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Abstract: In recent years, hydrogel beads and in situ hydrogels have gained wide at-
tention in various fields such as biomedicine. In this study, 3-(4-hydroxyphenyl) propi-
onic acid (HP) was introduced into the side chain of poly(α,β-[N-(2-hydroxyethyl)-D,L-
aspartamide]) (PHEA) to synthesize phenolic hydroxyl-functionalized poly(aspartamide)
derivative PHEA-HP with enzyme-catalyzed cross-linking potential. First, the chemical
structure of PHEA-HP was characterized by FT-IR, UV and 1H NMR, and the results of
in vitro cytotoxicity against L929 cell line and hemolysis experiment showed that PHEA-HP
did not have toxicity to cells (viability > 90%) and had good blood compatibility. Then,
rheological measurement confirmed the formation of PHEA-HP-based in situ hydrogel
with a high storage modulus (G′) around 104 Pa, and the vial-tilting method revealed
that the gelation time of PHEA-HP aqueous solution could be tuned in the wide range of
5–260 s by varying the concentrations of hydrogen peroxide (H2O2) and horseradish perox-
idase (HRP). Finally, hydrogel beads of different diameters containing methylene blue (for
easy observation) were prepared using a coaxial needle and syringe pumps, and the effect
of the flow rate of the outer phase on the diameters of the hydrogel beads was also investi-
gated. Therefore, PHEA-HP may be a promising and safe poly(aspartamide) derivative
that can be used to prepare in situ hydrogels and hydrogel beads for applications closely
related to the human body.

Keywords: poly(aspartamide) derivative; in situ hydrogel; injectable hydrogel; hydrogel
beads; horseradish peroxidase; enzyme-catalyzed cross-linking

1. Introduction
Hydrogel beads are extensively studied as encapsulation media for biomedicine, food,

and pharmaceutical applications or as adsorption systems in the field of environmental
protection. In the biomedical field, hydrogel beads are often used as drug carriers to
achieve sustained or controlled release of drugs [1–3]. In the food field, the potential health
benefits of many nutraceuticals have not yet been fully realized due to chemical degradation
during storage or in the gastrointestinal tract. Hydrogel beads can improve nutraceutical
performance by protecting them from chemical degradation [4,5]. In addition, enzymes
also can be encapsulated in hydrogel beads to improve their utilization and activity in
foods [6]. In the field of environmental protection, hydrogel beads can be used to adsorb
and remove organic pollutants from wastewater, including dyes [7], active pharmaceutical
ingredients [8], heavy metals [9], and pesticides [10–12].
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Common materials for preparing hydrogel beads include difficult-to-degrade carbon
chain polymers (e.g., poly(vinyl alcohol) (PVA) [13], poly(N-isopropylacrylamide) [14]) and
degradable polymers (e.g., alginate [15,16], chitosan [17–19] and cellulose [20]). Although
the carbon-carbon backbone is beneficial to the stability of the hydrogel beads, it also brings
adverse impacts on the environment and health. As people’s awareness of environmental
protection and health increases, the use of biodegradable polymers to prepare hydrogel
beads has attracted widespread attention, especially in the fields of biomedicine, food, and
cosmetic that are closely related to human health.

To prepare hydrogel beads, cross-linking is a necessary process because cross-linking
can transform the polymer solution from a liquid state to a “gel” or “solid” state by
restricting the mobility of the molecular chains. Cross-linking can be ionic or covalent. The
typical ionic crosslinking systems include alginate/Ca2+ [21,22]. For example, curcumin,
a natural polyphenolic product with multiple physiological activities such as antioxidant
and anti-inflammatory, was encapsulated into hydrogel beads made of alginate/Ca2+ [23].
For covalent cross-linking, chemical cross-linkers are the most commonly used method. For
instance, boric acid is often used as a cross-linker for preparing PVA hydrogel or hydrogel
beads [24]. In addition to cross-linkers, enzymes such as horseradish peroxidase (HRP) have
also been widely employed to prepare hydrogels, especially in situ hydrogels and injectable
hydrogels [25,26]. Importantly, their gelation time can be tuned by the concentration of
enzymes [27], which is of great significance in practical applications. In situ hydrogels and
injectable hydrogels have not only been intensively studied in applications such as wound
repair [28–30], tissue engineering [31–33], and flexible microrobots [34], but also provide
the possibility for the preparation of hydrogel beads.

