Effect of Biodegradable Hydrophilic and Hydrophobic Emulsifiers on the Oleogels Containing Sunflower Wax and Sunflower Oil
Abstract
:1. Introduction
2. Results
2.1. Visual Appearance and Oil Binding Capacity
2.2. Colorimetric Analysis
2.3. Microscopic Analysis
2.3.1. Surface Topography
2.3.2. Microstructure Analysis
2.4. Mechanical Study
2.4.1. Stress Relaxation Study
2.4.2. Spreadability Analysis
2.5. Molecular Analysis
2.5.1. FTIR Spectroscopy
2.5.2. XRD Diffraction Patterns
2.6. Thermal Analysis
2.6.1. Gelation Kinetics
2.6.2. DSC Analysis
2.7. Drug Release Analysis
3. Conclusions
4. Material and Methods
4.1. Materials
4.2. Oleogel Preparations
4.3. Study of Oil Released and Oil Binding Capacity (OBC)
4.4. Colorimetric Analysis
4.5. Microscopic Analysis
4.5.1. Surface Topography
4.5.2. Microstructure Visualization
4.6. Mechanical Study
4.6.1. Stress Relaxation
4.6.2. Spreadability Study
4.7. Molecular Characterization
4.7.1. Fourier Transform Infrared (FTIR) Spectroscopy
4.7.2. X-ray Diffraction Study
4.8. Thermal Analysis
4.8.1. Gelation Kinetics
4.8.2. Differential Scanning Calorimetry (DSC) Analysis
4.9. Drug Release Study
4.10. Statistical Analyses
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Scharfe, M.; Flöter, E. Oleogelation: From Scientific Feasibility to Applicability in Food Products. Eur. J. Lipid Sci. Technol. 2020, 122, 2000213. [Google Scholar] [CrossRef]
- Mozaffarian, D.; Ludwig, D. The 2015 US Dietary Guidelines: Lifting the Ban on Total Dietary Fat. JAMA 2015, 313, 2421–2422. [Google Scholar] [CrossRef] [PubMed]
- Pușcaș, A.; Mureșan, V.; Socaciu, C.; Muste, S. Oleogels in Food: A Review of Current and Potential Applications. Foods 2020, 9, 70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dassanayake, L.S.K.; Kodali, D.R.; Ueno, S. Formation of oleogels based on edible lipid materials. Curr. Opin. Colloid Interface Sci. 2011, 16, 432–439. [Google Scholar] [CrossRef]
- Delbecq, F.; Nguyen, R.; Van Hecke, E.; Len, C. Design and physicochemical properties of long and stiff fatty low molecular weight oleogelators. J. Mol. Liq. 2019, 295, 111708. [Google Scholar] [CrossRef]
- Winkler-Moser, J.K.; Anderson, J.; Felker, F.C.; Hwang, H. Physical Properties of Beeswax, Sunflower Wax, and Candelilla Wax Mixtures and Oleogels. J. Am. Oil Chem. Soc. 2019, 96, 1125–1142. [Google Scholar] [CrossRef]
- Bin Sintang, M.D.; Danthine, S.; Tavernier, I.; Van de Walle, D.; Doan, C.D.; Muhammad, D.R.A.; Rimaux, T.; Dewettinck, K. Polymer coated fat crystals as oil structuring agents: Fabrication and oil-structuring properties. Food Hydrocoll. 2021, 115, 106623. [Google Scholar] [CrossRef]
- Okuro, P.K.; Tavernier, I.; Bin Sintang, M.D.; Skirtach, A.G.; Vicente, A.A.; Dewettinck, K.; Cunha, R.L. Synergistic interactions between lecithin and fruit wax in oleogel formation. Food Funct. 2018, 9, 1755–1767. [Google Scholar] [CrossRef]
- Tavernier, I.; Doan, C.D.; Van Der Meeren, P.; Heyman, B.; Dewettinck, K. The Potential of Waxes to Alter the Microstructural Properties of Emulsion-Templated Oleogels. Eur. J. Lipid Sci. Technol. 2018, 120, 1700393. [Google Scholar] [CrossRef]
- Hwang, H.-S.; Kim, S.; Evans, K.; Koga, C.; Lee, Y. Morphology and networks of sunflower wax crystals in soybean oil organogel. Food Struct. 2015, 5, 10–20. [Google Scholar] [CrossRef]
- Hwang, H.-S.; Singh, M.; Winkler-Moser, J.; Bakota, E.L.; Liu, S.X. Preparation of Margarines from Organogels of Sunflower Wax and Vegetable Oils. J. Food Sci. 2014, 79, C1926–C1932. [Google Scholar] [CrossRef]
