Variations in Microstructural and Physicochemical Properties of Candelilla Wax/Rice Bran Oil–Derived Oleogels Using Sunflower Lecithin and Soya Lecithin
Abstract
:1. Introduction
2. Results and Discussion
2.1. Colorimetry Studies
2.2. Microscopy Studies
2.2.1. Surface Topology
2.2.2. Polarized Light Microscopy
2.3. FTIR Analysis
2.4. Thermal Studies
2.4.1. Gelation Kinetics
2.4.2. DSC Analysis
2.5. Mechanical Studies
3. Conclusions
4. Materials and Methods
4.1. Materials
4.2. Preparation of Oleogels
4.3. Colorimetry Studies
4.4. Microscopy Studies
4.4.1. Surface Topology
4.4.2. Polarized Light Microscopy
4.5. FTIR Analysis
4.6. Thermal Studies
4.6.1. Gelation Kinetics
4.6.2. DSC Analysis
4.7. Mechanical Studies
4.8. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Estadella, D.; da Penha Oller do Nascimento, C.M.; Oyama, L.M.; Ribeiro, E.B.; Damaso, A.R.; de Piano, A. Lipotoxicity: Effects of dietary saturated and transfatty acids. Mediat. Inflamm. 2013, 2013, 137579. [Google Scholar] [CrossRef] [Green Version]
- Lichtenstein, A.H.; Appel, L.J.; Brands, M.; Carnethon, M.; Daniels, S.; Franch, H.A.; Franklin, B.; Kris-Etherton, P.; Harris, W.S.; Howard, B. Summary of American Heart Association diet and lifestyle recommendations revision 2006. Arterioscler. Thromb. Vasc. Biol. 2006, 26, 2186–2191. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.D.; Li, Y.; Chiuve, S.E.; Stampfer, M.J.; Manson, J.E.; Rimm, E.B.; Willett, W.C.; Hu, F.B. Association of specific dietary fats with total and cause-specific mortality. JAMA Intern. Med. 2016, 176, 1134–1145. [Google Scholar] [CrossRef] [PubMed]
- Mercer, P.; Armenta, R.E. Developments in oil extraction from microalgae. Eur. J. Lipid Sci. Technol. 2011, 113, 539–547. [Google Scholar] [CrossRef]
- Grob, K.; Giuffré, A.M.; Leuzzi, U.; Mincione, B. Recognition of adulterated oils by direct analysis of the minor components. Lipid/Fett 1994, 96, 286–290. [Google Scholar] [CrossRef]
- Patel, A.R.; Schatteman, D.; De Vos, W.H.; Dewettinck, K. Shellac as a natural material to structure a liquid oil-based thermo reversible soft matter system. RSC Adv. 2013, 3, 5324–5327. [Google Scholar] [CrossRef]
- Hwang, H.S.; Kim, S.; Singh, M.; Winkler-Moser, J.K.; Liu, S.X. Organogel formation of soybean oil with waxes. J. Am. Oil Chem. Soc. 2012, 89, 639–647. [Google Scholar] [CrossRef]
- Zetzl, A.K.; Gravelle, A.J.; Kurylowicz, M.; Dutcher, J.; Barbut, S.; Marangoni, A.G. Microstructure of ethylcellulose oleogels and its relationship to mechanical properties. Food Struct. 2014, 2, 27–40. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Bhandari, B.; Cichero, J.; Prakash, S. Gastrointestinal digestion of dairy and soy proteins in infant formulas: An in vitro study. Food Res. Int. 2015, 76, 348–358. [Google Scholar] [CrossRef] [Green Version]
- Gandolfo, F.G.; Bot, A.; Flöter, E. Structuring of edible oils by long-chain FA, fatty alcohols, and their mixtures. J. Am. Oil Chem. Soc. 2004, 81, 1–6. [Google Scholar] [CrossRef]