Poly(aspartamide) derivatives are a class of polymers with a backbone consist-
ing of aspartic acid, and can be biodegraded by the hydrolysis of the amide linkages
on their backbone [35]. Over the past few decades, the interest in poly(aspartamide)
derivatives has increased significantly in various fields, especially in the biomedical
field, not only because of their good biodegradability but also because of their good
safety profile in humans [36]. The enzyme-mediated cross-linking injectable hydrogels
based on poly(aspartamide) derivatives are one of them [37]. However, there is no re-
port on the preparation of regular hydrogel beads using enzymatically cross-linkable
poly(aspartamide) derivatives.

Poly(α,β-[N-(2-hydroxyethyl)-D,L-aspartamide]) (PHEA), one of the most investi-
gated poly(aspartamide) derivatives, can be easily prepared via the aminolysis ring-
opening reaction of poly(succinimide) (PSI) with ethanolamine in various solvents
(e.g., N,N-dimethylformamide (DMF), dimethylsulphoxide) under mild reaction conditions.
Since the side chain of PHEA is rich in hydroxyl groups and is easily modified, molecules
with different groups or functions have been introduced into PHEA for cancer therapy [38],
drug carriers [39], siRNA delivery [40], and oral peptide/protein delivery [41]. Therefore,
it may be interesting work to introduce phenolic hydroxyl groups into PHEA to cause
it to have the potential for enzymatic cross-linking, and then use it to prepare hydrogel
beads. In this study, phenolic hydroxyl-functionalized PHEA, denoted as PHEA-HP, was
designed. Firstly, the preparation, structural characterization, and gelation of PHEA-HP
were studied, and the cytotoxicity of PHEA-HP was also evaluated. Then, the effects of
HRP and hydrogen peroxide (H2O2) concentrations on the gelation time were studied.
Finally, PHEA-HP-based hydrogel beads containing methylene blue (for easy observation)
were prepared using a coaxial needle and two syringe pumps.
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2. Results and Discussion
2.1. Synthesis and Characterization of PHEA-HP

The synthetic route of PHEA-HP is illustrated in Scheme 1. First, poly(α,β-
[N-(2-hydroxyethyl)-D,L-aspartamide]) (PHEA) was prepared from PSI with excess
ethanolamine. Then, PHEA was esterified with 3-(4-hydroxyphenyl) propionic acid (HP)
to obtain phenolic hydroxyl-functionalized poly(aspartamide) derivative PHEA-HP.
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Scheme 1. Synthesis route and cross-linking mechanism of PHEA-HP.

A series of PHEA-HP were synthesized by varying the molar feed ratio of HP to the
polymer units of PHEA, as shown in Table 1. The structure of the obtained PHEA-HP was
qualitatively analyzed by FT-IR (Figure 1A). It can be seen from Figure 1A that PHEA can
be distinguished from PSI clearly. Compared with the spectrum of PSI, a new wide peak
was observed at 3305 cm−1, which can be ascribed to the N–H stretch and introduced -OH.
Additionally, the peak corresponding to the stretching vibrations of C=O (imide group in
PSI, 1710 cm−1) also shifted to 1654 cm−1 (CONH in PHEA) after PSI was aminolyzed
by ethanolamine. Moreover, the chemical structure of PHEA was further confirmed by
1H NMR (Figure S1) in D2O. The molecular weight and the molecular weight distribution
(MWD) of the PHEA were 50.4 kDa and 1.30, respectively.

Compared with the FT-IR spectrum of PHEA, a new absorption peak of PHEA-HP-4
was detected at 1137 cm−1, which corresponds to the C–O–C of the ester bond formed by
HP and PHEA. In addition, the new absorption peak corresponding to the C–H out-of-
plane bending vibrations of HP moieties in PHEA-HP-4 was also observed at 829 cm−1.
The FT-IR spectra of PHEA-HP-2 and PHEA-HP-3 (Figure S2) were very similar to that of
PHEA-HP-4. However, the FT-IR spectrum of PHEA-HP-1 (Figure S2) was very similar
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to that of PHEA, no obvious absorption peaks were observed at both 1137 cm−1 and
829 cm−1, which may be attributed to the relatively low amount of HP moieties introduced.
Therefore, PHEA-HP-1 was further analyzed by UV spectroscopy.

