Durability of Thermal Renders with Lightweight and Thermal Insulating Aggregates: Regranulated Expanded Cork, Silica Aerogel and Expanded Polystyrene
Abstract
:1. Introduction
2. Results and Discussion
2.1. Freeze/Thaw Accelerated Aging
2.2. Hygrothermal and IR Accelerated Aging
3. Conclusions
4. Materials and Methods
4.1. Accelerated Aging—Freeze/Thaw Cycles
- Setting of the specimens immersed in water container for at least 12 h;
- Setting of the specimens in a freezer at -15 ± 1 °C during 4 h;
- Setting of the specimens immersed in water container at 20 ± 2 °C during 4 h;
- Setting of the specimens in an oven at 60 °C.
4.2. Accelerated Aging—Hygrothermal and Infrared Radiation (IR) Cycles
- (a)
- Eight heat-freeze cycles, where each cycle consists of:
- infrared heating of specimens, at 60 ± 2 °C during 8 h ± 15 min;
- setting of the specimens in a climate chamber at 20 ± 2 °C and RH of 65 ± 5 % during 30 min ± 2 min;
- cooling in a freezer at −15 ± 1 °C during 15 h ± 15 min;
- setting of the specimens in a climate chamber at 20 ± 2 °C and RH of 65 ± 5 % during 30 min ± 2 min.
- (b)
- Before the freeze-thaw cycle begins and after the end of the freeze-heat cycle, the specimens are subjected to standard conditions of 20 ± 2 °C and RH of 65 ± 5 % at least for 48 h.
- (c)
- Eight freeze-thaw cycles, where each cycle consists of:
- sprinkling the specimens with water at 20 ± 2 °C during 8 h ± 15 min;
- setting of the specimens in a climate chamber at 20 ± 2 °C and RH of 65 ± 5 % during 30 min ± 2 min;
- cooling in a freezer at −15 ± 1 °C during 15 h ± 15 min;
- setting of the specimens in a climate chamber at 20 ± 2 °C and RH of 65 ± 5 % during 30 min ± 2 min.
- (d)
- After the end of the freeze-thaw, the specimens are subjected to standard conditions of 20 ± 2 °C and RH of 65 ± 5 % at least for 48 h.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brás, A.; Leal, M.P.F. Mortars with Improved Thermal Performance with Sustainable Materials (in Portuguese). In Proceedings of the 2nd Conference on Sustainable Construction and Rehabilitation of Buildings in the Lusophone Space (CRSEEL), Monte da Caparica, Portugal, 26–27 April 2012. [Google Scholar]
- Madureira, S.; Flores-Colen, I.; de Brito, J.; Pereira, C. Maintenance planning of facades in current buildings. Constr. Build. Mater. 2017, 147, 790–802. [Google Scholar] [CrossRef]
- Carretero-Ayuso, M.J.; Moreno-Cansado, A.; De Brito, J. Study of the prevalence of critical and conflict-prone points in facades. Eng. Fail. Anal. 2017, 75, 15–25. [Google Scholar] [CrossRef]
- Bauer, E.; Piazzarollo, C.B.; De Souza, J.S.; Dos Santos, D.G. Relative importance of pathologies in the severity of facade degradation. J. Build. Pathol. Rehabil. 2020, 5, 1–10. [Google Scholar] [CrossRef]
- Monticelli, C.; Re Cecconi, F.; Pansa, G.; Mainini, A.G. Influence of Degradation and Service Life of Construction Materials on the Embodied Energy and the Energy Requirements of Buildings. In Proceedings of the 12th International Conference on Durability of Building Materials and Components (XII DBMC), Porto, Portugal, 12–15 April 2011. [Google Scholar]
