Chemical Modifications of Normal and Waxy Potato Starches Affect Functional Properties of Aerogels
Abstract
:1. Introduction
2. Results and Discussion
2.1. Aerogels Characteristics
2.2. Emulsions Characteristics
2.3. Statistical Analysis
3. Conclusions
4. Materials and Methods
4.1. Aerogels Making
4.2. Preparation of Aerogel Pastes
4.3. Preparation of Emulsions
4.4. Analytical Methods
4.4.1. Bulk Density
4.4.2. Microstructure
4.4.3. Oil-Binding Capacity
4.4.4. Rheological Properties
4.4.5. Texture Profile Analysis
4.4.6. Emulsion Stability
4.4.7. LF NMR of Emulsions
4.5. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Goswami, B.; Mahanta, D. Starch and its Derivatives: Properties and Applications. In Polysaccharides; Wiley: Hoboken, NJ, USA, 2021; pp. 253–281. [Google Scholar]
- Makowska, A.; Dwiecki, K.; Kubiak, P.; Baranowska, H.M.; Lewandowicz, G. Polymer-Solvent Interactions in Modified Starches Pastes–Electrokinetic, Dynamic Light Scattering, Rheological and Low Field Nuclear Magnetic Resonance Approach. Polymers 2022, 14, 2977. [Google Scholar] [CrossRef] [PubMed]
- Krystyjan, M.; Sikora, M.; Adamczyk, G.; Dobosz, A.; Tomasik, P.; Berski, W.; Łukasiewicz, M.; Izak, P. Thixotropic properties of waxy potato starch depending on the degree of the granules pasting. Carbohydr. Polym. 2016, 141, 126–134. [Google Scholar] [CrossRef] [PubMed]
- Sikora, M.; Dobosz, A.; Krystyjan, M.; Adamczyk, G.; Tomasik, P.; Berski, W.; Kutyła-Kupidura, E.M. Thixotropic properties of the normal potato starch—Locust bean gum blends. LWT 2017, 75, 590–598. [Google Scholar] [CrossRef]
- Makowska, A.; Szwengiel, A.; Kubiak, P.; Tomaszewska-Gras, J. Characteristics and structure of starch isolated from triticale. Starch -Stärke 2014, 66, 895–902. [Google Scholar] [CrossRef]
- Sikora, M.; Adamczyk, G.; Krystyjan, M.; Dobosz, A.; Tomasik, P.; Berski, W.; Lukasiewicz, M.; Izak, P. Thixotropic properties of normal potato starch depending on the degree of the granules pasting. Carbohydr. Polym. 2015, 121, 254–264. [Google Scholar] [CrossRef]
- Adamczyk, G.; Krystyjan, M.; Dobosz, A.; Sikora, M.; Krystjan, M.; Dobosz, A.; Sikora, M. Thixotropic properties of starch. Zywnosc Nauka Technol. Jakosc/Food Sci. Technol. Qual. 2013, 6, 16–31. [Google Scholar] [CrossRef]
- Adamczyk, G.; Krystyjan, M.; Kuźniar, P.; Kowalczewski, P.Ł.; Bobel, I. An Insight into Pasting and Rheological Behavior of Potato Starch Pastes and Gels with Whole and Ground Chia Seeds. Gels 2022, 8, 598. [Google Scholar] [CrossRef]
- Zhang, B.; Xiao, Y.; Wu, X.; Luo, F.; Lin, Q.; Ding, Y. Changes in structural, digestive, and rheological properties of corn, potato, and pea starches as influenced by different ultrasonic treatments. Int. J. Biol. Macromol. 2021, 185, 206–218. [Google Scholar] [CrossRef]
- Zhu, F. Structure and physicochemical properties of starch affected by dynamic pressure treatments: A review. Trends Food Sci. Technol. 2021, 116, 639–654. [Google Scholar] [CrossRef]