- Franco, R. Sunflower Oil Functional Properties for Specialty Food. Nutr. Food Sci. Int. J. 2018, 5, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Oh, I.K.; Amoah, C.; Lim, J.; Jeong, S.; Lee, S. Assessing the effectiveness of wax-based sunflower oil oleogels in cakes as a shortening replacer. LWT 2017, 86, 430–437. [Google Scholar] [CrossRef]
- Liu, N.; Lu, Y.; Zhang, Y.; Gao, Y.; Mao, L. Surfactant addition to modify the structures of ethylcellulose oleogels for higher solubility and stability of curcumin. Int. J. Biol. Macromol. 2020, 165, 2286–2294. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, A.P.B.; Masuchi, M.H.; Miyasaki, E.K.; Domingues, M.A.F.; Stroppa, V.L.Z.; De Oliveira, G.M.; Kieckbusch, T.G. Crystallization modifiers in lipid systems. J. Food Sci. Technol. 2014, 52, 3925–3946. [Google Scholar] [CrossRef] [Green Version]
- Uvanesh, K.; Nayak, S.K.; Sagiri, S.S.; Banerjee, I.; Ray, S.S.; Pal, K. Effect of Non-Ionic Hydrophilic and Hydrophobic Surfactants on the Properties on the Stearate Oleogels. In Nutraceuticals and Innovative Food Products for Healthy Living and Preventive Care; IGI Global: Hershey, PA, USA, 2018; pp. 260–279. [Google Scholar] [CrossRef]
- Fu, X.; Kong, W.; Zhang, Y.; Jiang, L.; Wang, J.; Lei, J. Novel solid–solid phase change materials with biodegradable trihydroxy surfactants for thermal energy storage. RSC Adv. 2015, 5, 68881–68889. [Google Scholar] [CrossRef]
- Yeh, C.K.-J.; Peng, S.-L.; Hsu, I.-Y. Co-surfactant of ethoxylated sorbitan ester and sorbitan monooleate for enhanced flushing of tetrachloroethylene. Chemosphere 2002, 49, 421–430. [Google Scholar] [CrossRef]
- Fayaz, G.; Calligaris, S.; Nicoli, M.C. Comparative Study on the Ability of Different Oleogelators to Structure Sunflower Oil. Food Biophys. 2019, 15, 42–49. [Google Scholar] [CrossRef]
- Meng, Z.; Qi, K.; Guo, Y.; Wang, Y.; Liu, Y. Effects of thickening agents on the formation and properties of edible oleogels based on hydroxypropyl methyl cellulose. Food Chem. 2018, 246, 137–149. [Google Scholar] [CrossRef]
- Sagiri, S.S.; Rao, K. Natural and bioderived molecular gelator–based oleogels and their applications. In Biopolymer-Based Formulations: Biomedical and Food Applications; Elsevier: Amsterdam, The Netherlands, 2020; pp. 513–559. [Google Scholar] [CrossRef]
- Pehlivanoglu, H.; Demirci, M.; Toker, O.S. Rheological properties of wax oleogels rich in high oleic acid. Int. J. Food Prop. 2017, 20, S2856–S2867. [Google Scholar] [CrossRef] [Green Version]
- León, K.; Mery, D.; Pedreschi, F.; León, J. Color measurement in L∗a∗b∗ units from RGB digital images. Food Res. Int. 2006, 39, 1084–1091. [Google Scholar] [CrossRef]
- Youssef, M.; Barbut, S. Fat reduction in comminuted meat products-effects of beef fat, regular and pre-emulsified canola oil. Meat Sci. 2011, 87, 356–360. [Google Scholar] [CrossRef] [PubMed]
- Yam, K.L.; Papadakis, S.E. A simple digital imaging method for measuring and analyzing color of food surfaces. J. Food Eng. 2004, 61, 137–142. [Google Scholar] [CrossRef]
- Kupiec, M.; Zbikowska, A.; Marciniak-Lukasiak, K.; Kowalska, M. Rapeseed Oil in New Application: Assessment of Structure of Oleogels Based on their Physicochemical Properties and Microscopic Observations. Agriculture 2020, 10, 211. [Google Scholar] [CrossRef]
- Rizzo, G.; Norton, J.; Norton, I. Emulsifier effects on fat crystallisation. Food Struct. 2015, 4, 27–33. [Google Scholar] [CrossRef]
- Maruyama, J.M.; Soares, F.A.S.D.M.; D’Agostinho, N.R.; Gonçalves, M.I.A.; Gioielli, L.A.; Da Silva, R.C. Effects of Emulsifier Addition on the Crystallization and Melting Behavior of Palm Olein and Coconut Oil. J. Agric. Food Chem. 2014, 62, 2253–2263. [Google Scholar] [CrossRef]
