Novel Thermosensitive-co-Zwitterionic Sulfobetaine Gels for Metal Ion Removal: Synthesis and Characterization
Abstract
:1. Introduction
2. Results and Discussion
2.1. Fourier-Transform Infrared Spectroscopy (FTIR) Analysis
2.2. Proton Nuclear Magnetic Resonance (1H NMR) Analysis
2.3. Phase Transition Temperature Analysis
2.4. Visual Analysis of Color Change
2.5. Contact Angle Analysis
2.6. Cr3+ Ion Adsorption
3. Conclusions
4. Materials and Methods
4.1. Materials
4.2. Methods
4.2.1. Monomer Synthesis
4.2.2. Synthesis of Poly(NIPAAM-co-DMAAPS) Co-Polymers and Gels
4.2.3. Characterization
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Desa, U.N. Transforming Our World: The 2030 Agenda for Sustainable Development; United Nations: San Francisco, CA, USA, 2016. [Google Scholar]
- Agliardi, E.; Pinar, M.; Stengos, T. Air and Water Pollution over Time and Industries with Stochastic Dominance. Stoch. Environ. Res. Risk Assess. 2017, 31, 1389–1408. [Google Scholar] [CrossRef] [Green Version]
- Nagajyoti, P.C.; Lee, K.D.; Sreekanth, T.V.M. Heavy Metals, Occurrence and Toxicity for Plants: A Review. Environ. Chem. Lett. 2010, 8, 199–216. [Google Scholar] [CrossRef]
- Taha, A.A.; Qiao, J.; Li, F.; Zhang, B. Preparation and Application of Amino Functionalized Mesoporous Nanofiber Membrane via Electrospinning for Adsorption of Cr3+ from Aqueous Solution. J. Environ. Sci. 2012, 24, 610–616. [Google Scholar] [CrossRef]
- Bernardo, G.-R.R.; Rene, R.-M.J. Chromium (III) Uptake by Agro-Waste Biosorbents: Chemical Characterization, Sorption–Desorption Studies, and Mechanism. J. Hazard. Mater. 2009, 170, 845–854. [Google Scholar] [CrossRef]
- Tchounwou, P.B.; Yedjou, C.G.; Patlolla, A.K.; Sutton, D.J. Heavy Metal Toxicity and the Environment in Molecular, Clinical and Environmental Toxicology; Luch, A., Ed.; Springer: Berlin/Heidelberg, Germany, 2012; Volume 101, pp. 133–164. [Google Scholar]
- Sheng, P.X.; Ting, Y.-P.; Chen, J.P.; Hong, L. Sorption of Lead, Copper, Cadmium, Zinc, and Nickel by Marine Algal Biomass: Characterization of Biosorptive Capacity and Investigation of Mechanisms. J. Colloid Interface Sci. 2004, 275, 131–141. [Google Scholar] [CrossRef]
- Lowe, A.B.; McCormick, C.L. Synthesis and Solution Properties of Zwitterionic Polymers. Chem. Rev. 2002, 102, 4177–4190. [Google Scholar] [CrossRef] [PubMed]
- Mi, L.; Jiang, S. Integrated Antimicrobial and Nonfouling Zwitterionic Polymers. Angew. Chem.-Int. Ed. 2014, 53, 1746–1754. [Google Scholar] [CrossRef] [PubMed]
- Lin, W.; Zhang, J.; Wang, Z.; Chen, S. Development of Robust Biocompatible Silicone with High Resistance to Protein Adsorption and Bacterial Adhesion. Acta Biomater. 2011, 7, 2053–2059. [Google Scholar] [CrossRef] [PubMed]
- Inoue, Y.; Nakanishi, T.; Ishihara, K. Elastic Repulsion from Polymer Brush Layers Exhibiting High Protein Repellency. Langmuir 2013, 29, 10752–10758. [Google Scholar] [CrossRef]
