Effect of S-triazine Ring Substitution on the Synthesis of Organic Resorcinol-Formaldehyde Xerogels
Abstract
:1. Introduction
2. Results and Discussion
2.1. Gel Synthesis Parameters
2.1.1. X/C Ratio and Initial pH
2.1.2. X/F Ratio
2.2. Gels Synthesized Using S-Triazine Additives
2.2.1. 1 wt% Additive Substitution
2.2.2. 5 wt% Additive Substitution
2.2.3. 10 wt% Additive Substitution
2.2.4. 15 wt% Additive Substitution
2.2.5. 20 wt% Additive Substitution
3. Conclusions
4. Materials and Methods
4.1. Gel Formation
4.2. Textural Characterisation
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
R/C Ratio | R/F Ratio | SBET [m2/g] | Vµ [cm3/g] | VT [cm3/g] | [nm] | pH |
---|---|---|---|---|---|---|
50 | 0.25 | 480 | 0.08 | 0.28 | 3 | 7.5 |
0.5 | 495 | 0.11 | 0.27 | 3 | 7.4 | |
200 | 0.25 | 465 | 0.05 | 0.86 | 8 | 7.0 |
0.5 | 514 | 0.05 | 0.70 | 6 | 7.1 |
[A] wt% | X/C Ratio | X/F Ratio | SBET [m2/g] | Vµ [cm3/g] | VT [cm3/g] | [nm] | pH |
---|---|---|---|---|---|---|---|
1 | 50 | 0.25 | 497 | 0.08 | 0.30 | 3 | 7.5 |
0.5 | 129 | 0.02 | 0.52 | 24 | 7.2 | ||
200 | 0.25 | 408 | 0.05 | 0.99 | 11 | 6.9 | |
0.5 | 530 | 0.06 | 1.14 | 10 | 7.0 | ||
5 | 50 | 0.25 | 503 | 0.05 | 0.33 | 3 | 7.5 |
0.5 | 507 | 0.04 | 0.37 | 3 | 7.5 | ||
200 | 0.25 | 331 | 0.04 | 1.12 | 16 | 6.8 | |
0.5 | 444 | 0.05 | 0.83 | 8 | 7.1 | ||
10 | 50 | 0.25 | 517 | 0.03 | 0.55 | 4 | 7.4 |
0.5 | 342 | 0.10 | 0.18 | 2 | 7.7 | ||
200 | 0.25 | 174 | 0.02 | 0.89 | 26 | 6.9 | |
0.5 | 295 | 0.03 | 0.76 | 11 | 7.1 | ||
15 | 50 | 0.25 | 417 | 0.03 | 0.41 | 4 | 7.5 |
0.5 | 400 | 0.04 | 0.27 | 3 | 7.5 | ||
200 | 0.25 | 48 | 0.01 | 0.09 | 11 | 6.8 | |
0.5 | 270 | 0.03 | 1.23 | 21 | 7.1 | ||
20 | 50 | 0.25 | 349 | 0.02 | 0.36 | 4 | 7.4 |
0.5 | 391 | 0.02 | 0.31 | 3 | 7.4 | ||
200 | 0.25 | 8 | - | 0.02 | 12 | 6.8 | |
0.5 | 3 | - | 0.02 | 17 | 7.0 |
[CA] wt% | X/C Ratio | X/F Ratio | SBET [m2/g] | Vµ [cm3/g] | VT [cm3/g] | [nm] | pH |
---|---|---|---|---|---|---|---|
1 | 50 | 0.25 | 488 | 0.08 | 0.28 | 3 | 7.1 |
0.5 | 469 | 0.09 | 0.27 | 3 | 7.0 | ||
200 | 0.25 | 411 | 0.04 | 0.88 | 9 | 6.7 | |
0.5 | 455 | 0.05 | 0.72 | 7 | 7.1 | ||
5 | 50 | 0.25 | 474 | 0.05 | 0.32 | 3 | 7.0 |
0.5 | 468 | 0.05 | 0.33 | 3 | 6.9 | ||
200 | 0.25 | 262 | 0.03 | 0.74 | 14 | 6.3 | |
0.5 | 344 | 0.04 | 0.94 | 13 | 7.0 | ||
10 | 50 | 0.25 | 231 | 0.01 | 0.20 | 3 | 6.8 |
0.5 | 396 | 0.03 | 0.44 | 4 | 6.9 | ||
200 | 0.25 | 85 | 0.01 | 0.19 | 12 | 6.0 | |
0.5 | 139 | 0.02 | 0.58 | 23 | 6.8 | ||
15 | 50 | 0.25 | 333 | 0.03 | 0.90 | 12 | 6.3 |
0.5 | 223 | 0.02 | 0.37 | 6 | 6.7 | ||
200 | 0.25 | 199 | 0.03 | 1.15 | 21 | 6.3 | |
0.5 | 9 | - | 0.02 | 10 | 6.3 | ||
20 | 50 | 0.25 | 140 | 0.02 | 0.79 | 29 | 6.4 |
0.5 | 133 | 0.02 | 0.53 | 20 | 6.5 | ||
200 | 0.25 | 1 | - | - | 19 | 5.7 | |
0.5 | 5 | - | 0.01 | 10 | 6.4 |
[M] wt% | X/C Ratio | X/F Ratio | SBET [m2/g] | Vµ [cm3/g] | VT [cm3/g] | [nm] | pH |
---|---|---|---|---|---|---|---|