- Patel, A.R. Alternative Routes to Oil Structuring; Springer International Publishing: Cham, Switzerland, 2015. [Google Scholar]
- Cabrera, S.; Rojas, J.; Moreno, A. Contribution in the Production of Healthier Food Products: The Fats of the Future. J. Food Nutr. Res. 2020, 8, 172–182. [Google Scholar] [CrossRef]
- Terech, P. Networks of surfactant-made physical organogels. Prog. Colloid Polym. Sci. 1996, 102, 64–70. [Google Scholar] [CrossRef]
- ED, C.O.; Marangoni, A.G. Oleogels. In Edible Oleogels; Elsevier: Amsterdam, The Netherlands, 2018; pp. 1–29. [Google Scholar]
- Samateh, S.; Sagiri, S.; John, G. Molecular Oleogels. In Edible Oleogels; Elsevier: Amsterdam, The Netherlands, 2018; pp. 415–438. [Google Scholar]
- Kesselman, E.; Shimoni, E. Imaging of Oil/Monoglyceride Networks by Polarizing Near-Field Scanning Optical Microscopy. Food Biophys. 2007, 2, 117–123. [Google Scholar] [CrossRef]
- Palla, C.; de Vicente, J.; Carrín, M.E.; Gálvez-Ruiz, M.J. Effects of cooling temperature profiles on the monoglycerides oleogel properties: A rheo-microscopy study. Food Res. Int. 2019, 125, 108613. [Google Scholar] [CrossRef]
- Blake, I.; Toro-Vazquez, J.F.; Hwang, H.-S. Wax Oleogels. In Edible Oleogels; Elsevier: Amsterdam, The Netherlands, 2018; pp. 133–171. [Google Scholar]
- Blake, A.I.; Co, E.D.; Marangoni, A.G. Structure and Physical Properties of Plant Wax Crystal Networks and Their Relationship to Oil Binding Capacity. J. Am. Oil Chem. Soc. 2014, 91, 885–903. [Google Scholar] [CrossRef]
- Bin Sintang, M.D.; Rimaux, T.; Van De Walle, D.; Dewettinck, K.; Patel, A.R. Oil structuring properties of monoglycerides and phytosterols mixtures. Eur. J. Lipid Sci. Technol. 2016, 119, 1500517. [Google Scholar] [CrossRef]
- Doan, C.D.; Tavernier, I.; Okuro, P.K.; Dewettinck, K. Internal and external factors affecting the crystallization, gelation and applicability of wax-based oleogels in food industry. Innov. Food Sci. Emerg. Technol. 2018, 45, 42–52. [Google Scholar] [CrossRef]
- Yamaue, T.; Doi, M. The stress diffusion coupling in the swelling dynamics of cylindrical gels. J. Chem. Phys. 2005, 122, 084703. [Google Scholar] [CrossRef] [PubMed]
- Uvanesh, K.; Sagiri, S.S.; Senthilguru, K.; Pramanik, K.; Banerjee, I.; Anis, A.; Al-Zahrani, S.M.; Pal, K. Effect of Span 60 on the Microstructure, Crystallization Kinetics, and Mechanical Properties of Stearic Acid Oleogels: An In-Depth Analysis. J. Food Sci. 2015, 81, E380–E387. [Google Scholar] [CrossRef] [PubMed]
- Meng, Z.; Guo, Y.; Wang, Y.; Liu, Y. Oleogels from sodium stearoyl lactylate-based lamellar crystals: Structural characterization and bread application. Food Chem. 2018, 292, 134–142. [Google Scholar] [CrossRef]
- Mohanan, A.; Tang, Y.R.; Nickerson, M.T.; Ghosh, S. Oleogelation using pulse protein-stabilized foams and their potential as a baking ingredient. RSC Adv. 2020, 10, 14892–14905. [Google Scholar] [CrossRef] [Green Version]
- Sagiri, S.S.; Kasiviswanathan, U.; Shaw, G.S.; Singh, M.; Anis, A.; Pal, K. Effect of sorbitan monostearate concentration on the thermal, mechanical and drug release properties of oleogels. Korean J. Chem. Eng. 2016, 33, 1720–1727. [Google Scholar] [CrossRef]
- Yadav, I.; Kasiviswanathan, U.; Soni, C.; Paul, S.R.; Nayak, S.K.; Sagiri, S.S.; Anis, A.; Pal, K. Stearic Acid Modified Stearyl Alcohol Oleogel: Analysis of the Thermal, Mechanical and Drug Release Properties. J. Surfactants Deterg. 2017, 20, 851–861. [Google Scholar] [CrossRef]