Table 1. Synthesis and characterization of PHEA-HP.

Sample Feed Ratio of HP
to the Polymer Units of PHEA (mol.%)

Percentage of Introduced HP to the
Polymer Units of PHEA (mol.%) 1

Efficiency
(%)

Yield
(%)

PHEA-HP-1 30 4.8 16.0 69.3
PHEA-HP-2 50 7.9 15.8 56.7
PHEA-HP-3 80 8.7 10.9 48.9
PHEA-HP-4 100 9.2 9.2 45.3

1 Calculated from the 1H NMR spectra of PHEA-HP in DMSO-d6.
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Figure 1. (A) FT-IR spectra of PSI, PHEA, and PHEA-HP-4 in KBr, and (B) UV spectra of HP
(0.1 mg/mL), PHEA (2.0 mg/mL), and PHEA-HP-1 (2.0 mg/mL) in deionized water.

The UV spectra of HP, PHEA, and PHEA-HP-1 are shown in Figure 1B. It can be seen
that a strong UV absorbance was observed at 276 nm for PHEA-HP-1, which corresponds
to the UV absorption peak of HP, while PHEA has no obvious UV absorbance at 276 nm. It
indicates that HP moieties were also contained in PHEA-HP-1. The results of FT-IR and
UV indicate that HP moieties had been introduced into all four PHEA-HPs.

Quantitative analysis was further performed by 1H NMR for all four PHEA-HPs.
As shown in Figure 2, compared with the 1H NMR spectrum of PHEA, four new peaks
appeared at 4.0 ppm (peak b’), 6.6 ppm (peak n), 7.0 ppm (peak m), and 9.2 ppm (peak k)
in PHEA-HP-2. The proton hydrogen signal peak of the -CH2- adjacent to the -OH on the
PHEA side chains shifted from 3.4 ppm (peak b) to 4.0 ppm (peak b’), indicating that ester
linkages have been formed between PHEA and HP. Peaks n and m can be attributed to the
proton hydrogen signals of the benzene ring on HP moieties, and peak k indicates that the
phenolic hydroxyl group has been successfully introduced. The percentage of introduced
HP to the polymer units of PHEA in four PHEA-HPs was calculated based on the ratio
of the integral of peak n (6.6 ppm, 2H in HP moieties) to the integral of peak a and a’
(3.1 ppm, 2H in PHEA). The results are summarized in Table 1.

According to the results of FT-IR, UV, and 1H NMR, it can be concluded that PHEA-HP
has been successfully synthesized. However, the reaction efficiency between HP and PHEA
was very low (<20%, Table 1). When the feed ratio of HP was greater than 50%, increasing
the feed ratio of HP could not effectively increase the HP moieties introduced into PHEA-
HP. Therefore, PHEA-HP-3 and PHEA-HP-4 were not evaluated further, although they
were also able to form in situ hydrogels.
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2.2. Hydrogel Formation

When two equivalent volumes of PHEA-HP aqueous solutions containing either
HRP (solution A) or H2O2 (solution B) were mixed, and a pale yellow transparent in
situ hydrogel was rapidly formed as shown in Figure 3. Although both PHEA-HP-1 and
PHEA-HP-2 could form in situ hydrogels in the presence of H2O2 and HRP, PHEA-HP-1
formed hydrogel significantly more slowly and weakly than PHEA-HP-2, which may be
ascribed to the lower percentage of HP moieties in PHEA-HP-1.
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Rheological measurement was further performed to monitor the solution-gel transition
of PHEA-HP aqueous solutions at 25 ◦C. Since the gelation rate was very fast, when two
equal volumes of PHEA-HP/HRP solution and PHEA-HP/H2O2 solution were mixed and
transferred to the parallel plate of the rheometer, the hydrogel was formed immediately
and exhibited a storage modulus (G′) greater than loss modulus (G′′) at the beginning of
the rheological test. Therefore, the sample (PHEA-HP-2: 6.0 wt.%, HRP: 1.0 unit/mL, H2O2:
5.0 mM) with a long gelation time was chosen as representative to explain the solution-gel
transition of PHEA-HP-2 aqueous solution (Figure 4A).
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in situ hydrogel at 25 ◦C (PHEA-HP-2: 6.0 wt.%, HRP: 1.0 unit/mL, H2O2: 5.0 mM).