- Chang, R.; Tian, Y.; Yu, Z.; Sun, C.; Jin, Z. Preparation and Characterization of Zwitterionic Functionalized Starch Nanoparticles. Int. J. Biol. Macromol. 2019, 142, 395–403. [Google Scholar] [CrossRef] [PubMed]
- Manuscript, A. Molecular simulations and understanding of antifouling zwitterionic polymer brushes. J. Mater. Chem. B 2020, 8, 3814–3828. [Google Scholar] [CrossRef]
- Su, Y.; Li, C. Controlled Adsorption of Bovine Serum Albumin on Poly (Acrylonitrile)–Based Zwitterionic Membranes. React. Funct. Polym. 2008, 68, 161–168. [Google Scholar] [CrossRef]
- Asiabi, H.; Yamini, Y.; Shamsayei, M. Highly Selective and Efficient Removal of Arsenic (V), Chromium (VI) and Selenium (VI) Oxyanions by Layered Double Hydroxide Intercalated with Zwitterionic Glycine. J. Hazard. Mater. 2017, 339, 239–247. [Google Scholar] [CrossRef]
- Liu, J.; Ma, Y.; Xu, T.; Shao, G. Preparation of Zwitterionic Hybrid Polymer and Its Application for the Removal of Heavy Metal Ions from Water. J. Hazard. Mater. 2010, 178, 1021–1029. [Google Scholar] [CrossRef] [PubMed]
- Ningrum, E.O.; Sakohara, S.; Gotoh, T.; Suprapto; Humaidah, N. The effect of cation and anion species on the transition AND adsorption behaviors of thermosensitive sulfobetaine gel—Based adsorbent. Int. J. Technol. 2019, 10, 443–452. [Google Scholar] [CrossRef] [Green Version]
- Salamone, J.C.; Volksen, W.; Olson, A.P.; Israel, S.C. Aqueous Solution Properties of a Poly (Vinyl Imidazolium Sulphobetaine). Polymer 1978, 19, 1157–1162. [Google Scholar] [CrossRef]
- Ningrum, E.O.; Sakohara, S.; Gotoh, T.; Suprapto; Humaidah, N. Correlating Properties between Sulfobetaine Hydrogels and Polymers with Different Carbon Spacer Lengths. Polymer 2020, 186, 122013. [Google Scholar] [CrossRef]
- Ningrum, E.O.; Bagus, A.; Sakohara, S.; Suprapto; Humaidah, N. Reversible Adsorption-Desorption of Zn (Ii) and Pb (Ii) in Aqueous Solution by Thermosensitive-Sulfobetaine Gel. Mater. Sci. Forum 2019, 964, 221–227. [Google Scholar] [CrossRef]
- Ningrum, E.O.; Murakami, Y.; Ohfuka, Y.; Gotoh, T.; Sakohara, S. Investigation of Ion Adsorption Properties of Sulfobetaine Gel and Relationship with Its Swelling Behavior. Polymer 2014, 55, 5189–5197. [Google Scholar] [CrossRef]
- Kali, G.; Vavra, S.; László, K.; Iván, B. Thermally Responsive Amphiphilic Conetworks and Gels Based on Poly (N-Isopropylacrylamide) and Polyisobutylene. Macromolecules 2013, 46, 5337–5344. [Google Scholar] [CrossRef] [Green Version]
- Chang, Y.; Chen, W.-Y.; Yandi, W.; Shih, Y.-J.; Chu, W.-L.; Liu, Y.-L.; Chu, C.-W.; Ruaan, R.-C.; Higuchi, A. Dual-Thermoresponsive Phase Behavior of Blood Compatible Zwitterionic Copolymers Containing Nonionic Poly (N-Isopropyl Acrylamide). Biomacromolecules 2009, 10, 2092–2100. [Google Scholar] [CrossRef]
- Zhao, Y.; Bai, T.; Shao, Q.; Jiang, S.; Shen, A.Q. Thermoresponsive Self-Assembled NiPAm-Zwitterion Copolymers. Polym. Chem. 2015, 6, 1066–1077. [Google Scholar] [CrossRef]