- Blennow, A.; Engelsen, S.B.; Munck, L.; Møller, B.L. Starch molecular structure and phosphorylation investigated by a combined chromatographic and chemometric approach. Carbohydr. Polym. 2000, 41, 163–174. [Google Scholar] [CrossRef]
- Hoover, R. Composition, molecular structure, and physicochemical properties of tuber and root starches: A review. Carbohydr. Polym. 2001, 45, 253–267. [Google Scholar] [CrossRef]
- Zhu, F. Starch based aerogels: Production, properties and applications. Trends Food Sci. Technol. 2019, 89, 1–10. [Google Scholar] [CrossRef]
- Du, A.; Zhou, B.; Zhang, Z.; Shen, J. A Special Material or a New State of Matter: A Review and Reconsideration of the Aerogel. Materials 2013, 6, 941–968. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ganesan, K.; Budtova, T.; Ratke, L.; Gurikov, P.; Baudron, V.; Preibisch, I.; Niemeyer, P.; Smirnova, I.; Milow, B. Review on the Production of Polysaccharide Aerogel Particles. Materials 2018, 11, 2144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Marco, I.; Iannone, R.; Miranda, S.; Riemma, S. An environmental study on starch aerogel for drug delivery applications: Effect of plant scale-up. Int. J. Life Cycle Assess. 2018, 23, 1228–1239. [Google Scholar] [CrossRef]
- Santos-Rosales, V.; Alvarez-Rivera, G.; Hillgärtner, M.; Cifuentes, A.; Itskov, M.; García-González, C.A.; Rege, A. Stability Studies of Starch Aerogel Formulations for Biomedical Applications. Biomacromolecules 2020, 21, 5336–5344. [Google Scholar] [CrossRef]
- Santos-Rosales, V.; Ardao, I.; Alvarez-Lorenzo, C.; Ribeiro, N.; Oliveira, A.; García-González, C. Sterile and Dual-Porous Aerogels Scaffolds Obtained through a Multistep Supercritical CO2-Based Approach. Molecules 2019, 24, 871. [Google Scholar] [CrossRef] [Green Version]
- Glenn, G.M.; Irving, D.W. Starch-based microcellular foams. Cereal Chem. 1995, 72, 155–161. [Google Scholar]
- Abhari, N.; Madadlou, A.; Dini, A. Structure of starch aerogel as affected by crosslinking and feasibility assessment of the aerogel for an anti-fungal volatile release. Food Chem. 2017, 221, 147–152. [Google Scholar] [CrossRef]
- Druel, L.; Bardl, R.; Vorwerg, W.; Budtova, T. Starch Aerogels: A Member of the Family of Thermal Superinsulating Materials. Biomacromolecules 2017, 18, 4232–4239. [Google Scholar] [CrossRef]
- Sharma, V.; Shahnaz, T.; Subbiah, S.; Narayanasamy, S. New Insights into the Remediation of Water Pollutants using Nanobentonite Incorporated Nanocellulose Chitosan Based Aerogel. J. Polym. Environ. 2020, 28, 2008–2019. [Google Scholar] [CrossRef]
- Prochaska, K.; Kędziora, P.; Le Thanh, J.; Lewandowicz, G. Surface activity of commercial food grade modified starches. Colloids Surf. B Biointerfaces 2007, 60, 187–194. [Google Scholar] [CrossRef]
- Le Thanh-Blicharz, J.; Lewandowicz, J.; Małyszek, Z.; Kowalczewski, P.Ł.; Walkowiak, K.; Masewicz, Ł.; Baranowska, H.M. Water Behavior of Aerogels Obtained from Chemically Modified Potato Starches during Hydration. Foods 2021, 10, 2724. [Google Scholar] [CrossRef]