- Nascimento, M.L.M.; Bauer, E.; De Souza, J.S.; Zanoni, V.A.G. Wind-driven rain incidence parameters obtained by hygrothermal simulation. J. Build. Pathol. Rehabil. 2016, 1, 5. [Google Scholar] [CrossRef] [Green Version]
- Zhu, P.; Yu, S.; Cheng, C.; Zhao, S.; Xu, H. Durability of silica aerogel cementitious composites – freeze–thaw resistance, water resistance and drying shrinkage. Adv. Cem. Res. 2020, 32, 527–536. [Google Scholar] [CrossRef]
- Oke, A.E.; Aigbavboa, C.O.; Semenya, K. Energy Savings and Sustainable Construction: Examining the Advantages of Nanotechnology. Energy Procedia 2017, 142, 3839–3843. [Google Scholar] [CrossRef]
- Salem, D.; Bakr, A.; El Sayad, Z. Post-construction stages cost management: Sustainable design approach. Alex. Eng. J. 2018, 57, 3429–3435. [Google Scholar] [CrossRef]
- Maia, J.; Ramos, N.M.; Veiga, R. A new durability assessment methodology of thermal mortars applied in multilayer rendering systems. Constr. Build. Mater. 2019, 222, 654–663. [Google Scholar] [CrossRef]
- Maia, J. Durability of Thermal Renders; Faculdade de Engenharia da Universidade do Porto: Porto, Portugal, 2016. (In Portuguese) [Google Scholar]
- Belayachi, N.; Hoxha, D.; Slaimia, M. Impact of accelerated climatic aging on the behavior of gypsum plaster-straw material for building thermal insulation. Constr. Build. Mater. 2016, 125, 912–918. [Google Scholar] [CrossRef]
- Berardi, U.; Nosrati, R.H. Long-term thermal conductivity of aerogel-enhanced insulating materials under different laboratory aging conditions. Energy 2018, 147, 1188–1202. [Google Scholar] [CrossRef]
- Escobar, L.A.; Meeker, W.Q. A Review of Accelerated Test Models. Stat. Sci. 2006, 21, 552–577. [Google Scholar] [CrossRef] [Green Version]
- Jelle, B.P. Accelerated climate ageing of building materials, components and structures in the laboratory. J. Mater. Sci. 2012, 47, 6475–6496. [Google Scholar] [CrossRef] [Green Version]
- Brás, A.; Leal, M.; Faria, P. Cement-cork mortars for thermal bridges correction. Comparison with cement-EPS mortars performance. Constr. Build. Mater. 2013, 49, 315–327. [Google Scholar] [CrossRef]
- Barnat-Hunek, D.; Smarzewski, P. Analysis of the Physical Properties of Hydrophobised Lightweight-Aggregate Mortars. Compos. Theory Pract. 2016, 16, 96–102. [Google Scholar]
- Panesar, D.; Shindman, B. The mechanical, transport and thermal properties of mortar and concrete containing waste cork. Cem. Concr. Compos. 2012, 34, 982–992. [Google Scholar] [CrossRef]
- Barnat-Hunek, D.; Widomski, M.K.; Szafraniec, M.; Łagód, G. Impact of Different Binders on the Roughness, Adhesion Strength, and Other Properties of Mortars with Expanded Cork. Materials 2018, 11, 364. [Google Scholar] [CrossRef] [Green Version]
- Gomes, M.G.; Flores-Colen, I.; Melo, H.; Soares, A. Physical performance of industrial and conventional EPS and cork thermal insulation renders. Constr. Build. Mater. 2019, 198, 786–795. [Google Scholar] [CrossRef]
- APCOR Yearbook 17/18; Portuguese Cork Association: Santa Maria de Lamas, Portugal, 2018.
