The Rheological Properties and Texture of Agar Gels with Canola Oil—Effect of Mixing Rate and Addition of Lecithin
Abstract
:1. Introduction
2. Results and Discussion
2.1. Rheological Properties of Gels with Oil
2.2. Texture of Gels with Oils
2.3. Stability and Structure of Gels
3. Conclusions
4. Materials and Methods
4.1. Materials and Preparation of Gels
4.2. Rheological Properties
4.3. Mechanical and Acoustic Properties
- -
- TPA at a sample deformation of 40% with a constant speed of 1 mm·s−1 and a pause between cycles of 5 s. Selected TPA parameters were described: hardness (N), springiness, cohesiveness, gumminess (N);
- -
- Compression test with a sample deformation of 60% with speed of 1 mm·s−1; Compression work (mJ) (area under force–deformation curve) and Young’s modulus (kPa) (slope of a linear part of compression curve).
4.4. Syneresis and Stability of Gels
4.5. Microstructure of Gels
4.6. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Banerjee, S.; Ravi, R.; Bhattacharya, S. Textural characterisation of gellan and agar based fabricated gels with carrot juice. LWT—Food Sci. Technol. 2013, 53, 255–261. [Google Scholar] [CrossRef]
- Tiwari, S.; Bhattacharya, S. Aeration of model gels: Rheological characteristics of gellan and agar gels. J. Food Eng. 2011, 107, 134–139. [Google Scholar] [CrossRef]
- Djabourov, M.; Clark, A.; Rowlands, D.; Ross-Murphy, S. Small-angle X-ray scattering characterization of agarose sols and gels. Macromolecules 1989, 22, 180–188. [Google Scholar] [CrossRef]
- Zhang, K.; Dai, M.; Yang, C.; Nishinari, K.; Fang, Y.; Ni, X.; Huang, W.; Dou, Z. An agar structured fluid prepared by pipe wall shear as a dysphagia diet. Food Hydrocoll. 2023, 135, 108095. [Google Scholar] [CrossRef]
- Rezaee, M.; Ait Aider-Kaci, F.; Aider, M. Effects of hydrocolloid agar, gelatin, pectin, and xanthan on physicochemical and rheological properties of pickering emulsions stabilized by canola protein microgel as a potential animal fat replacer. ACS Food Sci. Technol. 2022, 2, 1681–1690. [Google Scholar] [CrossRef]
- Wang, Z.; Neves, M.A.; Kobayashi, I.; Uemura, K.; Nakajima, M. Preparation, characterization, and in vitro gastrointestinal digestibility of oil-in-water emulsion–agar gels. Biosci. Biotechnol. Biochem. 2013, 77, 120659. [Google Scholar] [CrossRef]
- Dille, M.; Draget, K.; Hattrem, M. The effect of filler particles on the texture of food gels. In Modifying Food Texture; Chen, J., Rosenthal, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2015; pp. 183–200. [Google Scholar]
- van Vliet, T.; Walstra, P. Large deformation and fracture behaviour of gels. Faraday Discuss. 1995, 101, 359–370. [Google Scholar] [CrossRef]
- Ross, K.A.; Pyrak-Nolte, L.J.; Campanella, O.H. The effect of mixing conditions on the material properties of an agar gel—Microstructural and macrostructural considerations. Food Hydrocoll. 2006, 20, 79–87. [Google Scholar] [CrossRef]
- Barrangou, L.M.; Daubert, C.R.; Allen Foegeding, E. Textural properties of agarose gels. I. Rheological and fracture properties. Food Hydrocoll. 2006, 20, 184–195. [Google Scholar] [CrossRef]
- Peleg, M. On fundamental issues in texture evaluation and texturization—A view. Food Hydrocoll. 2006, 20, 405–414. [Google Scholar] [CrossRef]