- Chang, P.R.; Yu, J.; Ma, X. Preparation of porous starch and its use as a structure-directing agent for production of porous zinc oxide. Carbohydr. Polym. 2011, 83, 1016–1019. [Google Scholar] [CrossRef]
- Lewandowicz, J. Physicochemical Characteristics and Evaluation of Applicability of Waxy Starches. Ph.D. Thesis, Poznań University of Economics and Business, Poznań, Poland, 2017. [Google Scholar]
- Ashogbon, A.O.; Akintayo, E.T. Recent trend in the physical and chemical modification of starches from different botanical sources: A review. Starch -Stärke 2014, 66, 41–57. [Google Scholar] [CrossRef]
- Altuna, L.; Herrera, M.L.; Foresti, M.L. Synthesis and characterization of octenyl succinic anhydride modified starches for food applications. A review of recent literature. Food Hydrocoll. 2018, 80, 97–110. [Google Scholar] [CrossRef]
- Cornejo-Ramírez, Y.I.; Martínez-Cruz, O.; Del Toro-Sánchez, C.L.; Wong-Corral, F.J.; Borboa-Flores, J.; Cinco-Moroyoqui, F.J. The structural characteristics of starches and their functional properties. CyTA -J. Food 2018, 16, 1003–1017. [Google Scholar] [CrossRef]
- Le Thanh-Blicharz, J.; Lewandowicz, J. Functionality of Native Starches in Food Systems: Cluster Analysis Grouping of Rheological Properties in Different Product Matrices. Foods 2020, 9, 1073. [Google Scholar] [CrossRef]
- Lewandowicz, J.; Le Thanh-Blicharz, J.; Szwengiel, A. The Effect of Chemical Modification on the Rheological Properties and Structure of Food Grade Modified Starches. Processes 2022, 10, 938. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, X.; Xu, Y.; Xu, Z.; Li, H.; Sui, Z.; Corke, H. Gel texture and rheological properties of normal amylose and waxy potato starch blends with rice starches differing in amylose content. Int. J. Food Sci. Technol. 2021, 56, 1946–1958. [Google Scholar] [CrossRef]
- Nakorn, K.N.; Tongdang, T.; Sirivongpaisal, P. Crystallinity and Rheological Properties of Pregelatinized Rice Starches Differing in Amylose Content. Starch -Stärke 2009, 61, 101–108. [Google Scholar] [CrossRef]
- Błaszczak, W.; Lewandowicz, G. Light Microscopy as a Tool to Evaluate the Functionality of Starch in Food. Foods 2020, 9, 670. [Google Scholar] [CrossRef] [PubMed]
- Szczesniak, A.S. Texture is a sensory property. Food Qual. Prefer. 2002, 13, 215–225. [Google Scholar] [CrossRef]
- Bourne, M.C. Texture, Viscosity, and Food. In Food Texture and Viscosity; Elsevier: Amsterdam, The Netherlands, 2002; pp. 1–32. ISBN 978-0-12-119062-0. [Google Scholar]
- Saari, H.; Wahlgren, M.; Rayner, M.; Sjöö, M.; Matos, M. A comparison of emulsion stability for different OSA-modified waxy maize emulsifiers: Granules, dissolved starch, and non-solvent precipitates. PLoS ONE 2019, 14, e0210690. [Google Scholar] [CrossRef]
- Dickinson, E. Hydrocolloids as emulsifiers and emulsion stabilizers. Food Hydrocoll. 2009, 23, 1473–1482. [Google Scholar] [CrossRef]