- Xu, X.; Liu, B.; Li, Y. Experimental Studies on Viscoelasticity of Film Materials in Laminated Glass Sheets. SAE Int. J. Mater. Manuf. 2015, 8, 922–931. [Google Scholar] [CrossRef]
- Kodela, S.P.; Pandey, P.M.; Nayak, S.K.; Uvanesh, K.; Anis, A.; Pal, K. Novel agar–stearyl alcohol oleogel-based bigels as structured delivery vehicles. Int. J. Polym. Mater. 2017, 66, 669–678. [Google Scholar] [CrossRef]
- Rohman, A.; Man, Y.B.C. Quantification and Classification of Corn and Sunflower Oils as Adulterants in Olive Oil Using Chemometrics and FTIR Spectra. Sci. World J. 2012, 2012, 250795. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yi, Y.; Yao, J.; Xu, W.; Wang, L.-M.; Wang, H.-X. Investigation on the quality diversity and quality-FTIR characteristic relationship of sunflower seed oils. RSC Adv. 2019, 9, 27347–27360. [Google Scholar] [CrossRef] [Green Version]
- Missau, J.; Rocha, J.D.G.D.; Dotto, G.L.; Bertuol, D.; Ceron, L.P.; Tanabe, E.H. Purification of crude wax using a filter medium modified with a nanofiber coating. Chem. Eng. Res. Des. 2018, 136, 734–743. [Google Scholar] [CrossRef]
- Dubey, P.; Sharma, P.; Kumar, V. FTIR and GC–MS spectral datasets of wax from Pinus roxburghii Sarg. needles biomass. Data Brief 2017, 15, 615–622. [Google Scholar] [CrossRef]
- Lin, B.-J.; Chen, W.-H.; Budzianowski, W.M.; Hsieh, C.-T.; Lin, P.-H. Emulsification analysis of bio-oil and diesel under various combinations of emulsifiers. Appl. Energy 2016, 178, 746–757. [Google Scholar] [CrossRef]
- Bora, M.M.; Gogoi, P.; Deka, D.C.; Kakati, D.K. Synthesis and characterization of yellow oleander (Thevetia peruviana) seed oil-based alkyd resin. Ind. Crop. Prod. 2014, 52, 721–728. [Google Scholar] [CrossRef]
- Farooq, A.; Shafaghat, H.; Jae, J.; Jung, S.-C.; Park, Y.-K. Enhanced stability of bio-oil and diesel fuel emulsion using Span 80 and Tween 60 emulsifiers. J. Environ. Manag. 2018, 231, 694–700. [Google Scholar] [CrossRef]
- Ongpipattanakul, B.; Francoeur, M.L.; Potts, R.O. Polymorphism in stratum corneum lipids. Biochim. Biophys. Acta (BBA)-Biomembr. 1994, 1190, 115–122. [Google Scholar] [CrossRef]
- Cameron, D.G.; Gudgin, E.F.; Mantsch, H.H. Dependence of acyl chain packing of phospholipids on the head group and acyl chain length. Biochemistry 1981, 20, 4496–4500. [Google Scholar] [CrossRef]
- Das, P.; Qureshi, D.; Paul, S.; Mohanty, B.; Anis, A.; Verma, S.; Wilczyński, S.; Pal, K. Effect of sorbitan monopalmitate on the polymorphic transitions and physicochemical properties of mango butter. Food Chem. 2021, 347, 128987. [Google Scholar] [CrossRef] [PubMed]
- Holey, S.A.; Sekhar, K.P.C.; Mishra, S.S.; Kanjilal, S.; Nayak, R.R. Sunflower Wax-Based Oleogel Emulsions: Physicochemical Characterizations and Food Application. ACS Food Sci. Technol. 2020, 1, 152–164. [Google Scholar] [CrossRef]
- Calligaris, S.; Arrighetti, G.; Barba, L.; Nicoli, M.C. Phase Transition of Sunflower Oil as Affected by the Oxidation Level. J. Am. Oil Chem. Soc. 2008, 85, 591–598. [Google Scholar] [CrossRef]
- Hoffmann, H.D.M. Small: The physical chemistry of lipidis: From alkanes to phospholipids, Plenum Press, New York and London 1986. 672 Seiten, Preis: $89.50 + 20%, with contribution by Bryan M. Craven, Yvonne Lange, G. Graham Shipley and John Steiner. Ber. Bunsenges. Phys. Chem. 1987, 91, 499. [Google Scholar] [CrossRef]
- Fats and Oils: Formulating and Processing for Applications, Third Edition—PDF Free Download. Available online: https://epdf.pub/fats-and-oils-formulating-and-processing-for-applications-third-edition.html (accessed on 13 June 2021).