- Jakubczyk, E.; Kamińska-Dwórznicka, A.; Ostrowska-Ligęza, E.; Górska, A.; Wirkowska-Wojdyła, M.; Mańko-Jurkowska, D.; Górska, A.; Bryś, J. Application of different compositions of apple puree gels and drying methods to fabricate snacks of modified structure, storage stability and hygroscopicity. Appl. Sci. 2021, 11, 10286. [Google Scholar] [CrossRef]
- Jakubczyk, E.; Gondek, E.; Kamińska-Dwórznicka, A.; Samborska, K.; Wiktor, A.; Królikowski, K. A complex approach to assessing properties of aerated agar-fructose gels: Application of acoustic emission technique. Food Hydrocoll. 2019, 91, 66–75. [Google Scholar] [CrossRef]
- Jakubczyk, E.; Linde, M.; Gondek, E.; Kamińska-Dwórznicka, A.; Samborska, K.; Antoniuk, A. The effect of phytosterols addition on the textural properties of extruded crisp bread. J. Food Eng. 2015, 167, 156–161. [Google Scholar] [CrossRef]
- Heger, R.; Kadlec, M.; Trudicova, M.; Zinkovska, N.; Hajzler, J.; Pekar, M.; Smilek, J. Novel hydrogel material with tailored internal architecture modified by “bio” amphiphilic components-design and analysis by a physico-chemical approach. Gels 2022, 8, 115. [Google Scholar] [CrossRef]
- Wang, M.; Yan, W.; Zhou, Y.; Fan, L.; Liu, Y.; Li, J. Progress in the application of lecithins in water-in-oil emulsions. Trend. Food Sci. Technol. 2021, 118, 388–398. [Google Scholar] [CrossRef]
- Inoue, K.; Song, Y.; Kamiunten, O.; Oku, J.; Terao, T.; Fujii, K. Effect of mixing method on rheological properties of alginate impression materials. J. Oral Rehab. 2002, 29, 615–619. [Google Scholar] [CrossRef]
- Erkinbaev, C.; Herremans, E.; Nguyen Do Trong, N.; Jakubczyk, E.; Verboven, P.; Nicolaï, B.; Saeys, W. Contactless and non-destructive differentiation of microstructures of sugar foams by hyperspectral scatter imaging. Innov. Food Sci. Emerg. Technol. 2014, 24, 131–137. [Google Scholar] [CrossRef]
- Jakubczyk, E.; Kamińska-Dwórznicka, A. Effect of addition of chokeberry juice concentrate and foaming agent on the physical properties of agar gel. Gels 2021, 7, 137. [Google Scholar] [CrossRef]
- Dickinson, E. Emulsion gels: The structuring of soft solids with protein-stabilized oil droplets. Food Hydrocoll. 2012, 28, 224–241. [Google Scholar] [CrossRef]
- Vellido-Perez, J.A.; Ochando-Pulido, J.M.; Brito-de la Fuente, E.; Martinez-Ferez, A. Effect of operating parameters on the physical and chemical stability of an oil gelled-in-water emulsified curcumin delivery system. J. Sci. Food Agri. 2021, 101, 6395–6406. [Google Scholar] [CrossRef]
- Zhao, X.; Li, D.; Wang, L.J.; Wang, Y. Rheological properties and microstructure of a novel starch-based emulsion gel produced by one-step emulsion gelation: Effect of oil content. Carbohydr. Polym. 2022, 281, 119061. [Google Scholar] [CrossRef] [PubMed]
- Xi, Z.; Liu, W.; McClements, D.J.; Zou, L. Rheological, structural, and microstructural properties of ethanol induced cold-set whey protein emulsion gels: Effect of oil content. Food Chem. 2019, 291, 22–29. [Google Scholar] [CrossRef] [PubMed]
- Singh, V.K.; Pandey, P.M.; Agarwal, T.; Kumar, D.; Banerjee, I.; Anis, A.; Pal, K. Development of soy lecithin based novel self-assembled emulsion hydrogels. J. Mech. Behav. Biomed. Mater. 2015, 55, 250–263. [Google Scholar] [CrossRef] [PubMed]
- Adepu, S.; Ramakrishna, S. Controlled drug delivery systems: Current status and future directions. Molecules 2021, 26, 5905. [Google Scholar] [CrossRef]
- Baydin, T.; Arntsen, S.W.; Hattrem, M.N.; Draget, K.I. Physical and functional properties of plant-based pre-emulsified chewable gels for the oral delivery of nutraceuticals. Appl. Food Res. 2022, 2, 100225. [Google Scholar] [CrossRef]
