Characterization of Sugar Reduction in Model Confectionary Gels Using Descriptive Analysis
Abstract
:1. Introduction
2. Results and Discussion
2.1. Sensory Analysis
2.2. Relationship between Sensory Attributes and Instrumental Parameters
3. Conclusions
4. Materials and Methods
4.1. Raw Materials and Sample Preparation
4.2. Sensory Evaluation
4.2.1. Participants
4.2.2. Basic Taste Solutions and PROP Preparation
4.2.3. Sample Preparation
4.2.4. Panelist Training
4.3. Texture Profile Analysis
4.4. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Pacheco, L.S.; Lacey, J.V., Jr.; Martinez, M.E.; Lemus, H.; Araneta, M.R.G.; Sears, D.D.; Talavera, G.A.; Anderson, C.A.M. Sugar-Sweetened Beverage Intake and Cardiovascular Disease Risk in the California Teachers Study. J. Am. Heart Assoc. 2020, 9, e014883. [Google Scholar] [CrossRef] [PubMed]
- Hu, F.B.; Malik, V.S. Sugar-sweetened beverages and risk of obesity and type 2 diabetes: Epidemiologic evidence. Physiol. Behav. 2010, 100, 47–54. [Google Scholar] [CrossRef] [Green Version]
- Milner, L.; Kerry, J.P.; O’Sullivan, M.G.; Gallagher, E. Physical, textural and sensory characteristics of reduced sucrose cakes, incorporated with clean-label sugar-replacing alternative ingredients. Innov. Food Sci. Emerg. Technol. 2020, 59, 102235. [Google Scholar] [CrossRef]
- Riedel, R.; Böhme, B.; Rohm, H. Development of formulations for reduced-sugar and sugar-free agar-based fruit jellies. Int. J. Food Sci. Technol. 2015, 50, 1338–1344. [Google Scholar] [CrossRef]
- Torrico, D.D.; Tam, J.; Fuentes, S.; Viejo, C.G.; Dunshea, F.R. Consumer rejection threshold, acceptability rates, physicochemical properties, and shelf-life of strawberry-flavored yogurts with reductions of sugar. J. Sci. Food Agric. 2020, 100, 3024–3035. [Google Scholar] [CrossRef] [PubMed]
- Tsitlakidou, P.; Van Loey, A.; Methven, L.; Elmore, J.S. Effect of sugar reduction on flavour release and sensory perception in an orange juice soft drink model. Food Chem. 2019, 284, 125–132. [Google Scholar] [CrossRef]
- Cardoso, J.M.P.; Bolini, H. Descriptive profile of peach nectar sweetened with sucrose and different sweeteners. J. Sens. Stud. 2008, 23, 804–816. [Google Scholar] [CrossRef]
- Evageliou, V.; Richardson, R.; Morris, E. Effect of sucrose, glucose and fructose on gelation of oxidized starch. Carbohydr. Polym. 2000, 42, 261–272. [Google Scholar] [CrossRef]
- Shimizu, S.; Matubayasi, N. Gelation: The role of sugars and polyols on gelatin and agarose. J. Phys. Chem. B 2014, 118, 13210–13216. [Google Scholar] [CrossRef] [PubMed]
- Basu, S.; Shivhare, U.; Chakraborty, P. Influence of sugar substitute in rheology of fruit gel. In Advances in Food Rheology and Its Applications; Elsevier Ltd.: Amsterdam, The Netherlands, 2017; pp. 355–376. [Google Scholar] [CrossRef]
- Kappes, S.M.; Schmidt, S.J.; Lee, S.-Y. Mouthfeel detection threshold and instrumental viscosity of sucrose and high fructose corn syrup solutions. J. Food Sci. 2006, 71, S597–S602. [Google Scholar] [CrossRef]
- Bourne, M.C. Texture Profile Analysis. Food Technol. 1978, 1978, 62–66. [Google Scholar]