1 | 50 | 0.25 | 439 | 0.08 | 0.25 | 3 | 7.2 |
0.5 | 509 | 0.03 | 0.50 | 3 | - | ||
200 | 0.25 | 436 | 0.04 | 0.72 | 7 | - | |
0.5 | 445 | 0.04 | 0.64 | 6 | - | ||
5 | 50 | 0.25 | 562 | 0.06 | 0.37 | 3 | 7.3 |
0.5 | 547 | 0.07 | 0.35 | 3 | - | ||
200 | 0.25 | 247 | 0.03 | 0.69 | 14 | 7.1 | |
0.5 | 29 | 0.00 | 0.06 | 12 | 6.5 | ||
10 | 50 | 0.25 | 564 | 0.06 | 0.42 | 3 | 7.2 |
0.5 | 447 | 0.08 | 0.26 | 3 | - | ||
200 | 0.25 | 194 | 0.03 | 0.44 | 12 | - | |
0.5 | 176 | 0.02 | 0.28 | 7 | - | ||
15 | 50 | 0.25 | 668 | 0.06 | 0.77 | 5 | 7.4 |
0.5 | 514 | 0.04 | 0.50 | 4 | 7.7 | ||
200 | 0.25 | 119 | 0.02 | 0.34 | 15 | - | |
0.5 | 254 | 0.03 | 0.55 | 10 | 6.7 | ||
20 | 50 | 0.25 | 606 | 0.06 | 0.87 | 6 | 7.6 |
0.5 | 376 | 0.03 | 0.35 | 4 | - | ||
200 | 0.25 | 96 | 0.01 | 0.26 | 13 | - | |
0.5 | - | - | - | - | - |
References
- Pekala, R. Organic Aerogels from the Polycondensation of Resorcinol with Formaldehyde. J. Mater. Sci. 1989, 24, 3221–3227. [Google Scholar] [CrossRef]
- Liu, X.; Li, S.; Mei, J.; Lau, W.-M.; Mi, R.; Li, Y.; Liu, H.; Liu, L.-M. From melamine–resorcinol–formaldehyde to nitrogen-doped carbon xerogels with micro-and meso-pores for lithium batteries. J. Mater. Chem. A 2014, 2, 14429–14438. [Google Scholar] [CrossRef]
- Principe, I.A.; Fletcher, A.J. Parametric study of factors affecting melamine-resorcinol-formaldehyde xerogels properties. Mater. Today Chem. 2018, 7, 5–14. [Google Scholar] [CrossRef] [Green Version]
- Principe, I.A.; Fletcher, A. Decoupling microporosity and nitrogen content to optimize CO2 adsorption in melamine–resorcinol–formaldehyde xerogels. Mater. Today Chem. 2018, 10, 195–205. [Google Scholar] [CrossRef] [Green Version]
- Lu, C.; Huang, Y.H.; Hong, J.; Wu, Y.J.; Li, J.; Cheng, J. The effects of melamine on the formation of carbon xerogel derived from resorcinol and formaldehyde and its performance for supercapacitor. J. Colloid Interface Sci. 2018, 524, 209–218. [Google Scholar] [CrossRef]
- Awadallah-F, A.; Al-Muhtaseb, S.A. Removal of crystal violet from wastewater using resorcinol-formaldehyde carbon xerogels. Sep. Sci. Technol. 2016, 51, 403–415. [Google Scholar] [CrossRef]
- Ma, Y.; Wu, D.; Wang, T.; Jia, D. Nitrogen, phosphorus co-doped carbon obtained from amino acid based resin xerogel as efficient electrode for supercapacitor. ACS Appl. Energy Mater. 2019, 3, 957–969. [Google Scholar] [CrossRef] [Green Version]
- Bailón-García, E.; Maldonado-Hódar, F.J.; Carrasco-Marin, F.; Pérez-Cadenas, A.F.; Bosi, S.; Prato, M. The use of functionalized carbon xerogels in cells growth. Mater. Sci. Eng. C 2019, 100, 598–607. [Google Scholar] [CrossRef]
- Zhou, H.; Xu, S.; Su, H.; Wang, M.; Qiao, W.; Ling, L.; Long, D. Facile preparation and ultra-microporous structure of melamine–resorcinol–formaldehyde polymeric microspheres. Chem. Commun. 2013, 49, 3763–3765. [Google Scholar] [CrossRef]