- Dille, M.J.; Hattrem, M.N.; Draget, K.I. Bioactively filled gelatin gels; challenges and opportunities. Food Hydrocoll. 2018, 76, 17–29. [Google Scholar] [CrossRef]
- Ikeda, S.; Foegeding, E.A. Dynamic viscoelastic properties of thermally induced whey protein isolate gels with added lecithin. Food Hydrocoll. 1999, 13, 245–254. [Google Scholar] [CrossRef]
- Sun, M.; Sun, H.; Wang, Y.; Sanchez-Soto, M.; Schiraldi, D.A. The relation between the rheological properties of gels and the mechanical properties of their corresponding aerogels. Gels 2018, 4, 33. [Google Scholar] [CrossRef] [Green Version]
- Ghebremedhin, M.; Seiffert, S.; Vilgis, T.A. Physics of agarose fluid gels: Rheological properties and microstructure. Curr. Res. Food Sci. 2021, 4, 436–448. [Google Scholar] [CrossRef]
- Geremias-Andrade, I.M.; Souki, N.P.D.B.G.; Moraes, I.C.F.; Pinho, S.C. Rheological and mechanical characterization of curcumin-loaded emulsion-filled gels produced with whey protein isolate and xanthan gum. LWT 2017, 86, 166–173. [Google Scholar] [CrossRef]
- Mhaske, P.; Condict, L.; Dokouhaki, M.; Katopo, L.; Kasapis, S. Quantitative analysis of the phase volume of agarose-canola oil gels in comparison to blending law predictions using 3D imaging based on confocal laser scanning microscopy. Food Res. Int. 2019, 125, 108529. [Google Scholar] [CrossRef] [PubMed]
- Matsumura, Y.; Kang, I.-J.; Sakamoto, H.; Motoki, M.; Mori, T. Filler effects of oil droplets on the viscoelastic properties of emulsion gels. Food Hydrocoll. 1993, 7, 227–240. [Google Scholar] [CrossRef]
- Patel, A.R.; Dumlu, P.; Vermeir, L.; Lewille, B.; Lesaffer, A.; Dewettinck, K. Rheological characterization of gel-in-oil-in-gel type structured emulsions. Food Hydrocoll. 2015, 46, 84–92. [Google Scholar] [CrossRef] [Green Version]
- Mezger, T. The Rheology Handbook. For Users of Rotational and Oscillatory Rheometers; Vincentz Network: Hannover, Germany, 2020. [Google Scholar]
- Malkin, A.Y.; Isayev, A.I. Rheology: Concepts, Methods, and Applications; Chemtech Publishing: Toronto, ON, Canada, 2022. [Google Scholar]
- Bodennec, M.; Guo, Q.; Rousseau, D. Molecular and microstructural characterization of lecithin-based oleogels made with vegetable oil. RSC Adv. 2016, 6, 47373–47381. [Google Scholar] [CrossRef]
- Labropoulos, K.; Niesz, D.; Danforth, S.; Kevrekidis, P. Dynamic rheology of agar gels: Theory and experiments. Part II: Gelation behavior of agar sols and fitting of a theoretical rheological model. Carbohydr. Polym. 2002, 50, 407–415. [Google Scholar] [CrossRef]
- Bourne, M.C. Texture profile of ripening pears. J. Food Sci. 1968, 33, 223–226. [Google Scholar] [CrossRef]
- Lewicki, P.P.; Marzec, A.; Ranachowski, Z. Acoustic properties of foods. In Food Properties Handbook; Rahman, M.S., Ed.; CRC Press: Boca Raton, FL, USA, 2009; pp. 811–841. [Google Scholar]
- Divoux, T.; Mao, B.; Snabre, P. Syneresis and delayed detachment in agar plates. Soft Matter. 2015, 11, 3677–3685. [Google Scholar] [CrossRef] [Green Version]
- Nikkilä, I.; Waldén, M.; Maina, N.H.; Tenkanen, M.; Mikkonen, K.S. Fungal cell biomass from enzyme industry as a sustainable source of hydrocolloids. Front. Chem.Eng. 2020, 2, 574072. [Google Scholar] [CrossRef]
- Scanlon, M.; Zghal, M. Bread properties and crumb structure. Food Res. Int. 2001, 34, 841–864. [Google Scholar] [CrossRef]