- Novais, R.M.; Senff, L.; Carvalheiras, J.; Seabra, M.P.; Pullar, R.C.; Labrincha, J.A. Sustainable and efficient cork - inorganic polymer composites: An innovative and eco-friendly approach to produce ultra-lightweight and low thermal conductivity materials. Cem. Concr. Compos. 2019, 97, 107–117. [Google Scholar] [CrossRef]
- Barnat-Hunek, D.; Siddique, R.; Łagód, G. Properties of hydrophobised lightweight mortars with expanded cork. Constr. Build. Mater. 2017, 155, 15–25. [Google Scholar] [CrossRef]
- Moreira, A.; Antonio, J.; Tadeu, A. Lightweight screed containing cork granules: Mechanical and hygrothermal characterization. Cem. Concr. Compos. 2014, 49, 1–8. [Google Scholar] [CrossRef]
- Tadeu, A.; Moreira, A.; Antonio, J.; Simões, N.; Simões, I. Thermal delay provided by floors containing layers that incorporate expanded cork granule waste. Energy Build. 2014, 68, 611–619. [Google Scholar] [CrossRef]
- Gil, L. Manual Técnico: Cortiça Como Material de Construção; APCOR: Santa Maria de Lamas, Portugal, 2007. [Google Scholar]
- Gil, L. Cortiça-Produção, Tecnologia e Aplicação; INETI: Lisboa, Portugal, 1998. [Google Scholar]
- Gil, L. Cork. In Materials for Construction and Civil Engineering; Gonçalves, M.C., Margarido, F., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 585–627. ISBN 978-3-319-08235-6. [Google Scholar]
- Pfundstein, M.; Gellert, R.; Spitzner, M.; Sprengard, C.; Albrecht, W.; Rudolphi, A. Insulating Materials: Principles, Materials, Applications; Birkhäuser GmbH: Munich, Germany, 2008. [Google Scholar]
- Sulong, N.H.R.; Mustapa, S.A.S.; Rashid, M.K.A. Application of expanded polystyrene (EPS) in buildings and constructions: A review. J. Appl. Polym. Sci. 2019, 136, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Horvath, J. Expanded Polystyrene (EPS) geofoam: An introduction to material behavior. Geotext. Geomembr. 1994, 13, 263–280. [Google Scholar] [CrossRef]
- Babu, K.; Babu, D. Behaviour of lightweight expanded polystyrene concrete containing silica fume. Cem. Concr. Res. 2003, 33, 755–762. [Google Scholar] [CrossRef]
- Quaranta, N.; Caligaris, M.; Pelozo, G. Emissions analysis from various industrial wastes to be used as raw material for ceramics. Manag. Nat. Resour. Sustain. Dev. Ecol. Hazards 2011, 148, 313–323. [Google Scholar] [CrossRef] [Green Version]
- Ebert, H.-P. Thermal Properties of Aerogels. In Aerogels Handbook; Aegerter, M., Leventis, N., Koebel, M., Eds.; Springer: London, UK, 2011; pp. 537–564. [Google Scholar]
- Hüsing, N.; Schubert, U. Aerogels-Airy Materials: Chemistry, Structure, and Properties. Angew. Chem. Int. Ed. 1998, 37, 22–45. [Google Scholar] [CrossRef]
- Pierre, A. History of Aerogels. In Aerogels Handbook; Aegerter, M., Leventis, N., Koebel, M., Eds.; Springer: London, UK, 2011; pp. 3–18. [Google Scholar]
- Fidalgo, A.; Farinha, J.P.S.; Martinho, J.M.G.; Ilharco, L.M. Flexible hybrid aerogels prepared under subcritical conditions. J. Mater. Chem. A 2013, 1, 12044. [Google Scholar] [CrossRef]
- Yoldas, B.; Annen, M.; Bostaph, J. Chemical Engineering of Aerogel Morphology Formed under Nonsupercritical Condi-tions for Thermal Insulation. Chem. Mater. 2000, 12, 2475–2484. [Google Scholar] [CrossRef]
- Fricke, J.; Tillotson, T. Aerogels: production, characterization, and applications. Thin Solid Films 1997, 297, 212–223. [Google Scholar] [CrossRef]
