Mechanical Property of Polypropylene Gels Associated with That of Molten Polypropylenes
Abstract
:1. Introduction
2. Results
2.1. Mechanical Properties of iPP and sPP in the Solid and the Gel States
2.2. Concentrations of iPP and sPP
2.3. Molecular Weight of iPP
2.4. PP-Gels with Other Solvents
3. Discussion
4. Conclusions
5. Materials and Methods
5.1. Materials and Sample Preparation
5.2. Mechanical, Thermal, and Structural Analysis
5.2.1. Dynamic Viscoelastic Measurement
5.2.2. DSC Measurements
5.2.3. FTIR Analysis
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, Z.; Niu, Y.; Fredrickson, G.H.; Kramer, E.J.; Shin, Y.-W.; Shimizu, F.; Zuo, F.; Rong, L.; Hsiao, B.S.; Coates, G.W. Step-Cycle Mechanical Processing of Gels of sPP-b-EPR-b-sPP Triblock Copolymer in Mineral Oil. Macromolecules 2010, 43, 6782–6788. [Google Scholar] [CrossRef]
- Haraguchi, K.; Takehisa, T.; Fan, S. Effects of Clay Content on the Properties of Nanocomposite Hydrogels Composed of Poly(N-isopropylacrylamide) and Clay. Macromolecules 2002, 35, 10162–10171. [Google Scholar] [CrossRef]
- Chirila, T.V.; Hong, Y.; Dalton, P.D.; Constable, I.J.; Refojo, M.F. The use of hydrophilic polymers as artificial vitreous. Prog. Polym. Sci. 1998, 23, 475–508. [Google Scholar] [CrossRef]
- Kavanagh, G.M.; Ross-Murphy, S.B. Rheological characterisation of polymer gels. Prog. Polym. Sci. 1998, 23, 533–562. [Google Scholar] [CrossRef]
- Okayama, Y.; Nakahara, K.; Arouette, X.; Ninomiya, T.; Matsumoto, Y.; Orimo, Y.; Hotta, A.; Omiya, M.; Miki, N. Characterization of a bonding-in-liquid technique for liquid encapsulation into MEMS devices. J. Micromech. Microeng. 2010, 20. [Google Scholar] [CrossRef]
- Malik, S.; Rochas, C.; Démé, B.; Guenet, J.M. Thermoreversible Gelation of Syndiotactic Polystyrene in Naphthalene. Macromol. Symp. 2005, 222, 73–80. [Google Scholar] [CrossRef]
- Daniel, C.; Deluca, M.D.; Guenet, J.M.; Brulet, A.; Menelle, A. Thermoreversible gelation of syndiotactic polystyrene in benzene. Polymer 1996, 37, 1273–1280. [Google Scholar] [CrossRef]
- Malik, S.; Rochas, C.; Guenet, J.M. Thermodynamic and Structural Investigations on the Different Forms of Syndiotactic Polystyrene Intercalates. Macromolecules 2006, 39, 1000–1007. [Google Scholar] [CrossRef]
- Buyse, K.; Berghmans, H.; Bosco, M.; Paoletti, S. Mechanistic Aspects of the Thermoreversible Gelation of Syndiotactic Poly(methyl methacrylate) in Toluene. Macromolecules 1998, 31, 9224–9230. [Google Scholar] [CrossRef]
- Buyse, K.; Berghmans, H. Thermoreversible gelation of solutions of isotactic poly(methyl methacrylate) in 2-butanone. Polymer 2000, 41, 1045–1053. [Google Scholar] [CrossRef]
- Nakaoki, T.; Inaji, Y. Molecular structure of isotactic polypropylene formed from homogeneous solution. Gelation and crystallization. Polym. J. 2002, 34, 539–543. [Google Scholar] [CrossRef] [Green Version]
- Miyazaki, M.; Maeda, T.; Hirashima, K.; Kurokawa, N.; Nagahama, K.; Hotta, A. PEG-based nanocomposite hydrogel: Thermoresponsive sol-gel transition controlled by PLGA-PEG-PLGA molecular weight and solute concentration. Polymer 2017, 115, 246–254. [Google Scholar] [CrossRef]
- Nagahama, K.; Oyama, N.; Ono, K.; Hotta, A.; Kawauchi, K.; Nishikata, T. Nanocomposite injectable gels capable of self-replenishing regenerative extracellular microenvironments for in vivo tissue engineering. Biomater. Sci. 2018, 6, 550–561. [Google Scholar] [CrossRef]
- Morris, E.R.; Nishinari, K.; Rinaudo, M. Gelation of gellan—A review. Food Hydrocoll. 2012, 28, 373–411. [Google Scholar] [CrossRef]
- Kim, I.Y.; Iwatsuki, R.; Kikuta, K.; Morita, Y.; Miyazaki, T.; Ohtsuki, C. Thermoreversible behavior of ĸ-carrageenan and its apatite-forming ability in simulated body fluid. Mater. Sci. Eng. C 2011, 31, 1472–1476. [Google Scholar] [CrossRef] [Green Version]
