J.; Kovács, T. Radiological and material characterization of high volume fly ash concrete.
J. Environ. Radioact. 2017, 168, 38–45. [CrossRef]
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physicochemical properties of red mud based geopolymers. Nucl. Technol. Rad. Protect. 2018, 33, 188–194. [CrossRef]

38. Sas, Z.; Sha, W.; Soutsos, M.; Doherty, R.; Bondar, D.; Gijbels, K.; Schroeyers, W. Radiological characterisation of alkali-activated
construction materials containing red mud, fly ash and ground granulated blast-furnace slag. Sci. Total Environ. 2019, 659,
1496–1504. [CrossRef] [PubMed]

39. Directive 2013/59/EUROATOM 5-December 2013, Official European Union 17/01/2014. 2013. Available online: https://eur-lex.
europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2014:013:0001:0073:EN:PDF (accessed on 27 October 2020).

https://doi.org/10.1016/j.chemosphere.2018.10.112
https://doi.org/10.1007/s10967-021-07907-5
https://doi.org/10.1016/j.jenvrad.2004.03.009
https://doi.org/10.1007/s10967-024-09614-3
https://doi.org/10.1007/s10967-014-2942-3
https://doi.org/10.1016/j.jenvrad.2016.06.021
https://doi.org/10.1016/j.ceramint.2017.02.066
https://doi.org/10.3390/gels10050317
https://doi.org/10.1016/j.clay.2016.06.028
https://doi.org/10.1002/app.36991
https://doi.org/10.3390/polym12020485
https://doi.org/10.1007/s40069-013-0039-y
https://doi.org/10.1016/j.conbuildmat.2018.07.075
https://doi.org/10.3390/gels8060333
https://doi.org/10.1016/j.ceramint.2021.12.256
https://doi.org/10.1002/9781118406892.ch13
https://doi.org/10.17222/mit.2018.130
https://doi.org/10.1016/j.jenvrad.2016.09.002
https://doi.org/10.1007/s10967-021-07980-w
https://doi.org/10.2298/NTRP1802188B
https://doi.org/10.1016/j.scitotenv.2019.01.006
https://www.ncbi.nlm.nih.gov/pubmed/31096359
https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2014:013:0001:0073:EN:PDF
https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2014:013:0001:0073:EN:PDF


Gels 2025, 11, 57 17 of 17

40. Rigaku. PDXL Integrated X-Ray Powder Diffraction Software, Version 2.8.4.0; Rigaku: Tokyo, Japan, 2011.
41. International Crystallographical Data Base (ICDD). Available online: https://www.icdd.com/?gad_source=1&gclid=

EAIaIQobChMIycqNvtvxigMVHqRmAh25AC1AEAAYASAAEgJDofD_BwE (accessed on 31 October 2024).
42. Rasband, W.S. ImageJ, (n.d.). Available online: https://imagej.net/ij/ (accessed on 5 March 2023).
43. MBSS 2, Cert. No. 9031-OL-032/05; Radioactive Standard. CMI (Czech Metrological Institute): Prague, Czech Republic, 2005.
44. International Atomic Energy Agency. Measurement of Radionuclides in Food and the Environment, A Guide Book; Technical Reports

Series No. 295; IAEA: Vienna, Austria, 1989.
45. Regulation on the Limits of Radionuclide Content in Drinking Water, Food, Animal Feed, Medications, Items of General Use,

Building Materials, and Other Goods Placed on the Market (“Official Gazette of the Republic of Serbia”, No. 36/2018. In Serbian:
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