- Patel, A.R.; Schatteman, D.; De Vos, W.H.; Lesaffer, A.; Dewettinck, K. Preparation and rheological characterization of shellac oleogels and oleogel-based emulsions. J. Colloid Interface Sci. 2013, 411, 114–121. [Google Scholar] [CrossRef]
- Toro-Vazquez, J.F.; Morales-Rueda, J.; Mallia, V.A.; Weiss, R.G. Relationship between molecular structure and thermo-mechanical properties of candelilla wax and amides derived from (R)-12-hydroxystearic acid as gelators of safflower oil. Food Biophys. 2010, 5, 193–202. [Google Scholar] [CrossRef]
- Doan, C.D.; To, C.M.; De Vrieze, M.; Lynen, F.; Danthine, S.; Brown, A.; Dewettinck, K.; Patel, A.R. Chemical profiling of the major components in natural waxes to elucidate their role in liquid oil structuring. Food Chem. 2017, 214, 717–725. [Google Scholar] [CrossRef] [PubMed]
- Martini, S.; Tan, C.Y.; Jana, S. Physical characterization of wax/oil crystalline networks. J. Food Sci. 2015, 80, C989–C997. [Google Scholar] [CrossRef]
- Blake, A.I.; Marangoni, A.G. The effect of shear on the microstructure and oil binding capacity of wax crystal networks. Food Biophys. 2015, 10, 403–415. [Google Scholar] [CrossRef]
- Pérez-Martínez, J.; Sánchez-Becerril, M.; Marangoni, A.; Toro-Vazquez, J.; Ornelas-Paz, J.; Ibarra-Junquera, V. Structuration, elastic properties scaling, and mechanical reversibility of candelilla wax oleogels with and without emulsifiers. Food Res. Int. 2019, 122, 471–478. [Google Scholar] [CrossRef]
- Zhao, M.; Lan, Y.; Cui, L.; Monono, E.; Rao, J.; Chen, B. Formation, characterization, and potential food application of rice bran wax oleogels: Expeller-pressed corn germ oil versus refined corn oil. Food Chem. 2020, 309, 125704. [Google Scholar] [CrossRef]
- Jana, S.; Martini, S. Phase behavior of binary blends of four different waxes. J. Am. Oil Chem. Soc. 2016, 93, 543–554. [Google Scholar] [CrossRef]
- Toro-Vazquez, J.; Morales-Rueda, J.; Dibildox-Alvarado, E.; Charó-Alonso, M.; Alonzo-Macias, M.; González-Chávez, M. Thermal and textural properties of organogels developed by candelilla wax in safflower oil. J. Am. Oil Chem. Soc. 2007, 84, 989–1000. [Google Scholar] [CrossRef]
- Blake, A.I.; Co, E.D.; Marangoni, A.G. Structure and physical properties of plant wax crystal networks and their relationship to oil binding capacity. J. Am. Oil Chem. Soc. 2014, 91, 885–903. [Google Scholar] [CrossRef]
- Shahidi, F.; Ambigaipalan, P. Bioactives from seafood processing by-products. In Encyclopedia of Food Chemistry; Elsevier: Amsterdam, The Netherlands, 2019. [Google Scholar]
- Morris, K.L.; Chen, L.; Raeburn, J.; Sellick, O.R.; Cotanda, P.; Paul, A.; Griffiths, P.C.; King, S.M.; O’Reilly, R.K.; Serpell, L.C. Chemically programmed self-sorting of gelator networks. Nat. Commun. 2013, 4, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Blake, A.I.; Toro-Vazquez, J.F.; Hwang, H.-S. Wax oleogels. In Edible Oleogels; Elsevier: Amsterdam, The Netherlands, 2018; pp. 133–171. [Google Scholar]