- Hodgins, T.S.; Hovey, A.G.; Hewett, S.; Barrett, W.R.; Meeske, C.J. Melamine-Formaldehyde Film-Forming Compositions. Ind. Eng. Chem. 1941, 33, 769–779. [Google Scholar] [CrossRef]
- Martin, D.; Prostredný, M.; Fletcher, A. Effect Aromat. Amines on the Properties of Formaldehyde-Based Xerogels. Gels 2020, 6, 8. [Google Scholar]
- Song, T.; Liao, J.M.; Xiao, J.; Shen, L.H. Effect of micropore and mesopore structure on CO2 adsorption by activated carbons from biomass. New Carbon Mater. 2015, 30, 156–166. [Google Scholar] [CrossRef]
- Al-Muhtaseb, S.A.; Ritter, J.A. Preparation and properties of resorcinol–formaldehyde organic and carbon gels. Adv. Mater. 2003, 15, 101–114. [Google Scholar] [CrossRef]
- ElKhatat, A.M.; Al-Muhtaseb, S.A. Advances in Tailoring Resorcinol-Formaldehyde Organic and Carbon Gels. Adv. Mater. 2011, 23, 2887–2903. [Google Scholar] [CrossRef]
- Job, N.; Pirard, R.; Marien, J.; Pirard, J.-P. Porous carbon xerogels with texture tailored by pH control during sol–gel process. Carbon 2004, 42, 619–628. [Google Scholar] [CrossRef]
- Hirt, R.; Schmitt, R. Ultraviolet absorption spectra ot derivatives of symmetric triazine—II: Oxo-triazines and their acyclic analogs. Spectrochim. Acta 1958, 12, 127–138. [Google Scholar] [CrossRef]
- Liang, X.; Pu, X.; Zhou, H.; Wong, N.-B.; Tian, A. Keto–enol tautomerization of cyanuric acid in the gas phase and in water and methanol. J. Mol. Struct. THEOCHEM 2007, 816, 125–136. [Google Scholar] [CrossRef]
- Hicks, J.C.; Drese, J.H.; Fauth, D.J.; Gray, M.L.; Qi, G.; Jones, C.W. Designing adsorbents for CO2 capture from flue gas-hyperbranched aminosilicas capable of capturing CO2 reversibly. J. Am. Chem. Soc. 2008, 130, 2902–2903. [Google Scholar] [CrossRef]
- Pekala, R.; Kong, F.-M. A synthetic route to organic aerogels-mechanism, structure, and properties. Le J. Phys. Colloq. 1989, 50, C4-33–C4-40. [Google Scholar] [CrossRef]
- Bock, V.; Emmerling, A.; Fricke, J. Influence of monomer and catalyst concentration on RF and carbon aerogel structure. J. Non-Cryst. Solids 1998, 225, 69–73. [Google Scholar] [CrossRef]
- Aegerter, M.A.; Leventis, N.; Koebel, M.M. Aerogels Handbook; Springer Science & Business Media: New York, NY, USA, 2011. [Google Scholar]
- Feng, Y.; Miao, L.; Tanemura, M.; Tanemura, S.; Suzuki, K. Effects of further adding of catalysts on nanostructures of carbon aerogels. Mater. Sci. Eng. B 2008, 148, 273–276. [Google Scholar] [CrossRef]
- Lee, Y.J.; Jung, J.C.; Yi, J.; Baeck, S.-H.; Yoon, J.R.; Song, I.K. Preparation of carbon aerogel in ambient conditions for electrical double-layer capacitor. Curr. Appl. Phys. 2010, 10, 682–686. [Google Scholar] [CrossRef]
- Blanco, S.; Almandoz, M.; Ferretti, F. Determination of the overlapping pKa values of resorcinol using UV-visible spectroscopy and DFT methods. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2005, 61, 93–102. [Google Scholar] [CrossRef] [PubMed]