- Tavernier, I.; Doan, C.D.; Van de Walle, D.; Danthine, S.; Rimaux, T.; Dewettinck, K. Sequential crystallization of high and low melting waxes to improve oil structuring in wax-based oleogels. RSC Adv. 2017, 7, 12113–12125. [Google Scholar] [CrossRef] [Green Version]
- Sun, P.; Xia, B.; Ni, Z.-J.; Wang, Y.; Elam, E.; Thakur, K.; Ma, Y.-L.; Wei, Z.-J. Characterization of functional chocolate formulated using oleogels derived from β-sitosterol with γ-oryzanol/lecithin/stearic acid. Food Chem. 2021, 360, 130017. [Google Scholar] [CrossRef]
- Hasda, A.M.; Vuppaladadium, S.S.R.; Qureshi, D.; Prasad, G.; Mohanty, B.; Banerjee, I.; Shaikh, H.; Anis, A.; Sarkar, P.; Pal, K. Graphene oxide reinforced nanocomposite oleogels improves corneal permeation of drugs. J. Drug Deliv. Sci. Technol. 2020, 60, 102024. [Google Scholar] [CrossRef]
- Chaves, K.; Silva, T.J.; Domingues, M.A.F.; Barrera-Arellano, D.; Ribeiro, A.P.B. Conventional and Unconventional Crystallization Mechanisms. In Crystal Growth; IntechOpen: London, UK, 2019. [Google Scholar]
- Liu, C.; Zheng, Z.; Meng, Z.; Chai, X.; Cao, C.; Liu, Y. Beeswax and carnauba wax modulate the crystallization behavior of palm kernel stearin. LWT 2019, 115, 108446. [Google Scholar] [CrossRef]
- Sagiri, S.; Sharma, V.; Basak, P.; Pal, K. Mango Butter Emulsion Gels as Cocoa Butter Equivalents: Physical, Thermal, and Mechanical Analyses. J. Agric. Food Chem. 2014, 62, 11357–11368. [Google Scholar] [CrossRef]
- Öğütcü, M.; Yılmaz, E. Characterization of Hazelnut Oil Oleogels Prepared with Sunflower and Carnauba Waxes. Int. J. Food Prop. 2014, 18, 1741–1755. [Google Scholar] [CrossRef]
- Yılmaz, E.; Öğütcü, M. Comparative Analysis of Olive Oil Organogels Containing Beeswax and Sunflower Wax with Breakfast Margarine. J. Food Sci. 2014, 79, E1732–E1738. [Google Scholar] [CrossRef]
- Ferguson, R.H.; Lutton, E.S. The Polymorphic Forms or Phases of Triglyceride Fats. Chem. Rev. 1941, 29, 355–384. [Google Scholar] [CrossRef]
- Hondoh, H.; Ueno, S. Polymorphism of edible fat crystals. Prog. Cryst. Growth Charact. Mater. 2016, 62, 398–399. [Google Scholar] [CrossRef]
- Ghotra, B.S.; Dyal, S.D.; Narine, S.S. Lipid shortenings: A review. Food Res. Int. 2002, 35, 1015–1048. [Google Scholar] [CrossRef]
- Martini, S.; Añón, M.C. Crystallization of sunflower oil waxes. J. Am. Oil Chem. Soc. 2003, 80, 525–532. [Google Scholar] [CrossRef]
- Hani, U. Solubility Enhancement and Delivery Systems of Curcumin a Herbal Medicine: A Review. Curr. Drug Deliv. 2014, 11, 792–804. [Google Scholar] [CrossRef]