- Clarke, S.M.; Hotta, A.; Tajbakhsh, A.R.; Terentjev, E.M. Effect of cross-linker geometry on dynamic mechanical properties of nematic elastomers. Phys. Rev. E 2002, 65. [Google Scholar] [CrossRef]
- Hotta, A.; Terentjev, E.M. Long-time stress relaxation in polyacrylate nematic liquid crystalline elastomers. J. Phys. Condens. Matter 2001, 13, 11453–11464. [Google Scholar] [CrossRef]
- Hotta, A.; Terentjev, E.M. Dynamic soft elasticity in monodomain nematic elastomers. Eur. Phys. J. E 2003, 10, 291–301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Daniel, C.; Alfano, D.; Guerra, G.; Musto, P. Physical Gelation of Syndiotactic Polystyrene in the Presence of Large Molar Volume Solvents Induced by Volatile Guests of Clathrate Phases. Macromolecules 2003, 36, 1713–1716. [Google Scholar] [CrossRef]
- De Rudder, J.; Berghmans, H.; De Schryver, F.C.; Bosco, M.; Paoletti, S. Gelation Mechanism of Syndiotactic Polystyrene in Bromoform. Macromolecules 2002, 35, 9529–9535. [Google Scholar] [CrossRef]
- Diamanti, S.J.; Khanna, V.; Hotta, A.; Coffin, R.C.; Yamakawa, D.; Kramer, E.J.; Fredrickson, G.H.; Bazan, G.C. Tapered block copolymers containing ethylene and a functionalized comonomer. Macromolecules 2006, 39, 3270–3274. [Google Scholar] [CrossRef]
- Coffin, R.C.; Diamanti, S.J.; Hotta, A.; Khanna, V.; Kramer, E.J.; Fredrickson, G.H.; Bazan, G.C. Pseudo-tetrablock copolymers with ethylene and a functionalized comonomer. Chem. Commun. 2007, 3550–3552. [Google Scholar] [CrossRef]
- Deplace, F.; Wang, Z.G.; Lynd, N.A.; Hotta, A.; Rose, J.M.; Hustad, P.D.; Tian, J.; Ohtaki, H.; Coates, G.W.; Shimizu, F.; et al. Processing-Structure-Mechanical Property Relationships of Semicrystalline Polyolefin-Based Block Copolymers. J. Polym. Sci. Part B Polym. Phys. 2010, 48, 1428–1437. [Google Scholar] [CrossRef]
- Matsuda, H.; Inoue, T.; Okabe, M.; Ukaji, T. Study of polyolefin gel in organic-solvents.1. structure of isotactic polypropylene gel in organic-solvents. Polym. J. 1987, 19, 323–329. [Google Scholar] [CrossRef] [Green Version]
- Ogita, T.; Kawahara, Y.; Sawatari, C.; Ozaki, F.; Matsuo, M. Morphological properties of ultrahigh molecular-weight polyethylene and low-molecular-weight polypropylene blend gel films. Polym. J. 1991, 23, 871–884. [Google Scholar] [CrossRef] [Green Version]
- Ohta, T.; Ikeda, Y.; Kishimoto, M.; Sakamoto, Y.; Kawamura, H.; Asaeda, E. The ultra-drawing behaviour of ultra-high-molecular-weight polypropylene in the gel-like spherulite press method: Influence of solution concentration. Polymer 1998, 39, 4793–4800. [Google Scholar] [CrossRef]
- Pogodina, N.V.; Lavrenko, V.P.; Srinivas, S.; Winter, H.H. Rheology and structure of isotactic polypropylene near the gel point: Quiescent and shear-induced crystallization. Polymer 2001, 42, 9031–9043. [Google Scholar] [CrossRef]
- Matsuo, M.; Hashida, T.; Tashiro, K.; Agari, Y. Phase Separation of Ultrahigh Molecular Weight Isotactic Polypropylene Solutions in the Gelation Process Estimated in Relation to the Morphology and Mechanical Properties of the Resultant Dry Gel Films. Macromolecules 2002, 35, 3030–3040. [Google Scholar] [CrossRef]
- Kristiansen, M.; Tervoort, T.; Smith, P. Synergistic gelation of solutions of isotactic polypropylene and bis-(3,4-dimethyl benzylidene) sorbitol and its use in gel-processing. Polymer 2003, 44, 5885–5891. [Google Scholar] [CrossRef]
- Nakaoki, T.; Harada, S. Melting behavior of bound solvent in isotactic polypropylene/o-dichlorobenzene gel. Polym. J. 2005, 37, 429–433. [Google Scholar] [CrossRef] [Green Version]
- Nakaoki, T.; Shuto, H.; Hayashi, H.; Kitamaru, R. High-resolution solid-state 13C n.m.r. study of isotactic polypropylene gel. Polymer 1998, 39, 3905–3908. [Google Scholar] [CrossRef]