As shown in Figure 4A, at the beginning of the test, G′ and G′′ were both very low
(<0.2 Pa), and G′ was lower than G′′. As time went on, the crossover of G′ and G′′ was
observed at 72 s. Since the crossover point was defined as the gelation point [42], it was
confirmed that the solution–gel transition occurred. Subsequently, G′ strengthened rapidly
and finally reached nearly 104 Pa at the end of the test (600 s), while G′′ increased slowly
and eventually reached a plateau of only around 5 Pa. This indicates that the hydrogel has
been fully formed, and the changing trends of G′ and G′′ are consistent with those in other
studies [37,43]. Figure 4B showed the frequency scanning curves of the hydrogel formed
from the sample (PHEA-HP-2: 6.0 wt.%, HRP: 1.0 unit/mL, H2O2: 5.0 mM) with a scanning
frequency range from 0.01 Hz to 5.0 Hz. Both G′ and G′′ of the in situ hydrogel remained
stable, indicating that the frequency had little effect on the strength of the hydrogel.

Compared with PHEA-HP-2, due to the less HP moieties introduced into PHEA-
HP-1, most of the PHEA-HP-1-based in situ hydrogels with long gelation time (>30 s)
had significantly lower G′ (10–100 Pa, Figure S3) than that of PHEA-HP-2-based in situ
hydrogels (104 Pa). Therefore, PHEA-HP-2 was preferred for preparing hydrogel beads
and further studies were conducted.

2.3. In Vitro Cytotoxicity and Hemolysis Experiment

The safety of PHEA-HP-2 was evaluated through an in vitro cytotoxicity assay on
L929 cells using CCK-8 method. As shown in Figure 5, the cell viability of L929 cells
was higher than 90% at all tested polymer concentrations ranging from 0.05–500 µg/mL,
indicating that PHEA-HP-2 did not show significant cytotoxicity to L929 cells even at the
highest concentration of 500 µg/mL.
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In addition to in vitro cytotoxicity, a hemolysis experiment was also performed to
evaluate the hemocompatibility of PHEA-HP-2, as they may be used in applications that
contact with blood, such as wound dressings. As shown in Figure 5B,C, at all PHEA-HP-2
concentrations tested (0.5–6.0%), the red blood cells (RBC) aggregated at the bottom of
the solution, similar to the negative control (PBS buffer, NC); while the positive control
(1% Triton X-100, PC) solution remained bright red before and after centrifugation. The
supernatants were scanned at 540 nm to determine the hemolysis ratio and all tested con-
centrations of PHEA-HP-2 showed good blood compatibility (<3%), as shown in Figure 5D.

2.4. Gelation Time

For preparing hydrogel beads using a coaxial needle and syringe pumps, gelation
time is an important parameter. If the gelation time is too long, the formed hydrogel beads
tend to stick together in the collection container. If the gelation time is too short, the mixer
and coaxial needle may become clogged. Therefore, the gelation time was investigated
before preparing the hydrogel beads.

The effects of HRP, H2O2, and PHEA-HP-2 concentrations on gelation time were
investigated by the vial-tilting method instead of rheometry due to their high gelation rate.
As shown in Figure 6, the gelation time of PHEG-HP-2 hydrogels can be easily tuned in a
wide range from 5 to 260 s by varying the concentrations of HRP (0.75–24 units/mL), H2O2

(2.5–10 mM), or PHEA-HP-2 (3.0 wt.% and 6.0 wt.%).
When the concentration of PHEA-HP-2 was fixed at 3.0 wt.% (Figure 6A) or