- Sintang, M.D.B.; Danthine, S.; Patel, A.R.; Rimaux, T.; Van De Walle, D.; Dewettinck, K. Mixed surfactant systems of sucrose esters and lecithin as a synergistic approach for oil structuring. J. Colloid Interface Sci. 2017, 504, 387–396. [Google Scholar] [CrossRef]
- Aguilar-Zárate, M.; Macias-Rodriguez, B.; Toro-Vazquez, J.; Marangoni, A. Engineering rheological properties of edible oleogels with ethylcellulose and lecithin. Carbohydr. Polym. 2019, 205, 98–105. [Google Scholar] [CrossRef] [PubMed]
- Shchipunov, Y.A. Lecithin organogel: A micellar system with unique properties. Colloids Surf. A Physicochem. Eng. Asp. 2001, 183, 541–554. [Google Scholar] [CrossRef]
- Okuro, P.K.; Tavernier, I.; Sintang, M.D.B.; Skirtach, A.G.; Vicente, A.A.; Dewettinck, K.; Cunha, R.L. Synergistic interactions between lecithin and fruit wax in oleogel formation. Food Funct. 2018, 9, 1755–1767. [Google Scholar] [CrossRef] [PubMed]
- Satapathy, D.; Biswas, D.; Behera, B.; Sagiri, S.S.; Pal, K.; Pramanik, K. Sunflower-oil-based lecithin organogels as matrices for controlled drug delivery. J. Appl. Polym. Sci. 2013, 129, 585–594. [Google Scholar] [CrossRef]
- Guo, S.; Lv, M.; Chen, Y.; Hou, T.; Zhang, Y.; Huang, Z.; Cao, Y.; Rogers, M.; Lan, Y. Engineering water-induced ceramide/lecithin oleogels: Understanding the influence of water added upon pre-and post-nucleation. Food Funct. 2020, 11, 2048–2057. [Google Scholar] [CrossRef]
- Sohail, M.; Rakha, A.; Butt, M.S.; Iqbal, M.J.; Rashid, S. Rice bran nutraceutics: A comprehensive review. Crit. Rev. Food Sci. Nutr. 2017, 57, 3771–3780. [Google Scholar] [CrossRef]
- Das, P.; Qureshi, D.; Paul, S.; Mohanty, B.; Anis, A.; Verma, S.; Wilczyński, S.; Pal, K. Effect of sorbitan monopalmitate on the polymorphic transitions and physicochemical properties of mango butter. Food Chem. 2021, 347, 128987. [Google Scholar] [CrossRef]
- Kupiec, M.; Zbikowska, A.; Marciniak-Lukasiak, K.; Kowalska, M. Rapeseed oil in new application: Assessment of structure of oleogels based on their physicochemical properties and microscopic observations. Agriculture 2020, 10, 211. [Google Scholar] [CrossRef]
- Pușcaș, A.; Mureșan, V.; Muste, S. Application of Analytical Methods for the Comprehensive Analysis of Oleogels—A Review. Polymers 2021, 13, 1934. [Google Scholar] [CrossRef] [PubMed]
- Pathare, P.B.; Opara, U.L.; Al-Said, F.A.-J. Colour measurement and analysis in fresh and processed foods: A review. Food Bioprocess Technol. 2013, 6, 36–60. [Google Scholar] [CrossRef]
- Onacik-Gür, S.; Żbikowska, A. Effect of high-oleic rapeseed oil oleogels on the quality of short-dough biscuits and fat migration. J. Food Sci. Technol. 2020, 57, 1609–1618. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, A.P.B.; Masuchi, M.H.; Miyasaki, E.K.; Domingues, M.A.F.; Stroppa, V.L.Z.; de Oliveira, G.M.; Kieckbusch, T.G. Crystallization modifiers in lipid systems. J. Food Sci. Technol. 2015, 52, 3925–3946. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blake, A.I.; Marangoni, A.G. Plant wax crystals display platelet-like morphology. Food Struct. 2015, 3, 30–34. [Google Scholar] [CrossRef]