- Peppas, N.A.; Sahlin, J.J. A simple equation for the description of solute release. III. Coupling of diffusion and relaxation. Int. J. Pharm. 1989, 57, 169–172. [Google Scholar] [CrossRef]
- Ghosal, K.; Chandra, A.; Rajabalaya, R.; Chakraborty, S.; Nanda, A. Mathematical modeling of drug release profiles for modified hydrophobic HPMC based gels. Die Pharm. 2012, 67, 147–155. [Google Scholar]
- Freire, M.C.L.C.; Alexandrino, F.; Marcelino, H.R.; Picciani, P.H.D.S.; Silva, K.G.D.H.E.; Genre, J.; De Oliveira, A.G.; Egito, E.S.T.D. Understanding Drug Release Data through Thermodynamic Analysis. Materials 2017, 10, 651. [Google Scholar] [CrossRef] [Green Version]
- Abdollahi, M.; Goli, S.A.H.; Soltanizadeh, N. Physicochemical Properties of Foam-Templated Oleogel Based on Gelatin and Xanthan Gum. Eur. J. Lipid Sci. Technol. 2019, 122, 1900196. [Google Scholar] [CrossRef]
- Jain, A.; Pradhan, B.K.; Mahapatra, P.; Ray, S.S.; Chakravarty, S.; Pal, K. Development of a low-cost food color monitoring system. Color Res. Appl. 2020, 46, 430–445. [Google Scholar] [CrossRef]
P0 | P1 | τ1 (s) | P2 | τ2 (s) | R2 | |
---|---|---|---|---|---|---|
Control | 0.156 ± 0.01 efghi | 0.114 ± 0.01 ce | 13.298 ± 0.10 b | 0.726 ± 0.01 a | 0.314 ± 0.01 a | 0.99 |
S1 | 0.161 ± 0.01 gh | 0.163 ± 0.07 abcd | 12.860 ± 0.07 cdefh | 0.713 ± 0.01 abc | 0.247 ± 0.01 g | 0.99 |
S3 | 0.157 ± 0.01 h | 0.140 ± 0.01 a | 12.770 ± 0.17 efgh | 0.697 ± 0.01 bc | 0.312 ± 0.01 a | 0.99 |
S5 | 0.181 ± 0.01 cdei | 0.125 ± 0.01 abe | 13.910 ± 0.02 a | 0.697 ± 0.02 abc | 0.255 ± 0.01 fg | 0.99 |
S10 | 0.180 ± 0.02 defghi | 0.111 ± 0.01 de | 13.733 ± 1.29 abcdefgh | 0.711 ± 0.02 abc | 0.281 ± 0.03 abefg | 0.99 |
T1 | 0.187 ± 0.01 bcd | 0.115 ± 0.02 ab | 12.680 ± 0.09 g | 0.697 ± 0.01 c | 0.263 ± 0.01 ef | 0.99 |
T3 | 0.246 ± 0.01 a | 0.132 ± 0.01 ae | 12.600 ± 0.17 hg | 0.623 ± 0.01 d | 0.287 ± 0.01 b | 0.99 |
T5 | 0.163 ± 0.01 fgh | 0.116 ± 0.01 abe | 12.770 ± 0.01 fgh | 0.723 ± 0.03 abc | 0.271 ± 0.02 bdefg | 0.99 |
T10 | 0.172 ± 0.01 efgi | 0.116 ± 0.01 be | 12.853 ± 0.03 deh | 0.717 ± 0.02 abc | 0.273 ± 0.02 bcefg | 0.99 |
Formulations | Peak | Peak Position (°2θ) | FWHM (°2θ) | d-Spacing (Å) | Crystallite Size (nm) | Lattice Strain | Dislocation Density (δ) × 1017 Lines/m2 |
---|---|---|---|---|---|---|---|
Control | 1 | 18.95 | 4.00 | 5.43 | 2.44 | 0.10 | 0.17 |
2 | 22.51 | 4.49 | 4.58 | 2.19 | 0.10 | 0.21 | |
3 | 25.05 | 0.43 | 4.13 | 23.11 | 0.01 | 0.00 | |
4 | 25.05 | 6.56 | 4.13 | 1.51 | 0.13 | 0.44 | |
5 | 27.86 | 0.43 | 3.72 | 23.24 | 0.01 | 0.00 | |
Average | 3.18 | 4.40 | 10.50 | 0.07 | 0.16 | ||