- Obiweluozor, F.O.; GhavamiNejad, A.; Hashmi, S.; Vatankhah-Varnoosfaderani, M.; Stadler, F.J. A NIPAM–Zwitterion Copolymer: Rheological Interpretation of the Specific Ion Effect on the LCST. Macromol. Chem. Phys. 2014, 215, 1077–1091. [Google Scholar] [CrossRef]
- Hashmi, S.; Vatankhah-Varnoosfaderani, M.; Ghavami Nejad, A.; Obiweluozor, F.O.; Du, B.; Stadler, F.J. Self-Associations and Temperature Dependence of Aqueous Solutions of Zwitterionically Modified N-Isopropylacrylamide Copolymers. Rheol. Acta 2015, 54, 501–516. [Google Scholar] [CrossRef]
- Ilčíková, M.; Tkáč, J.; Kasák, P. Switchable Materials Containing Polyzwitterion Moieties. Polymers 2015, 7, 2344–2370. [Google Scholar] [CrossRef]
- Arotçaréna, M.; Heise, B.; Ishaya, S.; Laschewsky, A. Switching the inside and the Outside of Aggregates of Water-Soluble Block Copolymers with Double Thermoresponsivity. J. Am. Chem. Soc. 2002, 124, 3787–3793. [Google Scholar] [CrossRef]
- Maeda, Y.; Mochiduki, H.; Ikeda, I. Hydration Changes during Thermosensitive Association of a Block Copolymer Consisting of LCST and UCST Blocks. Macromol. Rapid Commun. 2004, 25, 1330–1334. [Google Scholar] [CrossRef]
- Virtanen, J.; Arotçaréna, M.; Heise, B.; Ishaya, S.; Laschewsky, A.; Tenhu, H. Dissolution and Aggregation of a Poly (NIPA-Block-Sulfobetaine) Copolymer in Water and Saline Aqueous Solutions. Langmuir 2002, 18, 5360–5365. [Google Scholar] [CrossRef]
- Iizawa, T.; Taketa, H.; Maruta, M.; Ishido, T.; Gotoh, T.; Sakohara, S. Synthesis of Porous Poly (N-isopropylacrylamide) Gel Beads by Sedimentation Polymerization and Their Morphology. J. Appl. Polym. Sci. 2007, 104, 842–850. [Google Scholar] [CrossRef]
- Tokuyama, H.; Yazaki, N. Preparation of Poly (N-Isopropylacrylamide) Hydrogel Beads by Circulation Polymerization. React. Funct. Polym. 2010, 70, 967–971. [Google Scholar] [CrossRef]
- Gotoh, T.; Nakatani, Y.; Sakohara, S. Novel Synthesis of Thermosensitive Porous Hydrogels. J. Appl. Polym. Sci. 1998, 69, 895–906. [Google Scholar] [CrossRef]
- Ju, X.-J.; Zhang, S.-B.; Zhou, M.-Y.; Xie, R.; Yang, L.; Chu, L.-Y. Novel Heavy-Metal Adsorption Material: Ion-Recognition P (NIPAM-Co-BCAm) Hydrogels for Removal of Lead (II) Ions. J. Hazard. Mater. 2009, 167, 114–118. [Google Scholar] [CrossRef] [PubMed]
- Chen, A.-L.; Yu, H.-R.; Ju, X.-J.; Xie, R.; Wang, W.; Chu, L.-Y. Visual Detection of Lead (II) Using a Simple Device Based on P (NIPAM-Co-B18C6Am) Hydrogel. RSC Adv. 2014, 4, 26030–26037. [Google Scholar] [CrossRef]
- Zhang, M.; Li, Y.; Yang, Q.; Huang, L.; Chen, L.; Ni, Y.; Xiao, H. Temperature and PH Responsive Cellulose Filament/Poly (NIPAM-Co-AAc) Hybrids as Novel Adsorbent towards Pb (II) Removal. Carbohydr. Polym. 2018, 195, 495–504. [Google Scholar] [CrossRef]
- Cheng, J.; Shan, G.; Pan, P. Temperature and PH-Dependent Swelling and Copper (II) Adsorption of Poly (N-Isopropylacrylamide) Copolymer Hydrogel. RSC Adv. 2015, 5, 62091–62100. [Google Scholar] [CrossRef]
