Cellular Automata Modeling of Silica Aerogel Condensation Kinetics
Abstract
:1. Introduction
2. Results and Discussion
3. Conclusions
4. Materials and Methods
4.1. Cellular Automata Studies
4.2. Experimental
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Kistler, S.S. Coherent expanded aerogels and jellies. Nature 1931, 127, 741. [Google Scholar] [CrossRef]
- Borovin, E.; Callone, E.; Ribot, F.; Diré, S. Mechanism and kinetics of oligosilsesquioxane growth in the in situ water production sol-gel route: Dependence on water availability. Eur. J. Inorg. Chem. 2016, 2016, 2166–2174. [Google Scholar] [CrossRef]
- Lee, A.S.; Choi, S.S.; Baek, K.Y.; Hwang, S.S. Hydrolysis kinetics of a sol-gel equilibrium yielding ladder-like polysilsesquioxanes. Inorg. Chem. Commun. 2016, 73, 7–11. [Google Scholar] [CrossRef]
- Endo, H.; Takeda, N.; Unno, M. Synthesis and properties of phenylsilsesquioxanes with ladder and double-decker structures. Organometallics 2014, 33, 4148–4151. [Google Scholar] [CrossRef]
- Kessler, D.; Löwe, H.; Theato, P. Synthesis of defined poly(silsesquioxane)s: Fast polycondensation of trialkoxysilanes in a continuous-flow microreactor. Macromol. Chem. Phys. 2009, 210, 7. [Google Scholar] [CrossRef]
- Luo, Y.; Li, Z.; Zhang, W.; Yan, H.; Wang, Y.; Li, M.; Liu, Q. Rapid synthesis and characterization of ambient pressure dried monolithic silica aerogels in ethanol/water co-solvent system. J. Non-Cryst. Solids 2019, 503, 214–223. [Google Scholar] [CrossRef]
- Maximiano, P.; Duares, L.; Simoes, P. Overview of Multiscale Molecular Modeling and Simulation of Silica Aerogels. Ind. Eng. Chem. Res. 2019, 58, 18905. [Google Scholar] [CrossRef]
- Patil, S.P.; Parale, V.G.; Park, H.-H.; Markert, B. Mechanical modeling and simulation of aerogels: A review. Ceram. Int. 2020; in press. [Google Scholar] [CrossRef]
- Rivas Murillo, J.S.; Bachlechner, M.E.; Campo, F.A.; Barbero, E.J. Structure and mechanical properties of silica aerogels and xerogels modeled by molecular dynamics simulation. J. Non-Cryst. Solids 2010, 356, 1325–1331. [Google Scholar] [CrossRef]
- Patil, S.P.; Rege, A.; Itskov, M.; Markert, B. Mechanics of Nanostructured Porous Silica Aerogel Resulting from Molecular Dynamics Simulations. J. Phys. Chem. B 2017, 121, 5660–5668. [Google Scholar] [CrossRef] [PubMed]
- Ma, H.-S.; Roberts, A.P.; Prévost, J.-H.; Jullien, R.; Scherer, G.W. Mechanical structure-property relationship of aerogels. J. Non-Cryst. Solids 2000, 277, 127–141. [Google Scholar] [CrossRef]
- Ma, H.-S.; Prévost, J.-H.; Jullien, R.; Scherer, G.W. Computer simulation of mechanical structure-property. J. Non-Cryst. Solids 2001, 285, 216–221. [Google Scholar] [CrossRef]
- Gelb, L.D. Simulating Silica Aerogels with a Coarse-Grained Flexible Model and Langevin Dynamics. J. Phys. Chem. C 2007, 111, 15792–15802. [Google Scholar] [CrossRef]
- Ferreiro-Rangel, C.A.; Gelb, L.D. Investigation of the bulk modulus of silica aerogel using molecular dynamics simulations of a coarse-grained model. J. Phys. Chem. B 2013, 117, 7095–7105. [Google Scholar] [CrossRef]
- Ferreiro-Rangel, C.A.; Gelb, L.D. Computational study of uniaxial deformations in silica aerogel using a coarse-grained model. J. Phys. Chem. B 2015, 119, 8640–8650. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morthomas, J.; Gonçalves, W.; Perez, M.; Foray, G.; Martin, C.L.; Chantrenne, P. A novel method to predict the thermal conductivity of nanoporous materials from atomistic simulations. J. Non-Cryst. Solids 2019, 516, 89–98. [Google Scholar] [CrossRef]
- Menshutina, N.; Lebedev, I.; Lebedev, E.; Paraskevopoulou, P.; Chriti, D.; Mitrofanov, I. A cellular automata approach for the modeling of a polyamide and carbon aerogel structure and its properties. Gels 2020, 6, 35. [Google Scholar] [CrossRef]