S1 | 1 | 18.88 | 3.55 | 5.45 | 2.75 | 0.09 | 0.13 |
2 | 22.54 | 4.66 | 4.58 | 2.11 | 0.10 | 0.22 | |
3 | 25.15 | 0.41 | 4.11 | 24.03 | 0.01 | 0.00 | |
4 | 25.15 | 6.60 | 4.11 | 1.50 | 0.13 | 0.44 | |
5 | 27.88 | 0.40 | 3.71 | 24.83 | 0.01 | 0.00 | |
Average | 3.12 | 4.39 | 11.04 | 0.07 | 0.16 | ||
S3 | 1 | 15.93 | 2.31 | 6.46 | 4.22 | 0.07 | 0.06 |
2 | 23.02 | 5.47 | 4.48 | 1.80 | 0.12 | 0.31 | |
3 | 25.18 | 0.41 | 4.10 | 24.29 | 0.01 | 0.00 | |
4 | 27.37 | 2.86 | 3.78 | 3.46 | 0.05 | 0.08 | |
5 | 27.97 | 0.44 | 3.70 | 22.81 | 0.01 | 0.00 | |
Average | 2.30 | 4.51 | 11.32 | 0.05 | 0.09 | ||
S5 | 1 | 18.47 | 3.48 | 5.57 | 2.81 | 0.09 | 0.13 |
2 | 22.63 | 5.01 | 4.56 | 1.96 | 0.11 | 0.26 | |
3 | 25.15 | 0.41 | 4.11 | 24.12 | 0.01 | 0.00 | |
4 | 26.27 | 5.15 | 3.94 | 1.92 | 0.10 | 0.27 | |
5 | 27.89 | 0.43 | 3.71 | 23.32 | 0.01 | 0.00 | |
Average | 2.90 | 4.38 | 10.83 | 0.06 | 0.13 | ||
S10 | 1 | 18.30 | 3.25 | 5.62 | 3.00 | 0.09 | 0.11 |
2 | 22.56 | 4.92 | 4.57 | 2.00 | 0.11 | 0.25 | |
3 | 24.80 | 7.57 | 4.17 | 1.30 | 0.15 | 0.59 | |
4 | 25.18 | 0.41 | 4.10 | 24.30 | 0.01 | 0.00 | |
5 | 27.95 | 0.41 | 3.70 | 24.01 | 0.01 | 0.00 | |
Average | 3.31 | 4.43 | 10.92 | 0.07 | 0.19 | ||
T1 | 1 | 18.89 | 1.82 | 5.45 | 5.35 | 0.05 | 0.03 |
2 | 23.03 | 5.44 | 4.48 | 1.81 | 0.12 | 0.31 | |
3 | 25.20 | 0.43 | 4.10 | 23.10 | 0.01 | 0.00 | |
4 | 26.14 | 0.96 | 3.95 | 10.30 | 0.02 | 0.01 | |
5 | 27.93 | 1.85 | 3.71 | 5.38 | 0.03 | 0.03 | |
Average | 2.10 | 4.34 | 9.19 | 0.04 | 0.08 | ||
T3 | 1 | 17.46 | 0.50 | 5.89 | 19.62 | 0.01 | 0.00 |
2 | 22.79 | 5.64 | 4.53 | 1.74 | 0.12 | 0.33 | |
3 | 25.14 | 0.42 | 4.11 | 23.35 | 0.01 | 0.00 | |
4 | 26.96 | 2.50 | 3.84 | 3.96 | 0.05 | 0.06 | |
5 | 27.95 | 0.45 | 3.70 | 21.93 | 0.01 | 0.00 | |
Average | 1.90 | 4.41 | 14.12 | 0.04 | 0.08 | ||
T5 | 1 | 22.53 | 7.31 | 4.58 | 1.34 | 0.16 | 0.56 |
2 | 22.94 | 3.88 | 4.50 | 2.53 | 0.08 | 0.16 | |
3 | 25.13 | 0.43 | 4.11 | 23.13 | 0.01 | 0.00 | |
4 | 27.09 | 4.86 | 3.82 | 2.04 | 0.09 | 0.24 | |
5 | 27.92 | 0.41 | 3.71 | 24.53 | 0.01 | 0.00 | |
Average | 2.39 | 4.03 | 13.06 | 0.05 | 0.10 | ||
T10 | 1 | 19.13 | 3.95 | 5.38 | 2.47 | 0.10 | 0.16 |
2 | 22.47 | 4.41 | 4.59 | 2.23 | 0.10 | 0.20 | |
3 | 25.09 | 0.41 | 4.12 | 24.14 | 0.01 | 0.00 | |
4 | 25.36 | 5.37 | 4.07 | 1.84 | 0.10 | 0.30 | |
5 | 27.88 | 0.39 | 3.71 | 25.58 | 0.01 | 0.00 | |
Average | 2.91 | 4.38 | 11.25 | 0.06 | 0.13 |
Formulations | Temperature vs. Time | Exponential Decay Model | ||
---|---|---|---|---|
Onset of Secondary Crystallization (s) | Time to Reach Thermal Equilibrium (s) | Initial Rate of Crystallization (k) (°C/ms) | Initial Temperature of Crystallization (a) (°C) | |