- Yamashita, K.; Nishimura, T.; Nango, M. Preparation of IPN-type Stimuli-Responsive Heavy-Metal-Ion Adsorbent Gel. Polym. Adv. Technol. 2003, 14, 189–194. [Google Scholar] [CrossRef]
- Tokuyama, H.; Iwama, T. Temperature-Swing Solid-Phase Extraction of Heavy Metals on a Poly (N-Isopropylacrylamide) Hydrogel. Langmuir 2007, 23, 13104–13108. [Google Scholar] [CrossRef] [PubMed]
- Yan, F.; Wang, M.; Cao, D.; Guo, S.; Chen, L. Preparation of Thermosensitive, Calix[4]Arene Incorporated P(NIPAM-Co-HBCalix) Hydrogel as a Reusable Adsorbent of Nickel(II) Ions. J. Polym. Sci. Part A Polym. Chem. 2013, 51, 2401–2408. [Google Scholar] [CrossRef]
- Shahid, M.; Farooqi, Z.H.; Begum, R.; Arif, M.; Irfan, A.; Azam, M. Extraction of Cobalt Ions from Aqueous Solution by Microgels for In-Situ Fabrication of Cobalt Nanoparticles to Degrade Toxic Dyes: A Two Fold-Environmental Application. Chem. Phys. Lett. 2020, 754, 137645. [Google Scholar] [CrossRef]
- Naseem, K.; Farooqi, Z.H.; Begum, R.; Ur Rehman, M.Z.; Ghufran, M.; Wu, W.; Najeeb, J.; Irfan, A. Synthesis and Characterization of Poly (N-Isopropylmethacrylamide-Acrylic Acid) Smart Polymer Microgels for Adsorptive Extraction of Copper (II) and Cobalt (II) from Aqueous Medium: Kinetic and Thermodynamic Aspects. Environ. Sci. Pollut. Res. 2020, 27, 28169–28182. [Google Scholar] [CrossRef] [PubMed]
- Zdravković, A.; Nikolić, L.; Ilić-Stojanović, S.; Nikolić, V.; Najman, S.; Mitić, Ž.; Ćirić, A.; Petrović, S. The Removal of Heavy Metal Ions from Aqueous Solutions by Hydrogels Based on N-Isopropylacrylamide and Acrylic Acid. Polym. Bull. 2018, 75, 4797–4821. [Google Scholar] [CrossRef] [Green Version]
- Allegretto, J.A.; Giussi, J.M.; Moya, S.E.; Azzaroni, O.; Rafti, M. Synthesis and Characterization of Thermoresponsive ZIF-8@ PNIPAm-Co-MAA Microgel Composites with Enhanced Performance as an Adsorption/Release Platform. RSC Adv. 2020, 10, 2453–2461. [Google Scholar] [CrossRef] [Green Version]
- Ningrum, E.O.; Ohfuka, Y.; Gotoh, T.; Sakohara, S. Effects of Specific Anions on the Relationship between the Ion-Adsorption Properties of Sulfobetaine Gel and Its Swelling Behavior. Polymer 2015, 59, 144–154. [Google Scholar] [CrossRef]
- Schmid, A.J.; Schroeder, R.; Eckert, T.; Radulescu, A.; Pich, A.; Richtering, W. Synthesis and Solution Behaviour of Stimuli-Sensitive Zwitterionic Microgels. Colloid Polym. Sci. 2015, 293, 3305–3318. [Google Scholar] [CrossRef]
- Ningrum, E.O.; Purwanto, A.; Rosita, G.C.; Bagus, A. The Properties of Thermosensitive Zwitterionic Sulfobetaine NIPAM-Co-DMAAPS Polymer and the Hydrogels: The Effects of Monomer Concentration on the Transition Temperature and Its Correlation with the Adsorption Behavior. Indones. J. Chem. 2020, 20, 324–335. [Google Scholar] [CrossRef] [Green Version]