- Yusof, N.; Jaswir, I.; Jamal, P.; Jami, M.S. Texture Profile Analysis (TPA) of the jelly dessert prepared from halal gelatin extracted using High Pressure Processing (HPP). Malays. J. Fundam. Appl. Sci. 2019, 15, 604–608. [Google Scholar] [CrossRef]
- Chandra, M.V.; Shamasundar, B.A. Texture profile analysis and functional properties of gelatin from the skin of three species of fresh water fish. Int. J. Food Prop. 2015, 18, 572–584. [Google Scholar] [CrossRef]
- Rahman, M.S.; Al-Mahrouqi, A.I. Instrumental texture profile analysis of gelatin gel extracted from grouper skin and commercial (bovine and porcine) gelatin gels. Int. J. Food Sci. Nutr. 2009, 60 (Suppl. S7), 229–242. [Google Scholar] [CrossRef]
- Rodríguez-Rodríguez, R.; Barajas-Álvarez, P.; Morales-Hernández, N.; Camacho-Ruíz, R.M.; Espinosa-Andrews, H. Physical Properties and Prebiotic Activities (Lactobacillus spp.) of Gelatine-Based Gels Formulated with Agave Fructans and Agave Syrups as Sucrose and Glucose Substitutes. Molecules 2022, 27, 4902. [Google Scholar] [CrossRef]
- Stenner, R.; Matubayasi, N.; Shimizu, S. Gelation of carrageenan: Effects of sugars and polyols. Food Hydrocoll. 2016, 54, 284–292. [Google Scholar] [CrossRef]
- Ellis, A.; Mills, T.; Norton, I.; Norton-Welch, A. The effect of sugars on agar fluid gels and the stabilisation of their foams. Food Hydrocoll. 2019, 87, 371–381. [Google Scholar] [CrossRef]
- Brückner-Gühmann, M.; Banovic, M.; Drusch, S. Towards an increased plant protein intake: Rheological properties, sensory perception and consumer acceptability of lactic acid fermented, oat-based gels. Food Hydrocoll. 2019, 96, 201–208. [Google Scholar] [CrossRef]
- Foegeding, E.A.; Brown, J.; Drake, M.; Daubert, C.R. Sensory and mechanical aspects of cheese texture. Int. Dairy J. 2003, 13, 585–591. [Google Scholar] [CrossRef]
- Kappes, S.; Schmidt, S.; Lee, S.-Y. Relationship between physical properties and sensory attributes of carbonated beverages. J. Food Sci. 2007, 72, S001–S011. [Google Scholar] [CrossRef]
- Loredo, A.B.G.; Guerrero, S.N. Correlation between instrumental and sensory ratings by evaluation of some texture reference scales. Int. J. Food Sci. Technol. 2011, 46, 1977–1985. [Google Scholar] [CrossRef]
- Paula, A.M.; Conti-Silva, A.C. Texture profile and correlation between sensory and instrumental analyses on extruded snacks. J. Food Eng. 2014, 121, 9–14. [Google Scholar] [CrossRef] [Green Version]
- Mayhew, E.J.; Schmidt, S.J.; Lee, S.-Y. Sensory and Physical Effects of Sugar Reduction in a Caramel Coating System. J. Food Sci. 2017, 82, 1935–1946. [Google Scholar] [CrossRef]
- Richardson, A.M.; Tyuftin, A.A.; Kilcawley, K.N.; Gallagher, E.; Sullivan, M.G.O.; Kerry, J.P. The impact of sugar particle size manipulation on the physical and sensory properties of chocolate brownies. LWT Food Sci. Technol. 2018, 95, 51–57. [Google Scholar] [CrossRef] [Green Version]
- Arltoft, D.; Madsen, F.; Ipsen, R. Relating the microstructure of pectin and carrageenan in dairy desserts to rheological and sensory characteristics. Food Hydrocoll. 2008, 22, 660–673. [Google Scholar] [CrossRef]