- Riggs, C.; Lanyon, L.; Boyde, A. Functional associations between collagen fibre orientation and locomotor strain direction in cortical bone of the equine radius. Anat. Embryol. 1993, 187, 231–238. [Google Scholar] [CrossRef] [PubMed]
- Ramírez-Gómez, N.; Acevedo, N.; Toro-Vázquez, J.; Ornelas-Paz, J.; Dibildox-Alvarado, E.; Pérez-Martínez, J. Phase behavior, structure and rheology of candelilla wax/fully hydrogenated soybean oil mixtures with and without vegetable oil. Food Res. Int. 2016, 89, 828–837. [Google Scholar] [CrossRef]
- Rojas, J.; Cabrera, S.; Benavides, J.; Lopera, Y.; Yarce, C.J. Lipidic Matrixes Containing Clove Essential Oil: Biological Activity, Microstructural and Textural Studies. Molecules 2021, 26, 2425. [Google Scholar] [CrossRef]
- Alhajj, M.J.; Montero, N.; Yarce, C.J.; Salamanca, C.H. Lecithins from vegetable, land, and marine animal sources and their potential applications for cosmetic, food, and pharmaceutical sectors. Cosmetics 2020, 7, 87. [Google Scholar] [CrossRef]
- Rohman, A.; Man, Y.B.C. The chemometrics approach applied to FTIR spectral data for the analysis of rice bran oil in extra virgin olive oil. Chemom. Intell. Lab. Syst. 2012, 110, 129–134. [Google Scholar] [CrossRef] [Green Version]
- Abe, K.; Araki, E.; Suzuki, Y.; Toki, S.; Saika, H. Production of high oleic/low linoleic rice by genome editing. Plant Physiol. Biochem. 2018, 131, 58–62. [Google Scholar] [CrossRef]
- Kaur, A.; Singh, B.; Kaur, A.; Singh, N. Chemical, thermal, rheological and FTIR studies of vegetable oils and their effect on eggless muffin characteristics. J. Food Process. Preserv. 2019, 43, e13978. [Google Scholar] [CrossRef]
- Özgül-Yücel, S.; Proctor, A. Rice bran FFA determination by diffuse reflectance IR spectroscopy. J. Am. Oil Chem. Soc. 2004, 81, 221–224. [Google Scholar] [CrossRef]
- Bucio, A.; Moreno-Tovar, R.; Bucio, L.; Espinosa-Dávila, J.; Anguebes-Franceschi, F. Characterization of beeswax, candelilla wax and paraffin wax for coating cheeses. Coatings 2021, 11, 261. [Google Scholar] [CrossRef]
- Edwards, H.; Falk, M. Fourier-transform Raman spectroscopic study of unsaturated and saturated waxes. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 1997, 53, 2685–2694. [Google Scholar] [CrossRef]
- Yang, Q.; Yang, Y.; Luo, Z.; Xiao, Z.; Ren, H.; Li, D.; Yu, J. Effects of lecithin addition on the properties of extruded maize starch. J. Food Process. Preserv. 2016, 40, 20–28. [Google Scholar] [CrossRef]
- Baran, N.; Singh, V.K.; Pal, K.; Anis, A.; Pradhan, D.K.; Pramanik, K. Development and Characterization of Soy Lecithin and Palm Oil-based Organogels. Polym.-Plast. Technol. Eng. 2014, 53, 865–879. [Google Scholar] [CrossRef]
- Kuligowski, J.; Quintás, G.; Garrigues, S.; De la Guardia, M. Determination of lecithin and soybean oil in dietary supplements using partial least squares–Fourier transform infrared spectroscopy. Talanta 2008, 77, 229–234. [Google Scholar] [CrossRef]
- Meng, Z.; Qi, K.; Guo, Y.; Wang, Y.; Liu, Y. Macro-micro structure characterization and molecular properties of emulsion-templated polysaccharide oleogels. Food Hydrocoll. 2018, 77, 17–29. [Google Scholar] [CrossRef]