Control | 621 | 1968 | 2.88 | 50 |
S1 | 733 | 1995 | 2.65 | 50 |
S3 | 1075 | 2008 | 1.44 | 50 |
S5 | 1084 | 2348 | 1.12 | 50 |
S10 | 908 | 2092 | 1.64 | 50 |
T1 | 1138 | 2663 | 1.11 | 50 |
T3 | 1140 | 2981 | 1.01 | 50 |
T5 | 820 | 2134 | 0.9 | 50 |
T10 | 1223 | 2706 | 1.02 | 50 |
Sample | Kd | Kr | Kd/Kr | m | R2 |
---|---|---|---|---|---|
Control | 3.33 ± 0.01 bc | 0.52 ± 0.01 cd | 6.40 ± 0.02 abg | 0.32 ± 0.01 d | 0.99 |
S1 | 2.37 ± 0.06 d | 0.53 ± 0.02 bcd | 4.49 ± 0.09 c | 0.24 ± 0.01 ghi | 0.99 |
S3 | 1.78 ± 0.02 g | 0.48 ± 0.01 a | 3.72 ± 0.01 d | 0.25 ± 0.01 fgh | 0.99 |
S5 | 2.24 ± 0.05 ef | 0.66 ± 0.03 e | 3.41 ± 0.10 e | 0.23 ± 0.01 hi | 0.99 |
S10 | 1.03 ± 0.06 h | 0.51 ± 0.01 d | 2.03 ± 0.09 f | 0.29 ± 0.01 e | 0.99 |
T1 | 1.86 ± 0.28 fg | 0.23 ± 0.01 hi | 8.02 ± 1.26 b | 0.33 ± 0.01 bce | 0.99 |
T3 | 0.52 ± 0.02 i | 0.39 ± 0.01 f | 1.33 ± 0.06 gd | 0.50 ± 0.01 a | 0.99 |
T5 | 3.29 ± 0.57 cde | 0.22 ± 0.02 e | 15.10 ± 3.67 ab | 0.33 ± 0.01 cd | 0.99 |
T10 | 6.72 ± 0.21 a | 0.32 ± 0.01 g | 20.94 ± 0.58 a | 0.23 ± 0.01 i | 0.99 |
Samples | SFW (g) | SO (g) | Emulsifier Stock (g) |
---|---|---|---|
Control | 1.0 | 19.0 | 0.0 |
S1 | 1.0 | 18.0 | 1.0 |
S3 | 1.0 | 16.0 | 3.0 |
S5 | 1.0 | 14.0 | 5.0 |
S10 | 1.0 | 9.0 | 10.0 |
T1 | 1.0 | 18.0 | 1.0 |
T3 | 1.0 | 16.0 | 3.0 |
T5 | 1.0 | 14.0 | 5.0 |
T10 | 1.0 | 9.0 | 10.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bharti, D.; Kim, D.; Cerqueira, M.A.; Mohanty, B.; Habibullah, S.; Banerjee, I.; Pal, K. Effect of Biodegradable Hydrophilic and Hydrophobic Emulsifiers on the Oleogels Containing Sunflower Wax and Sunflower Oil. Gels 2021, 7, 133. https://doi.org/10.3390/gels7030133
Bharti D, Kim D, Cerqueira MA, Mohanty B, Habibullah S, Banerjee I, Pal K. Effect of Biodegradable Hydrophilic and Hydrophobic Emulsifiers on the Oleogels Containing Sunflower Wax and Sunflower Oil. Gels. 2021; 7(3):133. https://doi.org/10.3390/gels7030133
Chicago/Turabian StyleBharti, Deepti, Doman Kim, Miguel Angelo Cerqueira, Biswaranjan Mohanty, SK Habibullah, Indranil Banerjee, and Kunal Pal. 2021. "Effect of Biodegradable Hydrophilic and Hydrophobic Emulsifiers on the Oleogels Containing Sunflower Wax and Sunflower Oil" Gels 7, no. 3: 133. https://doi.org/10.3390/gels7030133
APA StyleBharti, D., Kim, D., Cerqueira, M. A., Mohanty, B., Habibullah, S., Banerjee, I., & Pal, K. (2021). Effect of Biodegradable Hydrophilic and Hydrophobic Emulsifiers on the Oleogels Containing Sunflower Wax and Sunflower Oil. Gels, 7(3), 133. https://doi.org/10.3390/gels7030133