- Choi, S.-S.; Regenstein, J. Physicochemical and sensory characteristics of fish gelatin. J. Food Sci. 2000, 65, 194–199. [Google Scholar] [CrossRef]
- Kälviäinen, N.; Roininen, K.; Tuorila, H. Sensory characterization of texture and flavor of high viscosity gels made with different thickeners. J. Texture Stud. 2000, 31, 407–420. [Google Scholar] [CrossRef]
- Noronha, R.; Damásio, M.; Pivatto, M.; Negrillo, B.; Pangborn, R.M. Development of the Attributes and Panel Screening for Texture Descriptive Analysis of Milk Gels Aided by Multivariate Statistical Procedures. Food Qual. Prefer. 1995, 6, 49–54. [Google Scholar] [CrossRef]
- Weenen, H.; Jellema, R.; de Wijk, R. Sensory sub-attributes of creamy mouthfeel in commercial mayonnaises, custard desserts and sauces. Food Qual. Prefer. 2005, 16, 163–170. [Google Scholar] [CrossRef]
- Szczesniak, A.S. Texture is a sensory property. Food Qual. Prefer. 2002, 13, 215–225. [Google Scholar] [CrossRef]
- Phillips, G.O.; Williams, P.A. Handbook of Hydrocolloids, 2nd ed.; Woodhead Publishing: Sawson, UK, 2009. [Google Scholar]
- De Vries, J. Interaction of carrageenan with other ingredients in dairy gel desserts. In Gums and Stabilisers for the Food Industry, 11th ed.; Williams, P.A., Phillips, G.O., Eds.; Royal Society of Chemistry: London, UK, 2002; pp. 201–211. [Google Scholar]
- Verbeken, D.; Thas, O.; Dewettinck, K. Textural properties of gelled dairy desserts containing κ-carrageenan and starch. Food Hydrocoll. 2004, 18, 817–823. [Google Scholar] [CrossRef]
- Verbeken, D.; Bael, K.; Thas, O.; Dewettinck, K. Interactions between κ-carrageenan, milk proteins and modified starch in sterilized dairy desserts. Int. Dairy J. 2006, 16, 482–488. [Google Scholar] [CrossRef]
- Akesowan, A.; Choonhahirun, A. Optimization of sugar-free konjac gel texture containing erythritol-sucralose sweetener for producing healthy jam. Food Res. 2019, 3, 241–248. [Google Scholar] [CrossRef]
- Pielak, M.; Czarniecka-Skubina, E.; Głuchowski, A. Effect of sugar substitution with steviol glycosides on sensory quality and physicochemical composition of low-sugar apple preserves. Foods 2020, 9, 293. [Google Scholar] [CrossRef] [Green Version]
- Suebsaen, K.; Suksatit, B.; Kanha, N.; Laokuldilok, T. Instrumental characterization of banana dessert gels for the elderly with dysphagia. Food Biosci. 2019, 32, 100477. [Google Scholar] [CrossRef]
- Brenner, T.; Tuvikene, R.; Parker, A.; Matsukawa, S.; Nishinari, K. Rheology and structure of mixed kappa-carrageenan/iota-carrageenan gels. Food Hydrocoll. 2014, 39, 272–279. [Google Scholar] [CrossRef]
- Milani, J.; Maleki, G. Hydrocolloids in Food Industry; IntechOpen: London, UK, 2012. [Google Scholar] [CrossRef] [Green Version]
- Piculell, L. Gelling carrageenans. In Food Polysacchrides and Their Applications; Stephen, A.M., Phillips, G.O., Williams, P.A., Eds.; CRC Press: Boca Raton, FL, USA, 2006; pp. 239–276. [Google Scholar]
- De Graaf, C.; Zandstra, E.H. Sweetness intensity and pleasantness in children, adolescents, and adults. Physiol. Behav. 1999, 67, 513–520. [Google Scholar] [CrossRef]