- Eeckman, F.; Amighi, K.; Moës, A.J. Effect of Some Physiological and Non-Physiological Compounds on the Phase Transition Temperature of Thermoresponsive Polymers Intended for Oral Controlled-Drug Delivery. Int. J. Pharm. 2001, 222, 259–270. [Google Scholar] [CrossRef]
- Costioli, M.D.; Fisch, I.; Garret-Flaudy, F.; Hilbrig, F.; Freitag, R. DNA Purification by Triple-helix Affinity Precipitation. Biotechnol. Bioeng. 2003, 81, 535–545. [Google Scholar] [CrossRef]
- Lu, Y.; Chen, T.; Mei, A.; Chen, T.; Ding, Y.; Zhang, X.; Xu, J.; Fan, Z.; Du, B. Solution Behaviors and Microstructures of PNIPAm- P123-PNIPAm Pentablock Terpolymers in Dilute and Concentrated Aqueous Solutions. Phys. Chem. Chem. Phys. 2013, 15, 8276–8286. [Google Scholar] [CrossRef]
- Ionov, L.; Synytska, A.; Diez, S. Temperature-Induced Size-Control of Bioactive Surface Patterns. Adv. Funct. Mater. 2008, 18, 1501–1508. [Google Scholar] [CrossRef]
- Takeoka, Y.; Watanabe, M. Tuning Structural Color Changes of Porous Thermosensitive Gels through Quantitative Adjustment of the Cross-Linker in Pre-Gel Solutions. Langmuir 2003, 19, 9104–9106. [Google Scholar] [CrossRef]
- Jung, Y.C.; Bhushan, B. Contact Angle, Adhesion and Friction Properties of Micro-and Nanopatterned Polymers for Superhydrophobicity. Nanotechnology 2006, 17, 4970. [Google Scholar] [CrossRef]
- Mydin, N.M.B.M.; Mubarak, N.M.; Nizamuddin, S.; Siddiqui, M.T.H.; Baloch, H.A.; Abdullah, E.C.; Khalid, M. Multiwall Carbon Nanotube Promising Route for Removal of Chromium from Wastewater via Batch Column Mechanism. IOP Conf. Ser. Mater. Sci. Eng. 2019, 495, 12061. [Google Scholar] [CrossRef] [Green Version]
- Zhang, T.; Wang, Y.; Kuang, Y.; Yang, R.; Ma, J.; Zhao, S.; Liao, Y.; Mao, H. Adsorptive Removal of Cr3+ from Aqueous Solutions Using Chitosan Microfibers Immobilized with Plant Polyphenols as Biosorbents with High Capacity and Selectivity. Appl. Surf. Sci. 2017, 404, 418–425. [Google Scholar] [CrossRef]
- Mahmoud, M.E.; Abdou, A.E.H.; Sobhy, M.E. Engineered Nano-Zirconium Oxide-Crosslinked-Nanolayer of Carboxymethyl Cellulose for Speciation and Adsorptive Removal of Cr (III) and Cr (VI). Powder Technol. 2017, 321, 444–453. [Google Scholar] [CrossRef]
- Mohamed, H.S.; Soliman, N.K.; Abdelrheem, D.A.; Ramadan, A.A.; Elghandour, A.H.; Ahmed, S.A. Adsorption of Cd2+ and Cr3+ Ions from Aqueous Solutions by Using Residue of Padina Gymnospora Waste as Promising Low-Cost Adsorbent. Heliyon 2019, 5, e01287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, M.; Zhang, H.; Zhang, X.; Deng, Y.; Liu, W.; Zhan, H. Removal and Recovery of Chromium (III) from Aqueous Solutions by a Spheroidal Cellulose Adsorbent. Water Environ. Res. 2001, 73, 322–328. [Google Scholar] [CrossRef] [PubMed]
- Oumani, A.; Mandi, L.; Berrekhis, F.; Ouazzani, N. Removal of Cr3+ from Tanning Effluents by Adsorption onto Phosphate Mine Waste: Key Parameters and Mechanisms. J. Hazard. Mater. 2019, 378, 120718. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Pan, D.; Wu, Y.; Fan, J.; Wu, N.; Gao, L.; Li, W.; Xiao, G. Catalytic Conversion of Xylose and Xylan into Furfural over Cr3+/P-SBA-15 Catalyst Derived from Spent Adsorbent. Ind. Eng. Chem. Res. 2019, 58, 13013–13020. [Google Scholar] [CrossRef]