6.0 wt.% (Figure 6B), the gelation time became shorter as the HRP concentration increased,
and when the HRP concentration was higher than or equal to 6.0 units/mL, the gelation
time was less than 20 s. On the other hand, as the H2O2 concentration increased, the
gelation time became longer which was particularly obvious at the HRP concentration of
0.75 mM. The trend of gelation time with HRP and H2O2 is in correlation with the previous
report [37]. In addition, at the same HRP and H2O2 concentrations, the gelation time of
the hydrogel with higher PHEA-HP-2 content (6.0 wt.%, Figure 6B) was slightly shorter
than that of the hydrogel with lower PHEG-HP-2 content (3.0 wt.%, Figure 6A). Therefore,
the HRP concentration is an optimal and easily adjustable parameter to tune the gelation
time. From the above results, it can be seen that HRP concentration is a key parameter for
regulating gelation time. Moreover, at low HRP concentration, H2O2 concentration is also
crucial to the regulation of gelation time.
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2.5. Preparation of PHEA-HP-Based Hydrogel Beads

PHEA-HP-based hydrogel beads containing methylene blue (for easy observation)
were prepared using a coaxial needle and two syringe pumps, as depicted in Scheme 2.
Taking into account the time it takes to flow into the coaxial needle after the solutions A
and B are mixed in the mixer, as well as the time required for the sedimentation process in
dimethicone, a formula (PHEA-HP-2: 6.0 wt.%, HRP: 2.5 units/mL, H2O2: 5.0 mM) with a
gelation time of about 50 s was selected for the preparation of hydrogel beads. Compared
with other oils (e.g., vegetable oil), the density of dimethicone (0.96–0.98) is closer to that
of water, so it has a relatively long sedimentation time, allowing PHEA-HP to completely
gel. Thus, dimethicone was selected as the outer phase and collection medium. In addition,
after the balls formed by the coaxial needle enter the dimethicone in the collection container,
the viscosity of the dimethicone also has an important influence on whether they can form
regular spheres through gelation. Thus, dimethicones with different viscosities (20, 100, and
1000 mPa·s) were used to further control the sedimentation time to complete the enzymatic
cross-linking to form hydrogel beads.

In the dimethicone with a viscosity of 20 mPa·s, due to the rapid sedimentation rate,
the small balls formed by the coaxial needle had not yet completely gelated when they
reached the bottom of the collection container. Therefore, they stuck to each other and
could not even maintain a spherical shape, but formed a whole piece (Figure 7A). In
the dimethicone with a viscosity of 100 mPa·s, the small balls completed gelation before
reaching the bottom of the container, so independent, regular, spherical hydrogel beads
can be obtained (Figure 7B). In the dimethicone with a viscosity of 1000 mPa·s, the small
balls adhered to each other before completing gelation and formed larger balls in the upper
layer of dimethicone in the collection container, and finally obtained hydrogel beads with
larger and non-uniform sizes (Figure 7C).

The effect of Qo (the flow rate of the outer continuous phase, pump B) on the size
of the hydrogel beads was also investigated. As shown in Figure 8, when the flow rate
of pump A (inner dispersed phase) was fixed at 320 µL/min, MB-loaded hydrogel beads
with regular spherical shapes could be prepared in the range of Qo from 320 µL/min to
1440 µL/min, and the diameters of the obtained hydrogel beads decreased with increasing
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the flow rate of the outer continuous phase. The coefficient of variation (CV) of MB-loaded
hydrogel beads was calculated with Equation (1) [44]:

CV =
σ

Dhb
(1)

where σ is the standard deviation and Dhb is the average diameters of hydrogel beads. It
can be seen from Figure 9A that the CV values of MB-loaded hydrogel beads are less than
5%, which indicates that the hydrogel beads have a uniform size.
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The effect of the velocity of the outer phase (vo) on the size of the hydrogel beads was
also further investigated by the empirical Equation (2) [44,45]:

Dhb = Di × K
(
µovo

µivi

)−0.22
+ α (2)

where Di is the inner diameter of the inner dispersed phase tube (400 µm), µo is the
viscosity of the outer phase (dimethicone: 100 mPa·s), µi is the viscosity of the inner phase
(6.0 wt.% PHEA aqueous solution), vo and vi are the velocity of the outer phase and inner
phase, respectively.