- Pascua, Y.; Koç, H.; Foegeding, E.A. Food structure: Roles of mechanical properties and oral processing in determining sensory texture of soft materials. Curr. Opin. Colloid. Interface Sci. 2013, 18, 324–333. [Google Scholar] [CrossRef]
- Pons, M.; Fiszman, S. Instrumental texture profile analysis with particular reference to gelled systems. J. Texture Stud. 1996, 27, 597–624. [Google Scholar] [CrossRef]
- Daget, N.; Collyer, S. Comparison Between Quantitative Descriptive Analysis and Physical Measurements of Gel Systems and Evaluation of the Sensorial Method. J. Texture Stud. 1984, 15, 227–245. [Google Scholar] [CrossRef]
- Rosenthal, A.J. Relation between instrumental and sensory measures of food texture. In Food Texture: Measurement and Perception; Springer: New York, NY, USA, 1999; Volume 5492, pp. 1–29. [Google Scholar]
Modality | Term | Definition | Exact Reference Brand | Reference Preparation | Final Reference Intensity |
---|---|---|---|---|---|
Appearance | Cloudy | Difficulty to see through the sample | Minute Maid Lemonade (The Coca-Cola Company Inc., Atlanta, GA, USA) | 20 mL lemonade of diluted 1:1 with filtered water (in a 29.5 mL cup) | 7.1 |
Glossy | Ability to reflect light on the surface | Meijer Light Corn Syrup (Meijer, Inc., Grand Rapids, MI, USA) | 10 g of corn syrup (in 29.5 mL cup) | 11.0 | |
Bubbly | Amount of air pockets in the sample | Meijer After Sun Aloe Gel (Meijer, Inc., Grand Rapids, MI, USA) | 10 g of aloe vera shaken before pumped (into 29.5 mL cup) | 7.1 | |
Aroma | Fishy | Aroma associated with aquariums, fish tanks, or fish | Bumble Bee Chunk Light Tuna (Bumble Bee Foods, LLC, San Diego, CA, USA) | Liquid in tuna can (25 g) was taken and diluted with 1 cup of filtered water (20 mL in 29.5 mL cup) | 11.0 |
Metallic | Aroma associated with metals | USA | Penny is held in hand while smelling (taken out of the 29.5 mL cup) | 7.7 | |
Taste | Sweet | Taste associated with sugar | Meijer Pure Granulated Sugar (Meijer, Inc., Grand Rapids, MI, USA) | 3.5% w/v sucrose in filtered water (20 mL in 29.5 mL cup) | 9.7 |
Bitter | Taste associated with caffeine | Sigma-Aldrich 99% Caffeine (Merck KGaA, Darmstadt, Germany) | 0.1% w/v caffeine in filtered water (20 mL in 29.5 mL cup) | 7.8 | |
Aftertaste | Sweet | Aftertaste associated with sugar | Meijer Pure Granulated Sugar (Meijer, Inc., Grand Rapids, MI, USA) | 3.5% w/v sucrose in filtered water (20 mL in 29.5 mL cup) | 8.3 |
Texture | Jiggly | Degree the sample wobbles when the container is slightly tapped with the finger | Jell-O Raspberry Flavor Gelatin Dessert (The Kraft Heinz Company, Chicago, IL, USA) | Jell-O prepared according to package (20 g in 29.5 mL cup) | 11.6 |
Creamy | Rich and smooth texture when eaten | Snack Pack Chocolate Pudding (Conagra Brands, Inc., Chicago, IL, USA) | 20 g of chocolate pudding (in 29.5 mL cup) | 10.9 | |
Chewy | Resistance when chewing | Welch’s Mixed Fruit Fruit Snacks (Welch Foods Inc., Concord, MA, USA) | Two strawberry gummies (in 29.5 mL cup) | 9.3 | |
Melt-In-Mouth | Dissolves or falls apart in mouth without force or resistance | Meijer Whipped Cream (Meijer, Inc., Grand Rapids, MI, USA) | Whipped cream in 29.5 mL cup filled completely | 11.2 | |
