Flowability of Gel-Matrix and Magnetorheological Response for Carrageenan Magnetic Hydrogels
Abstract
:1. Introduction
2. Results and Discussion
3. Conclusions
4. Materials and Methods
4.1. Synthesis of Magnetic Hydrogels
4.2. Rheological Measurements
4.3. SEM Observations
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kalita, V.M.; Dzhezherya, Y.I.; Cherepov, S.V.; Skirta, Y.B.; Bodnaruk, A.V.; Levchenko, G.G. Critical bending and shape memory effect in magnetoactive elastomers. Smart Mater. Struct. 2021, 30, 025020. [Google Scholar] [CrossRef]
- Alekhina, Y.A.; Makarova, L.A.; Kostrov, S.A.; Stepanov, G.V.; Kazimirova, E.G.; Perov, N.S.; Kramarenko, E.Y. Development of magnetoactive elastomers for sealing eye retina detachments. J. Appl. Polym. Sci. 2019, 136, 47425. [Google Scholar] [CrossRef]
- Kang, S.S.; Choi, K.; Nam, J.D.; Choi, H.J. Magnetorheological Elastomers: Fabrication, Characteristics, and Applications. Materials 2020, 13, 4597. [Google Scholar] [CrossRef] [PubMed]
- Kalita, V.M.; Dzhezherya, Y.I.; Levchenko, G.G. Anomalous magnetorheological effect in unstructured magnetoisotropic magnetoactive elastomers. Appl. Phys. Lett. 2020, 116, 063701. [Google Scholar] [CrossRef]
- Khayama, S.U.; Muhammad, U.; Malik, A.U.; Ahmed, R. Development and characterization of a novel hybridmagnetorheological elastomer incorporating micro and nano size iron fillers. Mater. Des. 2020, 192, 108748. [Google Scholar] [CrossRef]
- Norhiwani, M.H.; Saiful, A.M.; Ubaidillah, U.; Siti, A.A.A.; Muntaz, H.A.K.; Nur, A.N.; Nazmi, N. Solvent Dependence of the Rheological Properties in Hydrogel Magnetorheological Plastomer. Int. J. Mol. Sci. 2020, 21, 1793. [Google Scholar]
- Fischer, L.; Menzel, A.M. Magnetically induced elastic deformations in model systems of magnetic gels and elastomers containing particles of mixed size. Smart Mater. Struct. 2021, 30, 014003. [Google Scholar] [CrossRef]
- Fischer, L.; Menzel, A.M. Magnetostriction in magnetic gels and elastomers as a function of the internal structure and particle distribution. J. Chem. Phys. 2019, 151, 114906. [Google Scholar] [CrossRef]
- Qianqian, W.; Yu, W.; Jiabin, F.; Xinglong, G. Transient response of magnetorheological elastomers to step magnetic field. Appl. Phys. Lett. 2018, 113, 081902. [Google Scholar]
- Szabo, D.; Szeghy, G.; Zrinyi, M. Shape Transition of Magnetic Field Sensitive Polymer Gels. Macromolecules 1998, 31, 6541–6548. [Google Scholar] [CrossRef]
- Stepanov, G.V.; Abramchuk, S.S.; Grishin, D.A.; Nikitin, L.V.; Kramarenko, E.Y.; Khokhlov, A.R. Effect of a homogeneous magnetic field on the viscoelastic behavior of magnetic elastomers. Polymer 2007, 48, 488–495. [Google Scholar] [CrossRef]
- Gundermann, T.; Odenbach, S. Investigation of the motion of particles in magnetorheological elastomers by X-μCT. Smart Mater. Struct. 2014, 23, 105013. [Google Scholar] [CrossRef]
- Watanabe, M.; Takeda, Y.; Maruyama, T.; Ikeda, J.; Kawai, M.; Mitsumata, T. Chain Structure in a Cross-Linked Polyurethane Magnetic Elastomer Under a Magnetic Field. Int. J. Mol. Sci. 2019, 20, 2879. [Google Scholar] [CrossRef] [Green Version]
- Mitsumata, T.; Honda, A.; Kanazawa, H.; Kawai, M. Magnetically Tunable Elasticity for Magnetic Hydrogels Consisting of Carrageenan and Carbonyl Iron Particles. J. Phys. Chem. B 2012, 116, 12341–12348. [Google Scholar] [CrossRef]
- Wu, Z.; Deng, W.; Zhou, W.; Luo, J. Novel magnetic polysaccharide/grapheme oxide @Fe3O4 gel beads for adsorbing heavy metal ions. Carbohydr. Polym. 2019, 216, 119–128. [Google Scholar] [CrossRef]
- Daniel-da-silva, A.L.; Moreira, J.; Neto, R.; Estrada, A.C.; Gil, A.M.; Trindade, T. Impact of magnetic nanofillers in the swelling and release properties of κ-carrageenan hydrogel nanocomposites. Carbohydr. Polym. 2012, 87, 328–335. [Google Scholar] [CrossRef]
- Sagbas, S.; Butun, S.; Sahiner, N. Modifiable chemically crosslinked poli (κ-carrageenan) particles. Carbohydr. Polym. 2012, 87, 2718–2724. [Google Scholar] [CrossRef]
- Duman, O.; Tunç, S.; Polat, T.G.; Bozo˘glan, B.K. Synthesis of magnetic oxidized multiwalled carbon nanotube-κ-carrageenan-Fe3O4 nanocomposite adsorbent and its application in cationic Methylene Blue dye adsorption. Carbohydr. Polym. 2016, 147, 79–88. [Google Scholar] [CrossRef]