- Meakin, P. Formation of fractal clusters and networks by irreversible diffusion-limited aggregation. Phys. Rev. Lett. 1983, 51, 1119. [Google Scholar] [CrossRef]
- Kolb, M.; Botet, R.; Jullien, R. Scaling of kinetically growing clusters. Phys. Rev. Lett. 1983, 51, 1123. [Google Scholar] [CrossRef]
- Hasmy, A.; Anglaret, E.; Foret, M.; Pelous, J.; Jullien, R. Small-angle neutron scattering investigation of long-range correlations in silica aerogels: Simulations and experiments. Phys. Rev. B 1994, 50, 6006–6016. [Google Scholar] [CrossRef] [PubMed]
- Ma, H.-S.; Prévost, J.-H.; Scherer, G.W. Elasticity of DLCA model gels with loops. Int. J. Solids Struct. 2002, 39, 4605–4614. [Google Scholar] [CrossRef]
- Borzęcka, N.H.; Nowak, B.; Gac, J.M.; Głaz, T.; Bojarska, M. Kinetics of MTMS-based aerogel formation by the sol-gel method—Experimental results and theoretical description. J. Non-Cryst. Solids 2020, 547, 120310. [Google Scholar] [CrossRef]
- Zhang, X.-Q.; Trinh, T.T.; van Santen, R.A.; Jansen, A.P.J. Mechanism of the Initial Stage of Silicate Oligomerization. J. Am. Chem. Soc. 2011, 133, 6613. [Google Scholar] [CrossRef] [PubMed]
- Depla, A.; Lesthaeghe, D.; van Erp, T.S.; Aerts, A.; Houthoofd, K.; Fan, F.; Li, C.; Van Speybroeck, V.; Waroquier, M.; Kirschock, C.E.A.; et al. 29SiNMR and UV-Raman Investigation of Initial Oligomerization Reaction Pathways in Acid-Catalyzed Silica Sol-Gel Chemistry. J. Phys. Chem. C 2011, 115, 3562. [Google Scholar] [CrossRef]
- Abdusalamabov, R.; Itskov, M.; Milow, B.; Reichenauer, G.; Rege, A. Investigation of the fractal properties of aerogels by diffusion-limited aggregation models. In Proceedings of the 8th GACM Colloquium on Computational Mechanics: For Young Scientists From Academia and Industry, Kassel, Germany, 28–30 August 2019. [Google Scholar] [CrossRef]
- Nakanishi, K.; Kanamori, K. Organic-inorganic hybrid poly(silsesquioxane) monoliths with controlled macro- and mesopores. J. Mater. Chem. 2005, 15, 3776–3786. [Google Scholar] [CrossRef]
Secondary Particles Concentration (%) | A Parameter | n Parameter | R2 |
---|---|---|---|
1 | 3901.8 | −0.56 | 0.94 |
5 | 761.8 | −0.61 | 0.95 |
12.5 | 90.1 | −0.77 | 1 |
Sample Nr | Molar Ratio | Conc. NH4OH [mol/dm3] | Gel. Time [s] | S.dev [s] | ||||
---|---|---|---|---|---|---|---|---|
MTMS | MeOH | H2O | Oxalic Acid | NH4OH | ||||
1 | 1 | 7.36 | 14.87 | 1.34 | 0.13 | 0.19 | 913.67 | 129.62 |
2 | 1 | 7.36 | 14.93 | 1.34 | 0.07 | 0.09 | 2445.00 | 141.07 |
3 | 1 | 7.36 | 16.52 | 1.49 | 0.15 | 0.20 | 737.67 | 329.82 |
4 | 1 | 7.36 | 18.17 | 1.64 | 0.16 | 0.21 | 540.67 | 147.78 |
5 | 1 | 7.36 | 19.78 | 1.79 | 0.22 | 0.28 | 634.67 | 49.00 |
6 | 1 | 7.36 | 19.82 | 1.79 | 0.18 | 0.22 | 366.00 | 214.00 |
7 | 1 | 7.36 | 19.86 | 1.79 | 0.13 | 0.17 | 966.67 | 15.00 |
8 | 1 | 7.36 | 19.91 | 1.79 | 0.09 | 0.11 | 1411.67 | 128.00 |
9 | 1 | 7.36 | 21.47 | 1.94 | 0.19 | 0.23 | 328.00 | 129.90 |
10 | 1 | 7.36 | 23.08 | 2.09 | 0.26 | 0.30 | 324.00 | 7.94 |
11 | 1 | 7.36 | 23.12 | 2.09 | 0.21 | 0.24 | 301.67 | 158.66 |
12 | 1 | 7.36 | 23.17 | 2.09 | 0.16 | 0.18 | 640.00 | 17.32 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borzęcka, N.H.; Nowak, B.; Pakuła, R.; Przewodzki, R.; Gac, J.M. Cellular Automata Modeling of Silica Aerogel Condensation Kinetics. Gels 2021, 7, 50. https://doi.org/10.3390/gels7020050
Borzęcka NH, Nowak B, Pakuła R, Przewodzki R, Gac JM. Cellular Automata Modeling of Silica Aerogel Condensation Kinetics. Gels. 2021; 7(2):50. https://doi.org/10.3390/gels7020050
Chicago/Turabian StyleBorzęcka, Nina H., Bartosz Nowak, Rafał Pakuła, Robert Przewodzki, and Jakub M. Gac. 2021. "Cellular Automata Modeling of Silica Aerogel Condensation Kinetics" Gels 7, no. 2: 50. https://doi.org/10.3390/gels7020050
APA StyleBorzęcka, N. H., Nowak, B., Pakuła, R., Przewodzki, R., & Gac, J. M. (2021). Cellular Automata Modeling of Silica Aerogel Condensation Kinetics. Gels, 7(2), 50. https://doi.org/10.3390/gels7020050