- Ongpipattanakul, B.; Francoeur, M.L.; Potts, R.O. Polymorphism in stratum corneum lipids. Biochim. Biophys. Acta (BBA)-Biomembr. 1994, 1190, 115–122. [Google Scholar] [CrossRef]
- Qureshi, D.; Behera, H.; Anis, A.; Kim, D.; Pal, K. Effect of polyglycerol polyricinoleate on the polymorphic transitions and physicochemical properties of mango butter. Food Chem. 2020, 323, 126834. [Google Scholar] [CrossRef] [PubMed]
- Uvanesh, K.; Sagiri, S.; Senthilguru, K.; Pramanik, K.; Banerjee, I.; Anis, A.; Al-Zahrani, S.; Pal, K. Effect of span 60 on the microstructure, crystallization kinetics, and mechanical properties of stearic acid oleogels: An in-depth analysis. J. Food Sci. 2016, 81, E380–E387. [Google Scholar] [CrossRef] [PubMed]
- Alamo, R.G. The role of defect microstructure in the crystallization behavior of metallocene and MgCl2-supported Ziegler-Natta isotactic poly (propylenes). Polímeros 2003, 13, 270–275. [Google Scholar] [CrossRef] [Green Version]
- Gao, Y.; Wu, S. Thermal and oxidation stability of functional oleogels formed by edible wax/starch and Schisandra chinensis oil. Food Funct. 2019, 10, 8056–8068. [Google Scholar] [CrossRef]
- Toro-Vazquez, J.F.; Charó-Alonso, M.A.; Pérez-Martínez, J.D.; Morales-Rueda, J.A. Candelilla wax as an organogelator for vegetable oils—An alternative to develop trans-free products for the food industry. In Edible Oleogels; Elsevier: Amsterdam, The Netherlands, 2011; pp. 119–148. [Google Scholar]
- Hwang, H.S.; Winkler-Moser, J.K. Properties of margarines prepared from soybean oil oleogels with mixtures of candelilla wax and beeswax. J. Food Sci. 2020, 85, 3293–3302. [Google Scholar] [CrossRef] [PubMed]
- Winkler-Moser, J.K.; Anderson, J.; Felker, F.C.; Hwang, H.S. Physical properties of beeswax, sunflower wax, and candelilla wax mixtures and oleogels. J. Am. Oil Chem. Soc. 2019, 96, 1125–1142. [Google Scholar] [CrossRef]
- Öǧütcü, M.; Yılmaz, E. Oleogels of virgin olive oil with carnauba wax and monoglyceride as spreadable products. Grasas Y Aceites 2014, 65, e040. [Google Scholar]
- Morales-Rueda, J.A.; Dibildox-Alvarado, E.; Charó-Alonso, M.A.; Weiss, R.G.; Toro-Vazquez, J.F. Thermo-mechanical properties of candelilla wax and dotriacontane organogels in safflower oil. Eur. J. Lipid Sci. Technol. 2009, 111, 207–215. [Google Scholar] [CrossRef]
- Ferrer-González, B.M.; Flores-Martínez, N.L.; Totosaus, A. Ethanolic Extracts from Agro-Industrial Co-Products Enhance Oxidative Stability of Candelilla Wax or Celluloses Derivatives Oleogels. Acta Univ. Cibiniensis. Ser. E Food Technol. 2021, 25, 83–92. [Google Scholar] [CrossRef]
- Calligaris, S.; Mirolo, G.; Da Pieve, S.; Arrighetti, G.; Nicoli, M.C. Effect of oil type on formation, structure and thermal properties of γ-oryzanol and β-sitosterol-based organogels. Food Biophys. 2014, 9, 69–75. [Google Scholar] [CrossRef]
- Ahmadi, L.; Shahmir, F. Physical characteristics of peanut butter influenced by fully hydrogenated flixweed seed oil (Descurainia sophia L.) as a stabilizer. J. Am. Oil Chem. Soc. 2016, 93, 743–746. [Google Scholar] [CrossRef]