- Małyszek, Z.; Lewandowicz, J.; Le Thanh-Blicharz, J.; Walkowiak, K.; Kowalczewski, P.Ł.; Baranowska, H.M. Water Behavior of Emulsions Stabilized by Modified Potato Starch. Polymers 2021, 13, 2200. [Google Scholar] [CrossRef]
- Baranowska, H.M.; Kowalczewski, P.Ł. Low-Field NMR Analyses of Gels and Starch-Stabilized Emulsions with Modified Potato Starches. Processes 2022, 10, 2109. [Google Scholar] [CrossRef]
- Kirtil, E.; Cikrikci, S.; McCarthy, M.J.; Oztop, M.H. Recent advances in time domain NMR & MRI sensors and their food applications. Curr. Opin. Food Sci. 2017, 17, 9–15. [Google Scholar] [CrossRef]
- Vaclavik, V.A.; Christian, E.W. Water BT—Essentials of Food Science; Vaclavik, V.A., Christian, E.W., Eds.; Springer: New York, NY, USA, 2008; pp. 21–31. ISBN 978-0-387-69940-0. [Google Scholar]
- Baranowska, H.M.; Sikora, M.; Krystyjan, M.; Tomasik, P. Evaluation of the time-dependent stability of starch–hydrocolloid binary gels involving NMR relaxation time measurements. J. Food Eng. 2012, 109, 685–690. [Google Scholar] [CrossRef]
- Baranowska, H.M.; Rezler, R. Emulsions stabilized using potato starch. Food Sci. Biotechnol. 2015, 24, 1187–1191. [Google Scholar] [CrossRef]
- Baranowska, H.M.; Rezler, R. Water binding analysis of fat-water emulsions. Food Sci. Biotechnol. 2015, 24, 1921–1925. [Google Scholar] [CrossRef]
- Rezler, R.; Baranowska, H.M. Rheological and water binding properties of fat-in-water type emulsions stabilized by potato starch. Żywność. Nauk. Technol. Jakość/Food. Sci. Technol. Qual. 2013, 20, 81–91. [Google Scholar] [CrossRef]
- Luo, F.; Huang, Q.; Fu, X.; Zhang, L.; Yu, S. Preparation and characterisation of crosslinked waxy potato starch. Food Chem. 2009, 115, 563–568. [Google Scholar] [CrossRef]
- Jeon, Y.-S.; Lowell, A.V.; Gross, R.A. Studies of Starch Esterification: Reactions with Alkenylsuccinates in Aqueous Slurry Systems. Starch -Stärke 1999, 51, 90–93. [Google Scholar] [CrossRef]
- Kaur, M.; Kaushal, P.; Sandhu, K.S. Studies on physicochemical and pasting properties of Taro (Colocasia esculenta L.) flour in comparison with a cereal, tuber and legume flour. J. Food Sci. Technol. 2013, 50, 94–100. [Google Scholar] [CrossRef] [Green Version]
- Jeżowski, P.; Polcyn, K.; Tomkowiak, A.; Rybicka, I.; Radzikowska, D. Technological and antioxidant properties of proteins obtained from waste potato juice. Open Life Sci. 2020, 15, 379–388. [Google Scholar] [CrossRef]
- Acton, J.C.; Saffle, R.L. stability of oil-in-water emulsions. 1. Effects of Surface Tension, Level of Oil, Viscosity and Type of Meat Protein. J. Food Sci. 1970, 35, 852–855. [Google Scholar] [CrossRef]
- Weglarz, W.P.; Haranczyk, H. Two-dimensional analysis of the nuclear relaxation function in the time domain: The program CracSpin. J. Phys. D. Appl. Phys. 2000, 33, 1909–1920. [Google Scholar] [CrossRef]
Sample | K (Pa·sn) | n (−) | Thixotropy (Pa·s−1) |
---|---|---|---|
NPS | 7.04 ± 0.25 a | 0.659 ± 0.009 a | 744 ± 492 |
WPS | 9.91 ± 0.19 a | 0.635 ± 0.005 a | 19,020 ± 1420 a |
E 1422 N | 12.15 ± 0.60 a | 0.578 ± 0.014 | 26,290 ± 2820 b |