- Hanselmann, W.; Windhab, E. Flow characteristics and modelling of foam generation in a continuous rotor/stator mixer. J. Food Eng. 1998, 38, 393–405. [Google Scholar] [CrossRef]
Kind of Gel | Tgel °C |
---|---|
A (0 RPM, 0 L) | 38.2 Aa |
O-10RPM | 35.8 b1 |
O-11RPM | 36.0 b |
O-12RPM | 35.9 b |
O-13RPM | 35.9 b |
O-1L | 35.1 B2 |
O-2L | 35.0 B |
O-3L | 34.7 B |
O-4L | 34.3 B |
O-5L | 34.4 B |
Kind of Gel | Hardness, N | Springiness | Cohesiveness | Gumminess, N |
---|---|---|---|---|
A | 3.80 ± 0.20 dD | 0.90 ± 0.02 aE | 0.14 ± 0.01 bB | 0.52 ± 0.04 dC |
O-10RPM | 4.08 ± 0.36 d | 0.92 ± 0.01 a | 0.13 ± 0.01 b | 0.54 ± 0.05 d |
O-11RPM | 5.90 ± 0.64 c | 0.89 ± 0.03 a | 0.14 ± 0.02 b | 0.86 ± 0.16 c |
O-12RPM | 7.08 ± 0.40 b | 0.88 ± 0.01 a | 0.20 ± 0.05 ab | 1.41 ± 0.04 b |
O-13RPM | 8.46 ± 0.38 a1 | 0.90 ± 0.02 a | 0.28 ± 0.04 a | 2.38 ± 0.48 a |
O-1L | 1.29 ± 0.05 A2 | 0.79 ± 0.05 A | 0.15 ± 0.01 B | 0.19 ± 0.01 A |
O-2L | 1.00 ± 0.05 B | 0.83 ± 0.04 A | 0.19 ± 0.02 A | 0.19 ± 0.03 A |
O-3L | 0.85 ± 0.1 C | 0.84 ± 0.05 AE | 0.19 ± 0.01 A | 0.16 ± 0.02 AB |
O-4L | 0.85 ± 0.09 C | 0.85 ± 0.06 AE | 0.18 ± 0.01 A | 0.15 ± 0.01 B |
O-5L | 0.72 ± 0.09 C | 0.83 ± 0.04 A | 0.18± 0.03 AB | 0.14 ± 0.02 B |
Kind of Gels | Young’s Modulus, kPa | Compression Work, mJ | Total Acoustic Energy, a.u. | Number of Acoustic Events |
---|---|---|---|---|
A (0 RPM, 0L) | 15.53 ± 1.18 bA | 4.6 ± 0.2 dC | 20 ± 4 bB | 5 ± 2 cA |
O-10RPM | 16.53 ± 1.51 b | 6.2 ± 0.3 c | 22 ± 4 b | 8 ± 2 bc |
O-11RPM | 18.83 ± 2.86 ab | 10.0 ± 1.1 b | 32 ± 6 a | 12 ± 3 ab |
O-12RPM | 19.83 ± 2.07 ab | 12.4 ± 1.2 b | 38 ± 7 a | 14 ± 3 a |
O-13RPM | 22.71 ± 1.86 a1 | 15.7 ± 1.9 a | 45 ± 9 a | 17 ± 4 a |
O-1L | 14.18 ± 1.00 A2 | 1.0 ± 0.1 A | 7 ± 2 A | 3 ± 1 A |
O-2L | 11.92 ± 1.94 AB | 0.8 ± 0.1 AB | 5 ± 2 A | 2 ± 1 A |
O-3L | 11.50 ± 0.97 B | 0.7 ± 0.1 B | nd 3 | nd |
O-4L | 11.90 ± 1.25 B | 0.7 ± 0.1 B | nd | nd |
O-5L | 10.72 ± 1.04 B | 0.6 ± 0.1 B | nd | nd |
Type of Gel | Syneresis Index, % | TSI |
---|---|---|
A | 5.9 ± 0.7 aB | 5.12 ± 0.12 aC |
O-10RPM | 3.8 ± 0.4 b | 0.52 ± 0.03 b |
O-11RPM | 3.2 ± 0.4 bc | 0.39 ± 0.14b c |
O-12RPM | 2.9 ± 0.3 c | 0.41 ± 0.01 c |
O-13RPM | 2.7 ± 0.4 c1 | 0.43 ± 0.07 c |
O-1L | 4.3 ± 0.6 A2 | 2.83 ± 0.57 A |
O-2L | 4.2 ± 0.8 A | 1.91 ± 0.45 AB |
O-3L | 4.0 ± 0.5 A | 1.81 ± 0.40 B |
O-4L | 3.9 ± 0.7 A | 1.82 ± 0.70 B |
O-5L | 3.9 ± 0.7 A | 1.81 ± 0.40 B |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jakubczyk, E.; Kamińska-Dwórznicka, A.; Kot, A. The Rheological Properties and Texture of Agar Gels with Canola Oil—Effect of Mixing Rate and Addition of Lecithin. Gels 2022, 8, 738. https://doi.org/10.3390/gels8110738
Jakubczyk E, Kamińska-Dwórznicka A, Kot A. The Rheological Properties and Texture of Agar Gels with Canola Oil—Effect of Mixing Rate and Addition of Lecithin. Gels. 2022; 8(11):738. https://doi.org/10.3390/gels8110738
Chicago/Turabian StyleJakubczyk, Ewa, Anna Kamińska-Dwórznicka, and Anna Kot. 2022. "The Rheological Properties and Texture of Agar Gels with Canola Oil—Effect of Mixing Rate and Addition of Lecithin" Gels 8, no. 11: 738. https://doi.org/10.3390/gels8110738
APA StyleJakubczyk, E., Kamińska-Dwórznicka, A., & Kot, A. (2022). The Rheological Properties and Texture of Agar Gels with Canola Oil—Effect of Mixing Rate and Addition of Lecithin. Gels, 8(11), 738. https://doi.org/10.3390/gels8110738