As shown in Figure 9B, Dhb and Di(µovo/µivi)−0.22 showed a good linear relationship
with R2 of 0.9967 in the range of Qo from 640 µL/min to 1440 µL/min. The obtained
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values for K and α in Equation (2) are 24.01 and −2169.85, respectively. However, when
Qo was 320 and 480 µL/min, Dhb and Di(µovo/µivi)−0.22 did not conform to empirical
Equation (2). This may be related to the fact that when the flow rate of the outer phase was
low, the inner and outer phases formed droplets at the outlet of the coaxial needle, and then
dripped into dimethicone drop by drop. Since it was not a continuous flow at that time,
it did not conform to Equation (2). Although PHEA-HP-2 can be prepared into hydrogel
beads by the in situ gelation method, the low reaction efficiency between HP and PHEA
may limit its large-scale production, and the stability of these hydrogel beads in different
environments also needs to be further studied in practice.

3. Conclusions
In this work, a novel phenolic hydroxyl-functionalized poly(aspartamide) deriva-

tive, PHEA-HP, was successfully synthesized via the esterification reaction between
3-(4-hydroxyphenyl) propionic acid and poly(α,β-[N-(2-hydroxyethyl)-D,L-aspartamide]).
PHEA-HP aqueous solution can undergo enzymatic cross-linking to form in situ hydrogels
in the presence of H2O2 and HRP, and the gelation time can be tuned in the range of
5–260 s by adjusting the concentrations of HRP, H2O2, and PHEA-HP-2. The results of
in vitro cytotoxicity against L929 cells and hemolysis experiment indicated that PHEA-
HP-2 was safe for the human body. Furthermore, MB-loaded hydrogel beads based on
PHEA-HP-2 were successfully prepared using a coaxial needle. Results showed that the
viscosity of dimethicone had a significant effect on whether regular spherical hydrogel
beads could be formed, and the diameters of the hydrogel beads decreased with increasing
the flow rate of the outer phase. Importantly, the diameters of hydrogel beads had a high
correlation with the flow rate of outer phase in the range of 640–1440 µL/min. This work
not only provides a poly(amino acid) derivative for the preparation of in situ hydrogel, but
also provides a new preparation strategy, which has important guiding significance for the
design and development of hydrogel beads for applications closely related to the human
body, such as wound repair or topical drug delivery for skin.

4. Materials and Methods
4.1. Materials

3-(4-Hydroxyphenyl) propionic acid (HP, 98%), ethanolamine (99%), 1-Ethyl-3-(3-
dimethyllaminopropyl) carbodiimide hydrochloride (EDC·HCl), 4-dimethylaminopyridine
(DMAP), and L-aspartic acid (98%) were purchased from Shanghai Adamas Reagent Co., Ltd.
(Shanghai, China) and used as received. Dimethicones of various viscosities were purchased
from Shanghai Aladdin Biochemical Technology Co., Ltd. (Shanghai, China). Hydrogen
peroxide (H2O2, 30 wt.% in H2O) was purchased from Sinopharm Group (Shanghai, China).
Horseradish peroxidase (HRP, RZ > 2.0, 150 units/mg) was obtained from Shanghai Mack-
lin Biochemical Technology Co., Ltd. (Shanghai, China). Other reagents and solvents were
of analytical grade and used without further purification.

4.2. Synthesis of PSI and PHEA

Poly(succinimide) (PSI) was prepared by acid-catalyzed polycondensation of
L-aspartic acid under reduced pressure at 180 ◦C according to previous work with slightly
modification [46]. Briefly, 30 g L-aspartic acid and 15 g o-phosphoric acid were added to a
1 L flask and reacted at 180 ◦C for 4 h using a rotary evaporator to remove by-product water.
Then, the resulting product was washed directly with deionized water until neutrality
to remove o-phosphoric acid and unreacted L-aspartic acid, and the collected solid was
air-dried at 95 ◦C for 24 h for pre-drying. Finally, after vacuum drying and pulverization,
the white solid product PSI (20.5 g) was obtained with the yield of 93.7%.
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Poly(α,β-[N-(2-hydroxyethyl)-D,L-aspartamide]) (PHEA) was synthesized by the
ring-opening reaction of PSI with excess ethanolamine at room temperature for 4 days in
DMF [47], and purified by dialysis (MWCO 3.5 kDa) against deionized water for 5 days to
remove DMF and unreacted ethanolamine. After lyophilization, a white cotton-like PHEA
was collected.