- Huq, S.W.; Bierman, J.; Koerner, P.J.; Campognone, M. Simultaneous Extraction of Melamine and Cyanuric Acid from Food Products Using Strata® Melamine SPE and Ultra-Fast LC/MS/MS Analysis Using Kinetex™ HILIC, Rapid LC/MS/MS Analysis on Luna® HILIC, or Rapid GC/MS Analysis on Zebron™ ZB-XLB HT; TN-0021-Applications, Phenomenex: Torrane, CA, USA, 2009; Available online: https://phenomenex.blob.core.windows.net/documents/62d73187-ca97-40ac-9d09-2f35c5abe41d.pdf (accessed on 29 March 2020).
- Bann, B.; Miller, S.A. Melamine and derivatives of melamine. Chem. Rev. 1958, 58, 131–172. [Google Scholar] [CrossRef]
- Horikawa, T.; Hayashi, J.; Muroyama, K. Controllability of pore characteristics of resorcinol–formaldehyde carbon aerogel. Carbon 2004, 42, 1625–1633. [Google Scholar] [CrossRef]
- Bagreev, A.; Menéndez, J.A.; Dukhno, I.; Tarasenko, Y.; Bandosz, T.J. Bituminous coal-based activated carbons modified with nitrogen as adsorbents of hydrogen sulfide. Carbon 2004, 42, 469–476. [Google Scholar] [CrossRef]
- Prostredný, M.; Abduljalil, M.G.M.; Mulheran, P.A.; Fletcher, A. Process variable optimization in the manufacture of resorcinol–formaldehyde gel materials. Gels 2018, 4, 36. [Google Scholar] [CrossRef] [Green Version]
- Brunauer, S.; Emmett, P.H.; Teller, E. Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 1938, 60, 309–319. [Google Scholar] [CrossRef]
- Rouquerol, J.; Llewellyn, P.; Rouquérol, F. Is the BET equation applicable to microporous adsorbents. Stud. Surf. Sci. Catal 2007, 160, 49–56. [Google Scholar]
- Lippens, B.C.; De Boer, J. Studies on pore systems in catalysts: V. The t method. J. Catal. 1965, 4, 319–323. [Google Scholar] [CrossRef]
- Barrett, E.P.; Joyner, L.G.; Halenda, P.P. The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. J. Am. Chem. Soc. 1951, 73, 373–380. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prostredný, M.; Ledingham, C.; Principe, I.A.; Altoumi, A.S.M.; Fletcher, A.J. Effect of S-triazine Ring Substitution on the Synthesis of Organic Resorcinol-Formaldehyde Xerogels. Gels 2020, 6, 21. https://doi.org/10.3390/gels6030021
Prostredný M, Ledingham C, Principe IA, Altoumi ASM, Fletcher AJ. Effect of S-triazine Ring Substitution on the Synthesis of Organic Resorcinol-Formaldehyde Xerogels. Gels. 2020; 6(3):21. https://doi.org/10.3390/gels6030021
Chicago/Turabian StyleProstredný, Martin, Caio Ledingham, Ivan A. Principe, Abdelkarim S. M. Altoumi, and Ashleigh J. Fletcher. 2020. "Effect of S-triazine Ring Substitution on the Synthesis of Organic Resorcinol-Formaldehyde Xerogels" Gels 6, no. 3: 21. https://doi.org/10.3390/gels6030021
APA StyleProstredný, M., Ledingham, C., Principe, I. A., Altoumi, A. S. M., & Fletcher, A. J. (2020). Effect of S-triazine Ring Substitution on the Synthesis of Organic Resorcinol-Formaldehyde Xerogels. Gels, 6(3), 21. https://doi.org/10.3390/gels6030021