E 1422 W | 26.62 ± 0.51 b | 0.359 ± 0.006 | 27,470 ± 1947 b |
E 1450 N | 30.81 ± 1.93 b | 0.407 ± 0.031 | 19,870 ± 2573 a |
E 1450 W | 112.4 ± 4.68 | 0.157 ± 0.012 | 47,770 ± 2793 |
Sample | Hardness (N) | Adhesion (N·s) | Cohesiveness (−) | Springiness (−) | Gumminess (−) |
---|---|---|---|---|---|
NPS | 0.39 ± 0.02 a | −0.07 ± 0.01 a | 0.79 ± 0.02 b | 1.00 ± 0.00 a | 0.31 ± 0.02 ab |
WPS | 0.37 ± 0.01 a | 0.00 ± 0.00 a | 0.72 ± 0.01 a | 1.00 ± 0.00 a | 0.27 ± 0.01 a |
E 1422 N | 0.52 ± 0.04 a | −1.80 ± 0.27 bc | 0.79 ± 0.02 b | 1.00 ± 0.00 a | 0.41 ± 0.02 c |
E 1422 W | 0.49 ± 0.04 a | −1.30 ± 0.23 b | 0.77 ± 0.01 ab | 1.00 ± 0.00 a | 0.38 ± 0.02 bc |
E 1450 N | 1.38 ± 0.11 b | −2.30 ± 0.32 c | 0.81 ± 0.03 b | 1.05 ± 0.02 b | 1.45 ± 0.06 d |
E 1450 W | 1.32 ± 0.12 b | −2.10 ± 0.25 c | 0.82 ± 0.02 b | 1.08 ± 0.02 b | 1.43 ± 0.05 d |
Sample | Emulsion Stability (%) | K (Pa·sn) | n (−) | Thixotropy (Pa·s−1) |
---|---|---|---|---|
NPS | 65.0 ± 2.0 | 4.51 ± 1.01 c | 0.325 ± 0.021 a | 4235 ± 1086 c |
WPS | 55.0 ± 2.9 | 0.89 ± 0.01 a | 0.573 ± 0.007 c | 1083 ± 288 a |
E 1422 N | 75.0 ± 2.9 a | 3.64 ± 1.66 bc | 0.362 ± 0.082 a | 2898 ± 774 abc |
E 1422 W | 72.5 ± 2.0 a | 1.91 ± 0.51 ab | 0.415 ± 0.021 ab | 2235 ± 886 ab |
E 1450 N | 90.0 ± 0.0 b | 3.04 ± 0.21 abc | 0.463 ± 0.013 b | 3061 ± 128 bc |
E 1450 W | 90.0 ± 2.0 b | 1.85 ± 0.29 ab | 0.478 ± 0.022 bc | 2860 ± 219 abc |
Sample | T11 (ms) | T12 (ms) | T21 (ms) | T22 (ms) |
---|---|---|---|---|
NPS | 76.4 ± 0.2 a | 1000.1 ± 3.4 bc | 73.4 ± 1.0 b | 549.6 ± 2.7 |
WPS | 83.1 ± 1.0 b | 981.1 ± 3.3 a | 76.0 ± 1.3 b | 500.1 ± 2.1 |
E 1422 N | 96.6 ± 1.3 | 1031.5 ± 3.5 | 69.2 ±1.0 | 460.2 ± 1.8 |
E 1422 W | 84.0 ± 0.8 b | 1062.5 ± 4.9 | 63.9 ±1.6 a | 511.5 ± 2.8 a |
E 1450 N | 90.1 ± 2.4 | 988.6 ± 6.7 ab | 61.9 ± 1.9 a | 517.7 ± 3.6 a |
E 1450 W | 74.5 ± 0.9 a | 1008.2 ± 3.8 c | 62.4 ± 0.8 a | 625.2 ± 2.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Le Thanh-Blicharz, J.; Lewandowicz, J.; Małyszek, Z.; Baranowska, H.M.; Kowalczewski, P.Ł. Chemical Modifications of Normal and Waxy Potato Starches Affect Functional Properties of Aerogels. Gels 2022, 8, 720. https://doi.org/10.3390/gels8110720
Le Thanh-Blicharz J, Lewandowicz J, Małyszek Z, Baranowska HM, Kowalczewski PŁ. Chemical Modifications of Normal and Waxy Potato Starches Affect Functional Properties of Aerogels. Gels. 2022; 8(11):720. https://doi.org/10.3390/gels8110720
Chicago/Turabian StyleLe Thanh-Blicharz, Joanna, Jacek Lewandowicz, Zuzanna Małyszek, Hanna Maria Baranowska, and Przemysław Łukasz Kowalczewski. 2022. "Chemical Modifications of Normal and Waxy Potato Starches Affect Functional Properties of Aerogels" Gels 8, no. 11: 720. https://doi.org/10.3390/gels8110720
APA StyleLe Thanh-Blicharz, J., Lewandowicz, J., Małyszek, Z., Baranowska, H. M., & Kowalczewski, P. Ł. (2022). Chemical Modifications of Normal and Waxy Potato Starches Affect Functional Properties of Aerogels. Gels, 8(11), 720. https://doi.org/10.3390/gels8110720