4.3. Synthesis of PHEA-HP

A total of 1.26 g PHEA (8.0 mmol polymer units) and varying amounts of 3-(4-
Hydroxyphenyl) propionic acid (1.0 equiv.) were dissolved in 20.0 mL of DMF. After
dissolution, EDC·HCl (1.2 equiv.) and DMAP (1.0 mmol) were added as the coupling agent
and catalyst, respectively. After the reaction was carried out at room temperature for 24 h,
the obtained solution was added to a dialysis tube (MWCO 3.5 kDa) and dialyzed against
deionized water for one week to remove DMF. Then, the dialysate was centrifuged at
8000 rpm (3.0 min) and filtered (0.22 um syringe filter) to remove water-insoluble im-
purities to obtain a clear and transparent solution. Finally, the white flocculent product
PHEA-HP (about 1.1 g) was collected after lyophilization.

4.4. Characterizations

Fourier transformed infrared (FT-IR) spectra of PSI, PHEA, and PHEA-HP were
recorded with Nicolet 6700 spectrometer (Thermo Fisher Scientific, Hampton, NH, USA).
UV absorption spectra of 3-(4-Hydroxyphenyl) propionic acid, PHEA, and PHEA-HP
were measured by a UV-2550 UV/Vis spectrometer (Shimadzu, Kyoto, Japan). 1H nuclear
magnetic resonance (1H NMR) spectra of PHEA and PHEA-HP were determined by
AVANCE III HD spectrometer (400 MHz) (Bruker, Billerica, MA, USA) in D2O or DMSO-d6.

The molecular weights and molecular-weight distribution of PHEA were evaluated by
a GPC system consisting of a Shimadzu GPC-20A (Kyoto, Japan), an Shodex RI-201H refrac-
tive index detector (Showa Denko K.K., Tokyo, Japan), an Agilent PLgel 5 µm MiniMIX-C
guard column (50 × 4.6 mm, Santa Clara, CA, USA), and an Agilent PLgel 5 µm MIXED-
C column (300 × 7.5 mm, Santa Clara, CA, USA). Calibration was achieved using a
polystyrene EasiVial Pre-weighed Calibration Kit (PS-M, PL2010-0301, range of nominal
Mp: 162-400,000) (Agilent, Santa Clara, CA, USA). DMF containing 10 mM LiBr was used
as the eluent at a flow rate of 0.5 mL/min at 35 ◦C.

4.5. Formation of PHEA-HP-Based Hydrogels

PHEA-HP was dissolved in 100 µL deionized water, and divided into two equal parts
(50 µL each). A total of 50 µL HRP solution was added to one part, which was recorded as
solution A. A total of 50 µL H2O2 solution was added to the other part, which was recorded
as solution B. Then, two solutions A and B were, respectively, drawn with two syringes
and injected into a 1-mL glass bottle through a mixing tube. The polymer concentration
was finally controlled at 3.0 wt.% or 6.0 wt.%.

The mixing solutions were considered to be in a gel state if no flow was visually
observed within 20 s after inverting the vial. The gelation time of PHEA-HP was determined
using the vial-tilting method [37].

For rheological measurements, 500 µL of PHEA-HP/HRP solution (solution A) and
500 µL of PHEA-HP/H2O2 solution (solution B) were quickly transferred to the parallel
plate (plate diameter = 30 mm, fixed gap = 1000 µm) of the rheometer (DHR-2, TA In-
struments, New Castle, DE, USA) through the mixing tube with a syringe. The test was
performed with a frequency of 1 Hz and 1% strain at 25 ◦C. The storage modulus (G′) and
loss modulus (G′′) of the sample were recorded as a function time (10 min). A frequency
sweep test was also performed with a frequency range of 0.1 to 5.0 Hz.
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4.6. Cytotoxicity Assay