- Tao, E.; Ma, D.; Yang, S.; Sun, Y.; Xu, J.; Kim, E.J. Zirconium Dioxide Loaded Montmorillonite Composites as High-Efficient Adsorbents for the Removal of Cr3+ Ions from Tanning Wastewater. J. Solid State Chem. 2019, 277, 502–509. [Google Scholar]
- Maneechakr, P.; Mongkollertlop, S. Investigation on Adsorption Behaviors of Heavy Metal Ions (Cd2+, Cr3+, Hg2+ and Pb2+) through Low-Cost/Active Manganese Dioxide-Modified Magnetic Biochar Derived from Palm Kernel Cake Residue. J. Environ. Chem. Eng. 2020, 8, 104467. [Google Scholar] [CrossRef]
- Tahergorabi, M.; Esrafili, A.; Kermani, M.; Shirzad-Siboni, M. Application of Thiol-Functionalized Mesoporous Silica-Coated Magnetite Nanoparticles for the Adsorption of Heavy Metals. Desalin. Water Treat. 2016, 57, 19834–19845. [Google Scholar] [CrossRef]
- Abuhatab, S.; El-Qanni, A.; Al-Qalaq, H.; Hmoudah, M.; Al-Zerei, W. Effective Adsorptive Removal of Zn2+, Cu2+, and Cr3+ Heavy Metals from Aqueous Solutions Using Silica-Based Embedded with NiO and MgO Nanoparticles. J. Environ. Manag. 2020, 268, 110713. [Google Scholar] [CrossRef] [PubMed]
- Taha, G.M. Utilization of Low-Cost Waste Material Bagasse Fly Ash in Removing of Cu2+, Ni2+, Zn2+, and Cr3+ from Industrial Waste Water. Groundw. Monit. Remediat. 2006, 26, 137–141. [Google Scholar] [CrossRef] [Green Version]
- Kang, S.-Y.; Lee, J.-U.; Moon, S.-H.; Kim, K.-W. Competitive Adsorption Characteristics of Co2+, Ni2+, and Cr3+ by IRN-77 Cation Exchange Resin in Synthesized Wastewater. Chemosphere 2004, 56, 141–147. [Google Scholar] [CrossRef] [PubMed]
- Suharto, T.; Goto, T.; Nakai, S. Simultaneous Adsorption of Cation and Anion by Thermosensitive Hydrogels. In Proceedings of the MATEC Web of Conferences: 18th Asian Pacific Confederation of Chemical Engineering Congress (APCChE 2019), Sapporo, Japan, 23–27 September 2019; EDP Sciences: Les Ulis, France, 2021; Volume 333, p. 11007. [Google Scholar]
No. | Functional Groups | Wavenumber (cm−1) | |||||
---|---|---|---|---|---|---|---|
NIPAAM | DMAAPS | NIPAAM:DMAAPS = 80:20 | NIPAAM:DMAAPS = 85:15 | NIPAAM:DMAAPS = 90:10 | NIPAAM:DMAAPS = 95:5 | ||
1 | C=C | 960 | 980 | - | - | - | - |
2 | CO-NH | 1547 | 1556 | 1540 | 1540 | 1537 | 1538 |
3 | C-H | 2968 | 2974 | 2934 | 2970 | 2970 | 2970 |
4 | C-N | 1061 | 1038 | 1036 | 1036 | 1037 | 1037 |
5 | C=O | 1620 | 1625 | 1634 | 1635 | 1632 | 1634 |
6 | N-H | 3279 | 3273 | 3276 | 3280 | 3281 | 3289 |
7 | S-O | - | 1181 | 1170 | 1170 | 1170 | 1170 |
Adsorbent | Surface Area (m2/g) | Adsorption Capacity (mg/g) | Temperature (°C) | pH | Concentration (mg/L) | Ref. |
---|---|---|---|---|---|---|
MWCNTs | - | 24.9 | - | 7 | 2–10 | [54] |
CM-BT | - | 20.90 | 30 | 5.5 | 2 | [55] |
Nano-ZrO2-Glu-CMC | 24.13 | 58.2 | 25 | 7 | - | [56] |
