The Feasibility of Shellac Wax Emulsion Oleogels as Low-Fat Spreads Analyzed by Means of Multidimensional Statistical Analysis
Abstract
:1. Introduction
2. Results and Discussion
2.1. Response Analysis
2.1.1. Textural Analysis
(0.0012 × water%2) − (0.0605 × structurant%2).
Structurant%) − (0.001373 × Water%2) − (0.071051 × Structurant%2).
2.1.2. Rheological Behavior
Structurant%) − (0.001547 × water%2) − (0.059350 × structurants%2).
+ (3.49863 × 10−6 × Water%2) − 0.000890 × Structurant%2).
2.1.3. Stability
Structurant%) − (4.17772 × 10−8 × Water%2) − (0.000017 × Structurant%2)
2.1.4. Colorimetry
(Structurant% − 0.000051 × Water%2) + (0.000347 × Structurant%2).
2.2. Optimization of the Emulsion Composition Using Three Level Factorial Design
2.3. Cluster Analysis
2.4. FTIR
3. Conclusions
4. Materials and Methods
4.1. Materials
4.2. Oleogel and Emulsion Preparation
4.3. Textural Analysis
4.4. Rheological Response
4.5. Stability
4.6. Colorimetry
4.7. Fourier Transform Infrared Spectroscopy
4.8. Statistics
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Mert, B.; Demirkesen, I. Evaluation of highly unsaturated oleogels as shortening replacer in a short dough product. LWT-Food Sci. Technol. 2016, 68, 477–484. [Google Scholar] [CrossRef]
- Martins, A.J.; Cerqueira, M.A.; Fasolin, L.H.; Cunha, R.L.; Vicente, A.A. Beeswax organogels: Influence of gelator concentration and oil type in the gelation process. Food Res. Int. 2016, 84, 170–179. [Google Scholar] [CrossRef] [Green Version]
- Botega, D.C.Z.; Marangoni, A.G.; Smith, A.K.; Goff, H.D. Development of formulations and processes to incorporate wax oleogels in ice cream. J. Food Sci. 2013, 78, C1845–C1851. [Google Scholar] [CrossRef] [PubMed]
- Wijarnprecha, K.; de Vries, A.; Sonwai, S.; Rousseau, D. Water-in-oleogel emulsions—From structure design to functionality. Front. Sustain. Food Syst. 2021, 4, 566445. [Google Scholar] [CrossRef]
- Jana, S.; Martini, S. Physical characterization of crystalline networks formed by binary blends of waxes in soybean oil. Food Res. Int. 2016, 89, 245–253. [Google Scholar] [CrossRef]
- Palla, C.; Giacomozzi, A.; Genovese, D.B.; Carrín, M.E. Multi–objective optimization of high oleic sunflower oil and monoglycerides oleogels: Searching for rheological and textural properties similar to margarine. Food Struct. 2017, 12, 1–14. [Google Scholar] [CrossRef]
- Silva-Avellaneda, E.; Bauer-Estrada, K.; Prieto-Correa, R.E.; Quintanilla-Carvajal, M.X. The effect of composition, microfluidization and process parameters on formation of oleogels for ice cream applications. Sci. Rep. 2021, 11, 7161. [Google Scholar] [CrossRef]
- Thakur, D.; Singh, A.; Prabhakar, P.K.; Meghwal, M.; Upadhyay, A. Optimization and characterization of soybean oil-carnauba wax oleogel. LWT 2022, 157, 113108. [Google Scholar] [CrossRef]
- Tekiki, A.; Charfi, I.; Helal, R.; Bornaz, S. Formulation and Optimization of New Spreads Based on Olive Oil and Honey: A Response Surface Methodology Box-Benken Design. Food Nutr. Sci. 2022, 13, 358–372. [Google Scholar] [CrossRef]
- de Souza Ferreira, S.B.; Bruschi, M.L. Investigation of the physicochemical stability of emulgels composed of poloxamer 407 and different oil phases using the Quality by Design approach. J. Mol. Liq. 2021, 332, 115856. [Google Scholar] [CrossRef]
- Matheson, A.B.; Dalkas, G.; Gromov, A.; Euston, S.R.; Clegg, P.S. The development of phytosterol-lecithin mixed micelles and organogels. Food Funct. 2017, 8, 4547–4554. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hwang, H.-S.; Singh, M.; Bakota, E.L.; Winkler-Moser, J.K.; Kim, S.; Liu, S.X. Margarine from Organogels of Plant Wax and Soybean Oil. J. Am. Oil Chem. Soc. 2013, 90, 1705–1712. [Google Scholar] [CrossRef]
- Wang, L.; Wen, Y.; Su, C.; Gao, Y.; Li, Q.; Du, S.; Yu, X. Effect of water content on the physical properties and structure of walnut oleogels. RSC Adv. 2022, 12, 8987–8995. [Google Scholar] [CrossRef]
- Patel, A.R.; Schatteman, D.; De Vos, W.H.; Lesaffer, A.; Dewettinck, K. Preparation and rheological characterization of shellac oleogels and oleogel-based emulsions. J. Coll. Interface Sci. 2013, 411, 114–121. [Google Scholar] [CrossRef] [PubMed]