- Zhu, Q.; Li, Y.; Qiu, Z. Research Progress on Aerogels as Transparent Insulation Materials. In Challenges of Power Engineering and Environment; Metzler, J.B., Ed.; Springer: Heidelberg, Germany, 2007; pp. 1117–1121. [Google Scholar]
- Schultz, J.; Jensen, K. Evacuated aerogel glazings. Vacuum 2008, 82, 723–729. [Google Scholar] [CrossRef]
- Ibrahim, M.; Biwole, P.H.; Achard, P.; Wurtz, E. Aerogel-Based Materials for Improving the Building Envelope’s Thermal Behavior: A Brief Review with a Focus on a New Aerogel-Based Rendering. In Energy Sustain. Through Green Energy; Springer: New Delhi, India, 2015; pp. 163–188. [Google Scholar]
- Stahl, T.; Brunner, S.; Zimmermann, M.; Wakili, K.G. Thermo-hygric properties of a newly developed aerogel based insulation rendering for both exterior and interior applications. Energy Build. 2012, 44, 114–117. [Google Scholar] [CrossRef]
- Ihara, T.; Jelle, B.P.; Gao, T.; Gustavsen, A. Aerogel granule aging driven by moisture and solar radiation. Energy Build. 2015, 103, 238–248. [Google Scholar] [CrossRef]
- Mas, V.F.; Alcocel, E.M.G. Durability of expanded polystyrene mortars. Constr. Build. Mater. 2013, 46, 175–182. [Google Scholar] [CrossRef] [Green Version]
- Gomes, M.G.; Flores-Colen, I.; Manga, L.; Soares, A.; De Brito, J. The influence of moisture content on the thermal conductivity of external thermal mortars. Constr. Build. Mater. 2017, 135, 279–286. [Google Scholar] [CrossRef]
- Silva, M.A.G.; Silva, Z.C.G. Degradation of Mechanical Characteristics of Some Polymeric Mortars Due to Aging. ACI Mater. J. 2007, 104, 337–343. [Google Scholar]
- Oliveira, L.; Abidi, L. Rendering Mortars with Waste Materials Exposed to Freezing/Thawing. In Proceedings of the 3rd European Mortar Summit, Lisbon, Portugal, 21–22 May 2015; pp. 186–198. [Google Scholar]
- Wakili, K.G.; Dworatzyk, C.; Sanner, M.; Sengespeick, A.; Paronen, M.; Stahl, T. Energy efficient retrofit of a prefabricated concrete panel building (Plattenbau) in Berlin by applying an aerogel based rendering to its façades. Energy Build. 2018, 165, 293–300. [Google Scholar] [CrossRef]
- Barbero, S.; Dutto, M.; Ferrua, C.; Pereno, A. Analysis on existent thermal insulating plasters towards innovative applications: Evaluation methodology for a real cost-performance comparison. Energy Build. 2014, 77, 40–47. [Google Scholar] [CrossRef] [Green Version]
- Soares, A.; De Fátima, M.; Florescolen, I.; Ilharco, L.M.; De Brito, J. EN 998-1 Performance Requirements for Thermal Aero-gel-Based Renders. Constr. Build. Mater. J. 2018, 179, 453–460. [Google Scholar] [CrossRef]
- Júlio, M.D.F.; Soares, A.; Ilharco, L.M.; Flores-Colen, I.; de Brito, J. Aerogel-based renders with lightweight aggregates: Correlation between molecular/pore structure and performance. Constr. Build. Mater. 2016, 124, 485–495. [Google Scholar] [CrossRef]
- Westgate, P.; Paine, K.; Ball, R.J. Physical and Mechanical Properties of Plasters Incorporating Aerogel Granules and Poly-propylene Monofilament Fibres. Constr. Build. Mater. 2018, 158, 472–480. [Google Scholar] [CrossRef] [Green Version]
- Nosrati, R.H.; Berardi, U. Hygrothermal Characteristics of Aerogel-Enhanced Insulating Materials under Different Humid-ity and Temperature Conditions. Energy Build. 2018, 158, 698–711. [Google Scholar] [CrossRef]