- Glibowski, P.; Zarzycki, P.; Krzepkowska, M. The rheological and instrumental textural properties of selected table fats. Int. J. Food Prop. 2008, 11, 678–686. [Google Scholar] [CrossRef]
- Paul, S.R.; Qureshi, D.; Yogalakshmi, Y.; Nayak, S.K.; Singh, V.K.; Syed, I.; Sarkar, P.; Pal, K. Development of bigels based on stearic acid–rice bran oil oleogels and tamarind gum hydrogels for controlled delivery applications. J. Surfactants Deterg. 2018, 21, 17–29. [Google Scholar] [CrossRef]
- Fayaz, G.; Polenghi, O.; Giardina, A.; Cerne, V.; Calligaris, S. Structural and rheological properties of medium-chain triacylglyceride oleogels. Int. J. Food Sci. Technol. 2021, 56, 1040–1047. [Google Scholar] [CrossRef]
- Jain, A.; Pradhan, B.K.; Mahapatra, P.; Ray, S.S.; Chakravarty, S.; Pal, K. Development of a low-cost food color monitoring system. Color Res. Appl. 2021, 46, 430–445. [Google Scholar] [CrossRef]
Parameters | ||||||
---|---|---|---|---|---|---|
Samples | L* | a* | b* | YI | WI | ΔE |
Control | 57.45 ± 1.92 bcd | −9.27 ± 3.13 afg | 37.15 ± 1.98 ef | 92.35 ± 4.49 def | 42.69 ± 0.74 def | - |
Sf1 | 57.71 ± 1.35 abcd | −10.55 ± 2.03 eg | 37.26 ± 0.68 de | 92.30 ± 3.18 ef | 42.62 ± 1.41 ef | 4.23 ± 2.27 c |
Sf3 | 52.76 ± 0.85 e | −6.20 ± 1.44 abcd | 43.64 ± 3.13 a | 118.26 ± 6.55 a | 35.38 ± 1.91 g | 9.32 ± 1.90 a |
Sf5 | 55.89 ± 0.40 d | −4.32 ± 1.17 a | 39.61 ± 3.13 abcdefgh | 101.18 ± 6.55 bcdef | 40.50 ± 1.51 f | 6.51 ± 3.93 abc |
Sf10 | 57.37 ± 1.54 cd | −7.78 ± 1.23 cg | 32.92 ± 1.05 gh | 81.97 ± 2.79 ghi | 45.56 ± 0.78 h | 5.81 ± 1.33 abc |
Sy1 | 60.15 ± 1.21 abc | −9.36 ± 0.25 dg | 40.02 ± 0.94 bce | 95.07 ± 1.89 cdef | 42.73 ± 0.82 cdef | 5.09 ± 1.42 bc |
Sy3 | 59.41 ± 0.36 abc | −5.89 ± 0.74 abc | 38.2 ± 1.11 de | 91.84 ± 1.45 f | 42.93 ± 0.39 bcdef | 5.16 ± 1.81 abc |
Sy5 | 61.60 ± 0.94 a | −8.83 ± 3.63 afg | 34.81 ± 0.46 df | 80.72 ± 0.61 hi | 47.33 ± 0.51 a | 7.20 ± 2.24 abc |
Sy10 | 59.93 ± 0.82 a | −7.41 ± 0.35 bcfe | 32.67 ± 0.59 h | 77.99 ± 2.60 i | 47.77 ± 1.14 ah | 6.13 ± 1.42 abc |
Samples | Temperature vs. Time | Exponential Decay Model | |
---|---|---|---|
Onset of Secondary Crystallization (s) | Time to Reach Equilibrium (s) | Initial Rate of Crystallization (k) (°C/ms) | |
Control | 672 | 1932 | 3.6 |
Sf1 | 663 | 1701 | 5.2 |
Sf3 | 652 | 1776 | 3.9 |
Sf5 | 636 | 1934 | 3.4 |
Sf10 | 665 | 1941 | 4.6 |
Sy1 | 604 | 2021 | 4.0 |
Sy3 | 671 | 1981 | 6.7 |
Sy5 | 720 | 1680 | 5.6 |
Sy10 | 609 | 2015 | 5.1 |
Samples | Melting | Crystallization | ||||
---|---|---|---|---|---|---|
Peak (Green Arrow) | Temperature (°C) | Area | Peak (Black Arrow) | Onset (°C) | Peak Temperature (°C) | |
Control | Peak 1 | 19.7 | 0.037 | 40.37 | 52.13 | 42.13 |
Peak 2 | 26.66 | 0.158 | ||||
Peak 3 | 32.57 | 0.034 | ||||
Sf1 | Peak 1 | 23.01 | 0.72 | 34.03 | 50.91 | 42.16 |
Peak 2 | 22.27 | 0.40 | ||||
Peak 3 | 27.85 | 0.051 | ||||
Sf3 | Peak 1 | 16.10 | 0.030 | 37.82 | 49.63 | 42.14 |
Peak 2 | 19.58 | 0.022 | ||||