RPG | - | 39.86 | 25 | 8 | 100 | [57] |
Spheroidal cellulose adsorbent containing the carboxyl anionic group | - | 72.6 | 25 | 4 | 1920 | [58] |
PW | 15.12 | 97.23 | 50 | 3.43 | 40 | [59] |
P-SBA-15 | 701 | 63.6 | 30 | 4 | 100 | [60] |
ZrO2-MMT | - | 172.41 | 50 | 7–8 | 30 | [61] |
CP-Fe-Mn | 89.3853 | 19.92 | 30 | 4.30 | 100 | [62] |
TF-SCMNPs | - | 1.1 | 25 | 10 | 400 | [63] |
PVP/SiO2 | 873.62 | 97.7 | 30 | 7 | 100 | [4] |
NiO-MgO SBNs | 48 | 209.5 | 25 | 5.5 | 50–400 | [64] |
Bagasse fly ash | 480 | 2.48 | 25 | 6 | 30 | [65] |
Amberlite IRN-77 cation exchange resin | - | 46.95 | 25 | 4,8 | 100 | [66] |
poly(NIPAAM-co-DMAAPS) | - | 185.2 | 30 | 7 | 330 | This study |
Molar Ratios of NIPAAM and DMAAPS | LCST (°C) | Temperature (30 °C) | |||
---|---|---|---|---|---|
Contact Angle (°) | Visual | Swelling Degree (-) | Ion Adsorption (mmol/g dry-gel) | ||
95:05:00 | 41.072 | 86.64 | hydrophilic, | 1.75 | 0.0489 |
transparent | |||||
90:10:00 | 51.07 | 76.84 | hydrophilic, | 2.844 | 0.0454 |
transparent | |||||
85:15:00 | 64.904 | 52.52 | hydrophilic, | 4.695 | 0.0555 |
transparent | |||||
80:20:00 | >80 | 52.72 | hydrophilic, | 4.444 | 0.0712 |
transparent |
Molar Ratios of NIPAAM and DMAAPS | NIPAAM Concentration (mmol/L) | LCST (°C) | Temperature (70 °C) | |||
---|---|---|---|---|---|---|
Contact Angle (°) | Visual | Swelling Degree (-) | Ion Adsorption (mmol/g dry-gel) | |||
95:05:00 | 950 | 41.072 | 92.73 | hydrophobic, | 1.143 | 0.027 |
milky white | ||||||
90:10:00 | 900 | 51.07 | 94.33 | hydrophobic, | 0.903 | 0.0223 |
milky white | ||||||
85:15:00 | 850 | 64.904 | 95.98 | hydrophobic, | 1.455 | 0.045 |
opaque | ||||||
80:20:00 | 800 | >80 | 74.46 | hydrophilic, | 1.76 | 0.0627 |
transparent |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ningrum, E.O.; Gotoh, T.; Ciptonugroho, W.; Karisma, A.D.; Agustiani, E.; Safitri, Z.M.; Dzaky, M.A. Novel Thermosensitive-co-Zwitterionic Sulfobetaine Gels for Metal Ion Removal: Synthesis and Characterization. Gels 2021, 7, 273. https://doi.org/10.3390/gels7040273
Ningrum EO, Gotoh T, Ciptonugroho W, Karisma AD, Agustiani E, Safitri ZM, Dzaky MA. Novel Thermosensitive-co-Zwitterionic Sulfobetaine Gels for Metal Ion Removal: Synthesis and Characterization. Gels. 2021; 7(4):273. https://doi.org/10.3390/gels7040273
Chicago/Turabian StyleNingrum, Eva Oktavia, Takehiko Gotoh, Wirawan Ciptonugroho, Achmad Dwitama Karisma, Elly Agustiani, Zela Marni Safitri, and Muhammad Asyam Dzaky. 2021. "Novel Thermosensitive-co-Zwitterionic Sulfobetaine Gels for Metal Ion Removal: Synthesis and Characterization" Gels 7, no. 4: 273. https://doi.org/10.3390/gels7040273
APA StyleNingrum, E. O., Gotoh, T., Ciptonugroho, W., Karisma, A. D., Agustiani, E., Safitri, Z. M., & Dzaky, M. A. (2021). Novel Thermosensitive-co-Zwitterionic Sulfobetaine Gels for Metal Ion Removal: Synthesis and Characterization. Gels, 7(4), 273. https://doi.org/10.3390/gels7040273