- Stahl, T.; Wakili, K.G.; Hartmeier, S.; Franov, E.; Niederberger, W.; Zimmermann, M. Temperature and moisture evolution beneath an aerogel based rendering applied to a historic building. J. Build. Eng. 2017, 12, 140–146. [Google Scholar] [CrossRef]
- CEN-EN 1015-2. Methods of Test for Mortar for Masonry—Part 2: Bulk Sampling of Mortars and Preparation Os Test Mortars; CEN—European Committee for Standardization: Brussels, Belgium, 1998. [Google Scholar]
- Newlon, H. Modification of ASTM C666 for Testing Resistance of Concrete to Freezing and Thawing in Sodium Chloride Solution; VHTRC 79-R16; 1978. [Google Scholar]
- Júlio, M.D.F.; Soares, A.; Ilharco, L.M.; Flores-Colen, I.; De Brito, J. Silica-based aerogels as aggregates for cement-based thermal renders. Cem. Concr. Compos. 2016, 72, 309–318. [Google Scholar] [CrossRef]
- Degirmenci, N.; Yilmaz, A. Use of Pumice Fine Aggregate as an Alternative to Standard Sand in Production of Lightweight Cement Mortar. Indian J. Eng. Mater. Sci. 2011, 18, 61–68. [Google Scholar]
- Yazıcı, H. The effect of silica fume and high-volume Class C fly ash on mechanical properties, chloride penetration and freeze–thaw resistance of self-compacting concrete. Constr. Build. Mater. 2008, 22, 456–462. [Google Scholar] [CrossRef]
- Zhang, M.-H.; Gjorv, O. Permeability of High-Strength Lightweight Concrete. ACI Mater. J. 1991, 88, 463–469. [Google Scholar]
- Gomes, M.G.; Flores-Colen, I.; Da Silva, F.; Pedroso, M. Thermal conductivity measurement of thermal insulating mortars with EPS and silica aerogel by steady-state and transient methods. Constr. Build. Mater. 2018, 172, 696–705. [Google Scholar] [CrossRef]
- Mas, V.F.; Tortosa, J.A.H.; Alcocel, E.G. Durability of Mortars with Expanded Polystyrene. In Proceedings of the International Conference on Durability of Building Materials and Components (XII DBMC), Porto, Portugal, 12–15 April 2011. [Google Scholar]
- ASTM-C666. Standard Test Method for Resistance of Concrete to Rapid Freezing and Thawing; ASTM: Philadelphia, PA, USA, 2015. [Google Scholar]
- Soares, A.; Melo, H.; Gomes, G. Evaluation of the Thermal Behaviour of Mortars Applied on Brick Substrate. In Proceedings of the 1st International Symposium on Building Pathology (ISBP), Porto, Portugal, 24–27 March 2015. [Google Scholar]
- Nilsson, O.; Fransson, A.; Sandberg, O. Thermal Properties of Silica Aerogel. In Aerogels; Metzler, J.B., Ed.; Springer: Berlin/Heidelberg, Germany, 1986; Volume 6, pp. 121–126. [Google Scholar]
- Lakreb, N.; Bezzazi, B.; Pereira, H. Mechanical strength properties of innovative sandwich panels with expanded cork agglomerates. Eur. J. Wood Wood Prod. 2015, 73, 465–473. [Google Scholar] [CrossRef]
- Silva, S.P.; Sabino, M.A.; Fernandes, E.M.; Correlo, V.M.; Boesel, L.F.; Reis, R.L. Cork: Properties, capabilities and applications. Int. Mater. Rev. 2005, 50, 345–365. [Google Scholar] [CrossRef] [Green Version]
- Pereira, H. Cork: Biology, Production and Uses; Elsevier: Amsterdam, The Netherlands, 2007. [Google Scholar]
- Brooks, J. Elasticity, shrinkage, creep and thermal movement. In Advanced Concrete Technology; Elsevier B.V.: Amsterdam, The Netherlands, 2003; pp. 1–18. [Google Scholar]