- Chomoucka, J.; Drbohlavova, J.; Huska, D.; Adam, V.; Kizek, R.; Hubalek, J. Magnetic nanoparticles and targeted drug delivering. Pharmacol. Res. 2010, 62, 144–149. [Google Scholar] [CrossRef]
- Katagiri, K.; Ohta, K.; Sako, K.; Inumaru, K.; Hayashi, K.; Sasaki, Y.; Akiyoshi, K. Development and Potential Theranostic Applications of a Self-Assembled Hybrid of Magnetic Nanoparticle Clusters with Polysaccharide Nanogels. Chem. Plus Chem. 2014, 79, 1631–1637. [Google Scholar] [CrossRef]
- Wang, C.; Gao, X.; Chen, Z.; Chen, Y.; Chen, H. Preparation, Characterization and Application of Polysaccharide-Based Metallic Nanoparticles. Polymers 2017, 9, 689. [Google Scholar] [CrossRef] [Green Version]
- Balachandramohana, J.; Anandanb, S.; Sivasankara, T. A simple approach for the sonochemical synthesis of Fe3O4-guargum nanocomposite and its catalytic reduction of p-nitroaniline. Ultrason. Sonochem. 2018, 40, 1–10. [Google Scholar] [CrossRef]
- Mitsumata, T.; Abe, N. Magnetic-field Sensitive Gels with Wide Modulation of Dynamic Modulus. Chem. Lett. 2009, 38, 922–923. [Google Scholar] [CrossRef]
- Akama, S.; Ikeda, J.; Kawai, M.; Mitsumata, T. A Feature in Magnetorheological Effect for Polysaccharide Magnetic Hydrogels. Chem. Lett. 2018, 47, 1240–1242. [Google Scholar] [CrossRef]
- Kimura, Y.; Kanauchi, S.; Kawai, M.; Mitsumata, T.; Tamesue, S.; Yamauchi, T. Effect of Plasticizer on the Magnetorheological Response for Magnetic Polyurethane Elastomers. Chem. Lett. 2015, 44, 177–178. [Google Scholar] [CrossRef]
- Ikeda, J.; Takahashi, D.; Watanabe, M.; Kawai, M.; Mitsumata, T. Particle Size in Secondary Particle and Mangetic Response for Carrageenan magnetic Hydrogels. Gels 2019, 5, 39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matricardi, P.; Alhaique, F.; Coviello, T. Polysaccharide Hydrogels, Characterization and Biomedical Applications; Jenny Stanford Publishing: New York, NY, USA, 2015. [Google Scholar]
- Sijun, L.; Lin, L. Recoverable and Self-Healing Double Network Hydrogel Based on κ-Carrageenan. ACS Appl. Mater. Interfaces 2016, 8, 29749–29758. [Google Scholar]
- Sijun, L.; Lin, L. Ultrastretchable and Self-Healing Double-Network Hydrogel for 3D Printing and Strain Sensor. ACS Appl. Mater. Interfaces 2017, 9, 26429–26437. [Google Scholar]
- Sijun, L.; Hongbin, Z.; Wei, Y. Simultaneously improved strength and toughness in κ-carrageenan/polyacrylamide double network hydrogel via synergistic interaction. Carbohydr. Polym. 2020, 230, 115596. [Google Scholar]
- Kyu, H.; Sook, H.K.; Kyung, H.A.; Seung, J.L. Large amplitude oscillatory shear as a way to classify the complex fluids J. Non-Newton. Fluid Mech. 2002, 107, 51–65. [Google Scholar]
- Silva, V.A.J.; Andrade, P.L.; Silva, M.P.C.; Bustamante, A.; Valladares, L.D.L.S.; Aguiar, J.A. Synthesis and characterization of Fe3O4 nanoparticles coated with fucan polysaccharides. J. Magn. Magn. Mater. 2013, 343, 138–143. [Google Scholar] [CrossRef] [Green Version]
- Takahashi, D.; Watanabe, M.; Kawai, M.; Mitsumata, T. Magnetorheological Response for Magnetic Elastomers Containing Carbonyl Iron Particles Coated with Poly(methyl methacrylate). Polymers 2021, 13, 335. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ikeda, J.; Kurihara, T.; Ogura, K.; Akama, S.; Kawai, M.; Mitsumata, T. Flowability of Gel-Matrix and Magnetorheological Response for Carrageenan Magnetic Hydrogels. Gels 2021, 7, 56. https://doi.org/10.3390/gels7020056
Ikeda J, Kurihara T, Ogura K, Akama S, Kawai M, Mitsumata T. Flowability of Gel-Matrix and Magnetorheological Response for Carrageenan Magnetic Hydrogels. Gels. 2021; 7(2):56. https://doi.org/10.3390/gels7020056
Chicago/Turabian StyleIkeda, Junko, Tomoki Kurihara, Keiju Ogura, Shota Akama, Mika Kawai, and Tetsu Mitsumata. 2021. "Flowability of Gel-Matrix and Magnetorheological Response for Carrageenan Magnetic Hydrogels" Gels 7, no. 2: 56. https://doi.org/10.3390/gels7020056
APA StyleIkeda, J., Kurihara, T., Ogura, K., Akama, S., Kawai, M., & Mitsumata, T. (2021). Flowability of Gel-Matrix and Magnetorheological Response for Carrageenan Magnetic Hydrogels. Gels, 7(2), 56. https://doi.org/10.3390/gels7020056