Mouthcoating | Leaving a residue or film in mouth after the food leaves | Meijer Heavy Whipping Cream (Meijer, Inc., Grand Rapids, MI, USA) | 10 mL of whipping cream (in 29.5 mL cup) | 11.0 |
Attributes | Judge (J) | Gel Type (GT) | Sugar Concentration (SC) | Replication (R) | J X GT | J X SC | J X R | GT X SC |
---|---|---|---|---|---|---|---|---|
Cloudy | 12.10 *** | 296.79 *** | 6.28 *** | 0.44 | 12.53 *** | 2.62 *** | 0.52 | 26.92 *** |
Glossy | 54.97 *** | 13.20 *** | 2.31 | 1.74 | 10.31 *** | 1.97 ** | 0.92 | 22.60 *** |
Bubbly | 22.06 *** | 192.66 *** | 2.02 | 1.38 | 18.59 *** | 0.94 | 1.25 | 3.26 *** |
Fishy Aroma | 15.55 *** | 11.63 *** | 1.40 | 0.53 | 6.30 *** | 1.74 * | 1.61 | 6.86 *** |
Metallic Aroma | 34.80 *** | 5.40 ** | 2.00 | 0.04 | 5.59 *** | 1.40 | 1.16 | 0.76 |
Sweet | 36.27 *** | 7.13 *** | 32.16 *** | 0.03 | 4.05 *** | 8.88 *** | 3.02 ** | 3.19 *** |
Bitter | 45.07 *** | 1.71 | 14.40 *** | 2.98 | 4.27 *** | 4.73 *** | 1.97 * | 2.29 ** |
Sweet AT | 66.20 *** | 14.98 *** | 26.75 *** | 0.23 | 3.34 *** | 9.16 *** | 1.56 | 5.19 *** |
Jiggly | 34.42 *** | 84.37 *** | 3.43* | 0.36 | 5.09 *** | 2.01 ** | 1.06 | 20.96 *** |
Creamy | 45.83 *** | 10.03 *** | 2.07 | 0.34 | 8.16 *** | 2.48 *** | 0.60 | 19.35 *** |
Chewy | 15.96 *** | 16.39 *** | 3.08* | 0.35 | 15.46 *** | 1.23 | 0.37 | 14.07 *** |
Melt-in-Mouth | 66.40 *** | 27.96 *** | 1.19 | 0.13 | 6.36 *** | 1.31 | 0.92 | 7.82 *** |
Mouthcoating | 33.68 *** | 45.10 *** | 1.30 | 0.50 | 5.25 *** | 1.87 ** | 1.10 | 16.79 *** |
Variables | Hardness (TPA) | Fracturability (TPA) | Gumminess (TPA) | Adhesion (TPA) | Cohesion (TPA) | Jiggly | Melt-in-Mouth | Chewy | Creamy | Mouthcoating |
---|---|---|---|---|---|---|---|---|---|---|
Hardness (TPA) | 1 | |||||||||
Fracturability (TPA) | 0.88 | 1 | ||||||||
Gumminess (TPA) | 0.44 | 0.08 | 1 | |||||||
Adhesion (TPA) | −0.25 | 0.05 | −0.96 | 1 | ||||||
Cohesion (TPA) | −0.19 | −0.45 | 0.78 | −0.87 | 1 | |||||
Jiggly | 0.07 | −0.31 | 0.73 | −0.73 | 0.71 | 1 | ||||
Melt-In-Mouth | −0.18 | −0.54 | 0.65 | −0.68 | 0.77 | 0.94 | 1 | |||
Chewy | 0.43 | 0.71 | −0.48 | 0.58 | −0.76 | −0.83 | −0.94 | 1 | ||
Creamy | −0.66 | −0.56 | −0.12 | −0.07 | 0.39 | 0.27 | 0.41 | −0.63 | 1 | |
Mouthcoating | −0.72 | −0.60 | −0.19 | −0.02 | 0.36 | 0.07 | 0.24 | −0.52 | 0.94 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
McKenzie, E.; Lee, Y.; Lee, S.-Y. Characterization of Sugar Reduction in Model Confectionary Gels Using Descriptive Analysis. Gels 2022, 8, 644. https://doi.org/10.3390/gels8100644
McKenzie E, Lee Y, Lee S-Y. Characterization of Sugar Reduction in Model Confectionary Gels Using Descriptive Analysis. Gels. 2022; 8(10):644. https://doi.org/10.3390/gels8100644
Chicago/Turabian StyleMcKenzie, Elle, Youngsoo Lee, and Soo-Yeun Lee. 2022. "Characterization of Sugar Reduction in Model Confectionary Gels Using Descriptive Analysis" Gels 8, no. 10: 644. https://doi.org/10.3390/gels8100644
APA StyleMcKenzie, E., Lee, Y., & Lee, S. -Y. (2022). Characterization of Sugar Reduction in Model Confectionary Gels Using Descriptive Analysis. Gels, 8(10), 644. https://doi.org/10.3390/gels8100644