- Wang, J.; Hu, B.; Soon, J.H. Physical and Mechanical Properties of a Bulk Lightweight Concrete with Expanded Polystyrene (EPS) Beads and Soft Marine Clay. Materials 2019, 12, 1662. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miled, K.; Sab, K.; Le Roy, R. Effective elastic properties of porous materials: Homogenization schemes vs experimental data. Mech. Res. Commun. 2011, 38, 131–135. [Google Scholar] [CrossRef]
- Maaroufi, M.; Abahri, K.; El Hachem, C.; Belarbi, R. Characterization of EPS lightweight concrete microstructure by X-ray tomography with consideration of thermal variations. Constr. Build. Mater. 2018, 178, 339–348. [Google Scholar] [CrossRef]
- Woignier, T.; Pelous, J.; Phalippou, J.; Vacher, R.; Courtens, E. Elastic Properties of Silica Aerogels. J. Non-Cryst. Solids 1987, 95–96, 1197–1202. [Google Scholar] [CrossRef]
- Zeng, S.Q.; Hunt, A.J.; Cao, W.; Greif, R. Pore Size Distribution and Apparent Gas Thermal Conductivity of Silica Aerogel. J. Heat Transf. 1994, 116, 756–759. [Google Scholar] [CrossRef]
- Hannant, D. Cement-based Composites. In Comprehensive Composite Materials; Elsevier B.V.: Amsterdam, The Netherlands, 2000; Volume 4, pp. 323–362. [Google Scholar]
- CEN-EN 1015-11. Methods of Test for Mortar for Masonry—Part 11: Determination of Flexural and Compressive Strength of Hardened Mortar; CEN—European Committee for Standardization: Brussels, Belgium, 1999. [Google Scholar]
- CEN-EN 1015-3. Methods of Test for Mortar for Masonry—Part 3: Determination of Consistence of Fresh Mortar (by Flow Table); CEN—European Committee for Standardization: Brussels, Belgium, 1999. [Google Scholar]
- LNEC-FE Pa 43. Test Data Sheet, Mechanical Characteristics Evaluation Test by Ultrasonic Method (in Portuguese); LNEC: Lisboa, Portugal, 2010. [Google Scholar]
- ASTM-E 1876-01. Standard Test Method for Dynamic Young’s Modulus, Shear Modulus, and Poisson’s Ratio by Impulse Excitation of Vibration; ASTM: Philadelphia, PA, USA, 2009. [Google Scholar]
- ASTM-D5930-09. Thermal Conductivity of Plastics by Means of a Transient Line-Source Technique; ASTM: Philadelphia, PA, USA, 2009. [Google Scholar]
- CEN-EN 1348. Adhesives for Tiles—Determination of Tensile Adhesion Strength for Cementitious Adhesives; CEN—European Committee for Standardization: Brussels, Belgium, 2007. [Google Scholar]
- Botas, S. Evaluation of Mortar Behavior in Cold Climates (in Portuguese); FCT-UNL: Lisboa, Portugal, 2009. [Google Scholar]
- CEN-EN 1015-21. Methods of Test for Mortar for Masonry—Part 21: Determination of the Compatibility of One-Coat Rendering Mortars with Substrates; CEN—European Committee for Standardization: Brussels, Belgium, 2002. [Google Scholar]
Renders | Bulk Density of Fresh Render [kg/m3] | Flow Value [mm] |
---|---|---|
A(SS) | 1893 | 181 |
B(GEC) | 508 | 147 |
C(SA) | 607 | 135 |
D(EPS) | 432 | 165 |
Renders | A(SS) | B(GEC) | C(SA) | D(EPS) |
---|---|---|---|---|
Dry bulk density [kg/m3] | 1823 | 443 | 438 | 458 |
Renders | Weight [g] | Cs [N/mm2] | USV [m/s] | E-mod [N/mm2] | λ [W/m.K] | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
B_F/T | A_F/T | Var | B_F/T | A_F/T | Var | B_F/T | A_F/T | Var | B_F/T | A_F/T | Var | B_F/T | A_F/T | Var | |
A(SS) | 227.19 | 220.24 | −3.06 | 19.42 | 18.96 | −2.37 | 1909 | 1879 | −1.57 | 13,536 | 11,884 | −12.20 | 1.51 | 1.51 | 0.00 |
B(GEC) | 58.72 | 54.75 | −6.76 | 1.26 | 1.44 | 14.29 | 870 | 840 | −3.45 | 304 | 322 | 5.92 | 0.08 | 0.08 | 0.00 |