- Nakaoki, T.; Hayashi, H.; Kitamaru, R. Structural study of syndiotactic polypropylene gel by solid-state high resolution 13C n.m.r. Polymer 1996, 37, 4833–4839. [Google Scholar] [CrossRef]
- Deplace, F.; Scholz, A.K.; Fredrickson, G.H.; Kramer, E.J.; Shin, Y.-W.; Shimizu, F.; Zuo, F.; Rong, L.; Hsiao, B.S.; Coates, G.W. Tough and Elastic Thermoplastic Organogels and Elastomers Made of Semicrystalline Polyolefin-Based Block Copolymers. Macromolecules 2012, 45, 5604–5618. [Google Scholar] [CrossRef]
- Matsuda, H.; Imaizumi, M.; Fujimatsu, H.; Kuroiwa, S.; Okabe, M. Sol-gel transition of branched low-density polyethylene in organic-solvents. Polym. J. 1984, 16, 151–157. [Google Scholar] [CrossRef] [Green Version]
- Rizzo, P.; Albunia, A.R.; Guerra, G. Polymorphism of syndiotactic polystyrene: [gamma] phase crystallization induced by bulky non-guest solvents. Polymer 2005, 46, 9549–9554. [Google Scholar] [CrossRef]
- Yoshioka, A.; Tashiro, K. Solvent Effect on the Glass Transition Temperature of Syndiotactic Polystyrene Viewed from Time-Resolved Measurements of Infrared Spectra at the Various Temperatures and Its Simulation by Molecular Dynamics Calculation. Macromolecules 2003, 37, 467–472. [Google Scholar] [CrossRef]
- Gowd, E.B.; Tashiro, K.; Ramesh, C. Structural phase transitions of syndiotactic polystyrene. Prog. Polym. Sci. 2009, 34, 280–315. [Google Scholar] [CrossRef]
- Gowd, E.B.; Tashiro, K.; Ramesh, C. Role of Solvent Molecules as a Trigger for the Crystal Phase Transition of Syndiotactic Polystyrene/Solvent Complex. Macromolecules 2008, 41, 9814–9818. [Google Scholar] [CrossRef]
- Gowd, E.B.; Tashiro, K. Effect of Solvent Molecules on Phase Transition Phenomena of Syndiotactic Polystyrene. Macromolecules 2007, 40, 5366–5371. [Google Scholar] [CrossRef]
- Flory, P.J. Thermodynamics of High Polymer Solutions. J. Chem. Phys. 1942, 10, 51–61. [Google Scholar] [CrossRef]
- Bristow, G.M.; Watson, W.F. Cohesive energy densities of polymers. Part 1.-Cohesive energy densities of rubbers by swelling measurements. Trans. Faraday Soc. 1958, 54, 1731–1741. [Google Scholar] [CrossRef]
- Schmidtke, J.; Strobl, G.; Thurn-Albrecht, T. A Four-State Scheme for Treating Polymer Crystallization and Melting Suggested by Calorimetric and Small Angle X-ray Scattering Experiments on Syndiotactic Polypropylene. Macromolecules 1997, 30, 5804–5821. [Google Scholar] [CrossRef]
- Zhang, X.; Li, R.; Kong, L.; Wang, D. Stress-induced structure transition of syndiotactic polypropylene via melt spinning. Polymer 2008, 49, 1350–1355. [Google Scholar] [CrossRef]
- Liu, F.; Guo, C.; Wu, X.; Qian, X.; Liu, H.; Zhang, J. Morphological comparison of isotactic polypropylene parts prepared by micro-injection molding and conventional injection molding. Polym. Adv. Technol. 2010, 23, 686–694. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ouchi, T.; Yamazaki, M.; Maeda, T.; Hotta, A. Mechanical Property of Polypropylene Gels Associated with That of Molten Polypropylenes. Gels 2021, 7, 99. https://doi.org/10.3390/gels7030099
Ouchi T, Yamazaki M, Maeda T, Hotta A. Mechanical Property of Polypropylene Gels Associated with That of Molten Polypropylenes. Gels. 2021; 7(3):99. https://doi.org/10.3390/gels7030099
Chicago/Turabian StyleOuchi, Tetsu, Misuzu Yamazaki, Tomoki Maeda, and Atsushi Hotta. 2021. "Mechanical Property of Polypropylene Gels Associated with That of Molten Polypropylenes" Gels 7, no. 3: 99. https://doi.org/10.3390/gels7030099
APA StyleOuchi, T., Yamazaki, M., Maeda, T., & Hotta, A. (2021). Mechanical Property of Polypropylene Gels Associated with That of Molten Polypropylenes. Gels, 7(3), 99. https://doi.org/10.3390/gels7030099