The cytotoxicity of PHEA-HP was evaluated against mouse fibroblast L929 cell lines
(Shanghai Institute of Biochemistry and Cell Biology, Shanghai, China) by CCK-8 assay.
The cells were seeded into a 96-well plate at a density of 10,000 cells/well and allowed to
grow at 37 ◦C under a humidified atmosphere of 95% air and 5% CO2 for 24 h. Thereafter,
the medium was replaced with 100 µL of fresh medium, and 100 µL solution of PHEA-HP
was added (final polymer concentrations ranging from 0.05 to 500 µg/mL). The cells were
incubated for 48 h at 37 ◦C. Next, 100 µL culture medium containing 10 µL of CCK-8
reagent was added into each well for a further 4 h incubation at 37 ◦C. The absorbance was
detected at 450 nm with a Multiskan GO microplate spectrophotometer (Thermo Fisher
Scientific, Hampton, NH, USA). Each experiment was carried out in quadruplicate. Cell
viability was calculated with the Equation (3):

Cell viability(%) =
ODsample − ODblank

ODcontrol − ODblank
× 100% (3)

where ODsample is the absorbance of solution with cells treated by PHEA-HP, ODcontrol

is the absorbance for untreated cells (without PHEA-HP), and ODblank is the absorbance
without cells.

4.7. Hemolysis Experiment

The hemolysis property of PHEA-HP was evaluated with red blood cells (RBC) dis-
persion in PBS (5%) collected from New Zealand white rabbits. PHEA-HP solution with
various concentrations (400 µL) was mixed with RBC dispersion (600 µL) in the centrifuge
tubes and incubated at 37 ◦C with shaking for 1 h. The PBS buffer and 1% Triton X-100
were used as a negative control (NC) and positive control (PC), respectively. Then, the
tubes were centrifuged at 1000 rpm for 10 min and the absorbance of the supernatants
was determined by a microplate reader at 540 nm to calculate the hemolysis ratio by the
following Equation (4):

Hemolysis ratio(%) =
AS − AN
AP − AN

× 100% (4)

where AS was the absorbance of the PHEA-HP solutions, AP was the absorbance of PC,
and AN was the absorbance of NC.

4.8. Preparation of Hydrogel Beads

Two syringes filled with 1.0 mL of solution A (PHEA-HP/HRP aqueous solution)
containing 0.5 mg/mL MB and solution B (PHEA-HP/H2O2 aqueous solution), respectively,
were installed in pump A (TYD02-04 four-channel syringe pump, Baoding Lead Fluid
Technology Co., Ltd., Baoding, China). Solutions A and B flowed into the mixer through
the pipeline and were mixed to serve as the inner dispersed phase. The syringe containing
dimethicone as the outer continuous phase was installed in pump B (TYD01-01 signal-
channel syringe pump, Baoding Lead Fluid Technology Co., Ltd., China). Driven by
two syringe pumps, the inner phase and the outer phase flowed into a coaxial needle
(outer continuous phase tube: outer diameter = 1500 µm, inner diameter = 1100 µm; inner
dispersed phase tube: outer diameter = 700 µm, inner diameter = 400 µm) through two
different interfaces, and then flowed into the dimethicone of the collection container and
completed gelation during the sedimentation process to form PHEA-HP-based hydrogel
beads. Methylene blue was added to solution A for easy observation. The flow rate of
pump A was fixed at 320 µL/min, and the flow rate of pump B varied within a range of
320–1440 µL/min. The resulting hydrogel beads were photographed using a Murzider
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MSD-2000 digital camera (Murzider Technology Co., Ltd., Dongguan, Guangdong, China)
attached to a Soptop BH200M microscope (Sunny Optical Technology (Group) Co., Ltd.,
Yuyao, Zhejiang, China), and the diameters of the hydrogel beads were analyzed by the
software Murzider 4.11 (Murzider Technology Co., Ltd., Dongguan, Guangdong, China).

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/gels11020093/s1, Figure S1: 1H NMR spectrum of PHEA in D2O.
Figure S2: FT-IR spectra of PHEA-HP-1, PHEA-HP-2, and PHEA-HP-3 in KBr. Figure S3: The storage
modulus (G′) and loss modulus (G′′) of PHEA-HP-1/HRP/H2O2 solutions as a function of time at
25 ◦C (PHEA-HP-1: 6.0 wt.%, H2O2: 5.0 mM).
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