C(SA) | 55.52 | 47.46 | −14.52 | 0.72 | 0.73 | 1.39 | 890 | 850 | −4.49 | 449 | 496 | 10.47 | 0.08 | 0.07 | −12.50 |
D(EPS) | 60.05 | 56.97 | −5.13 | 2.15 | 2.56 | 19.07 | 1220 | 1132 | −7.21 | 1344 | 769 | −42.78 | 0.1 | 0.1 | 0.00 |
Renders | Weight [g] | Cs [N/mm2] | USV [m/s] | λ [W/m.K] | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
B_AA | A_AA | Var | B_AA | A_AA | Var | B_AA | A_AA | Var | B_AA | A_AA | Var | |
A(SS) | 232.46 | 243.07 | 4.56 | 17.81 | 14.86 | -16.56 | 1986 | 1951 | −1.76 | 1.18 | 2.12 | 79.66 |
B(GEC) | 56.89 | 73.26 | 28.77 | 1.18 | 1.26 | 6.78 | 915 | 934 | 2.08 | 0.08 | 0.10 | 25.00 |
C(SA) | 57.13 | 64.66 | 13.18 | 0.83 | 0.85 | 2.41 | 908 | 974 | 7.27 | 0.07 | 0.07 | 0.00 |
D(EPS) | 59.87 | 68.91 | 15.10 | 2.11 | 2.34 | 10.90 | 1192 | 1249 | 4.78 | 0.11 | 0.13 | 18.18 |
Renders | Weight | Compressive Strenght | Ultra-Sound Velocity | Young’s Modulus | Thermal Conductivity | |||||
---|---|---|---|---|---|---|---|---|---|---|
AA | F/T | AA | F/T | AA | F/T | AA | F/T | AA | F/T | |
A(SS) | 4.56 | −3.06 | 16.56 | −2.37 | −1.76 | −1.57 | n.t. | −12.20 | 79.66 | 0.00 |
B(GEC) | 28.77 | −6.76 | 6.78 | 14.29 | 2.08 | −3.45 | n.t. | 5.92 | 25.00 | 0.00 |
C(SA) | 13.18 | −14.52 | 2.41 | 1.39 | 7.27 | −4.49 | n.t. | 10.47 | 0.00 | −12.50 |
D(EPS) | 15.10 | −5.13 | 10.90 | 19.07 | 4.78 | −7.21 | n.t. | −42.78 | 18.18 | 0.00 |
Renders | A(SS) | B(GEC) | C(SA) | D(EPS) | |
---|---|---|---|---|---|
Water:binder ratio (wt) | 1.00 | 0.79 | 0.63 | 0.62 | |
Aggregate (vol.%) | Silica sand (≤ 2 mm) | 100 | - | - | - |
Regranulated expanded cork (0.5–2 mm) | - | 100 | - | - | |
Silica aerogel (≤ 2 mm) | - | - | 100 | - | |
Expanded polystyrene (2–4 mm) | - | - | - | 100 | |
Admixture (wt% relative to total binder) | Surfactant | - | 0.5 | 0.5 | 0.5 |
Cellulose ether | - | 0.075 | 0.075 | 0.075 | |
Resin | - | 2 | 2 | 2 |
Degradation Procedures | Test | Specimen | Number of Measurements |
---|---|---|---|
Freeze/Thaw | Cs | Standard | 6 |
USV | Standard | 180 | |
E-mod | 20 × 20 × 80 × mm3 | 20 | |
λ | Cylindrical | 2 | |
Accelerated aging | Cs | Standard | 6 |
USV | Standard | 180 | |
λ | Cylindrical | 2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morgado, A.; Soares, A.; Flores-Colen, I.; Veiga, M.d.R.; Gomes, M.G. Durability of Thermal Renders with Lightweight and Thermal Insulating Aggregates: Regranulated Expanded Cork, Silica Aerogel and Expanded Polystyrene. Gels 2021, 7, 35. https://doi.org/10.3390/gels7020035
Morgado A, Soares A, Flores-Colen I, Veiga MdR, Gomes MG. Durability of Thermal Renders with Lightweight and Thermal Insulating Aggregates: Regranulated Expanded Cork, Silica Aerogel and Expanded Polystyrene. Gels. 2021; 7(2):35. https://doi.org/10.3390/gels7020035
Chicago/Turabian StyleMorgado, André, António Soares, Inês Flores-Colen, Maria do Rosário Veiga, and Maria Glória Gomes. 2021. "Durability of Thermal Renders with Lightweight and Thermal Insulating Aggregates: Regranulated Expanded Cork, Silica Aerogel and Expanded Polystyrene" Gels 7, no. 2: 35. https://doi.org/10.3390/gels7020035
APA StyleMorgado, A., Soares, A., Flores-Colen, I., Veiga, M. d. R., & Gomes, M. G. (2021). Durability of Thermal Renders with Lightweight and Thermal Insulating Aggregates: Regranulated Expanded Cork, Silica Aerogel and Expanded Polystyrene. Gels, 7(2), 35. https://doi.org/10.3390/gels7020035