Peak 3 | 26.54 | 0.24 | ||||
Sf5 | Peak 1 | 13.24 | 0.21 | 35.24 | 48.39 | 42.15 |
Peak 2 | 18.51 | 0.027 | ||||
Peak 3 | 25.62 | 0.352 | ||||
Sf10 | Peak 1 | 20.02 | 0.458 | 32.75 | 48.40 | 42.16 |
Peak 2 | 25.12 | 0.018 | ||||
Sy1 | Peak 1 | 17.68 | 0.033 | 35.24 | 49.64 | 42.14 |
Peak 2 | 23.11 | 0.145 | ||||
Peak 3 | 26.93 | 0.044 | ||||
Sy3 | Peak 1 | 19.27 | 0.209 | 34.02 | 48.39 | 42.14 |
Peak 2 | 26.16 | 0.092 | ||||
Peak 3 | 29.00 | 0.012 | ||||
Sy5 | Peak 1 | 20.68 | 0.185 | 39.08 | 45.91 | 39.67 |
Peak 2 | 27.65 | 0.066 | ||||
Peak 3 | 32.13 | 0.019 | ||||
Sy10 | Peak 1 | 19.00 | 0.113 | 35.28 | 49.67 | 42.17 |
Peak 2 | 23.12 | 0.029 | ||||
Peak 3 | 26.41 | 0.044 |
Samples | Firmness (g) (F0) | Work of Shear (g-mm) (C0) | Stickiness (g) (S0) | Work of Adhesion (g-mm) (A0) |
---|---|---|---|---|
Control | 594.99 ± 39.17 a | 3512.37 ± 197.89 ab | −271.06 ± 20.32 a | −851.19 ± 31.35 a |
Sf1 | 488.19 ± 44.73 b | 2951.00 ± 199.43 c | −214.42 ± 36.33 ab | −659.38 ± 103.21 abc |
Sf3 | 512.95 ± 55.93 ab | 3161.16 ± 359.50 abc | −218.95 ± 35.84 ab | −686.40 ± 125.37 abc |
Sf5 | 563.73 ± 32.43 ab | 3315.91 ± 55.92 abc | −257.66 ± 19.17 a | −754.97 ± 25.39 b |
Sf10 | 510.98 ± 66.01 ab | 3093.36 ± 295.55 abc | −225.00 ± 42.34 ab | −721.05 ± 124.14 abc |
Sy1 | 598.76 ± 45.12 a | 3614.40 ± 203.69 a | −259.14 ± 26.09 a | −819.16 ± 59.80 ab |
Sy3 | 525.77 ± 43.70 ab | 3121.40 ± 143.46 bc | −241.02 ± 33.08 ab | −742.43 ± 86.72 ab |
Sy5 | 357.60 ± 35.28 c | 1926.83 ± 212.49 d | −178.38 ± 25.58 b | −525.62 ± 50.66 c |
Sy10 | 551.54 ± 62.53 ab | 3383.06 ± 466.29 abc | −235.10 ± 44.01 ab | −763.31 ± 72.17 ab |
Samples | CW (in g) | RBO (in g) | Stock (in g) |
---|---|---|---|
Control | 1.0 | 19.0 | - |
Sf1 | 1.0 | 18.0 | 1.0 |
Sf3 | 1.0 | 16.0 | 3.0 |
Sf5 | 1.0 | 14.0 | 5.0 |
Sf10 | 1.0 | 9.0 | 10.0 |
Sy1 | 1.0 | 18.0 | 1.0 |
Sy3 | 1.0 | 16.0 | 3.0 |
Sy5 | 1.0 | 14.0 | 5.0 |
Sy10 | 1.0 | 9.0 | 10.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sahu, D.; Bharti, D.; Kim, D.; Sarkar, P.; Pal, K. Variations in Microstructural and Physicochemical Properties of Candelilla Wax/Rice Bran Oil–Derived Oleogels Using Sunflower Lecithin and Soya Lecithin. Gels 2021, 7, 226. https://doi.org/10.3390/gels7040226
Sahu D, Bharti D, Kim D, Sarkar P, Pal K. Variations in Microstructural and Physicochemical Properties of Candelilla Wax/Rice Bran Oil–Derived Oleogels Using Sunflower Lecithin and Soya Lecithin. Gels. 2021; 7(4):226. https://doi.org/10.3390/gels7040226
Chicago/Turabian StyleSahu, Deblu, Deepti Bharti, Doman Kim, Preetam Sarkar, and Kunal Pal. 2021. "Variations in Microstructural and Physicochemical Properties of Candelilla Wax/Rice Bran Oil–Derived Oleogels Using Sunflower Lecithin and Soya Lecithin" Gels 7, no. 4: 226. https://doi.org/10.3390/gels7040226
APA StyleSahu, D., Bharti, D., Kim, D., Sarkar, P., & Pal, K. (2021). Variations in Microstructural and Physicochemical Properties of Candelilla Wax/Rice Bran Oil–Derived Oleogels Using Sunflower Lecithin and Soya Lecithin. Gels, 7(4), 226. https://doi.org/10.3390/gels7040226