- Patel, A.R.; Rajarethinem, P.S.; Gredowska, A.; Turhan, O.; Lesaffer, A.; De Vos, W.H.; Van de Walle, D.; Dewettinck, K. Edible applications of shellac oleogels: Spreads, chocolate paste and cakes. Food Funct. 2014, 5, 645–652. [Google Scholar] [CrossRef] [PubMed]
- Öğütcü, M.; Arifoğlu, N.; Yılmaz, E. Preparation and Characterization of Virgin Olive Oil-Beeswax Oleogel Emulsion Products. J. Am. Oil Chem. Soc. 2015, 92, 459–471. [Google Scholar] [CrossRef]
- Espert, M.; Sanz, T.; Salvador, A. Use of Milk Fat/Cellulose Ether Emulsions in Spreadable Creams and the Effect of In Vitro Digestion on Texture and Fat Digestibility. Foods 2020, 9, 796. [Google Scholar] [CrossRef]
- Patel, A.R.; Dewettinck, K. Comparative evaluation of structured oil systems: Shellac oleogel, HPMC oleogel, and HIPE gel. Eur. J. Lipid Sci. Technol. 2015, 117, 1772–1781. [Google Scholar] [CrossRef]
- Zhang, Y.; Lu, Y.; Zhang, R.; Gao, Y.; Mao, L. Novel high internal phase emulsions with gelled oil phase: Preparation, characterization and stability evaluation. Food Hydrocoll. 2021, 121, 106995. [Google Scholar] [CrossRef]
- Toro-Vazquez, J.F.; Mauricio-Pérez, R.; González-Chávez, M.M.; Sánchez-Becerril, M.; de Jesús Ornelas-Paz, J.; Pérez-Martínez, J.D. Physical properties of organogels and water in oil emulsions structured by mixtures of candelilla wax and monoglycerides. Food Res. Int. 2013, 54, 1360–1368. [Google Scholar] [CrossRef]
- Variyana, Y.; Muchammad, R.; Mahfud, M. Box-behnken design for the optimization using solvent-free microwave gravity extraction of garlic oil from Allium sativum L. In Proceedings of the IOP Conference Series: Materials Science and Engineering, Bali, Indonesia, 7–8 August 2019; p. 012005. [Google Scholar]
- Zhang, R.; Cui, M.; Ye, J.; Yuan, D.; Mao, L. Physicochemical stability of oleogel-in-water emulsions loaded with β-carotene against environmental stresses. LWT 2022, 155, 112965. [Google Scholar] [CrossRef]
- Wijarnprecha, K.; de Vries, A.; Santiwattana, P.; Sonwai, S.; Rousseau, D. Rheology and structure of oleogelled water-in-oil emulsions containing dispersed aqueous droplets as inactive fillers. LWT 2019, 115, 108067. [Google Scholar] [CrossRef]
- Rafanan, R.; Rousseau, D. Dispersed droplets as tunable fillers in water-in-oil emulsions stabilized with fat crystals. J. Food Eng. 2019, 244, 192–201. [Google Scholar] [CrossRef]
- Holey, S.A.; Sekhar, K.P.C.; Mishra, S.S.; Kanjilal, S.; Nayak, R.R. Sunflower Wax-Based Oleogel Emulsions: Physicochemical Characterizations and Food Application. ACS Food Sci. Technol. 2021, 1, 152–164. [Google Scholar] [CrossRef]
- Silva, T.J.; Fernandes, G.D.; Bernardinelli, O.D.; da Rosa Silva, E.C.; Barrera-Arellano, D.; Ribeiro, A.P.B. Organogels in low-fat and high-fat margarine: A study of physical properties and shelf life. Food Res. Int. 2021, 140, 110036. [Google Scholar] [CrossRef]
- Granato, D.; Masson, M.L. Instrumental color and sensory acceptance of soy-based emulsions: A response surface approach. Food Sci. Technol. 2010, 30, 1090–1096. [Google Scholar] [CrossRef] [Green Version]
- Yilmaz, E.; Demirci, Ş. Preparation and evaluation of virgin olive oil oleogels including thyme and cumin spices with sunflower wax. Gels 2021, 7, 95. [Google Scholar] [CrossRef]
- Aranda-Ledesma, N.E.; Bautista-Hernández, I.; Rojas, R.; Aguilar-Zárate, P.; Medina-Herrera, N.d.P.; Castro-López, C.; Guadalupe Martínez-Ávila, G.C. Candelilla wax: Prospective suitable applications within the food field. LWT 2022, 159, 113170. [Google Scholar] [CrossRef]
- Trujillo-Ramírez, D.; Reyes, I.; Lobato-Calleros, C.; Vernon-Carter, E.J.; Alvarez-Ramirez, J. Chia seed oil-candelilla wax oleogels structural features and viscoelasticity are enhanced by annealing. LWT 2022, 153, 112433. [Google Scholar] [CrossRef]
- Frolova, Y.; Sarkisyan, V.; Sobolev, R.; Makarenko, M.; Semin, M.; Kochetkova, A. The Influence of Edible Oils’ Composition on the Properties of Beeswax-Based Oleogels. Gels 2022, 8, 48. [Google Scholar] [CrossRef]
- Szymanska, I.; Zbikowska, A.; Kowalska, M. Physical stability of model emulsions based on ethyl cellulose oleogels. Int. Agrophys. 2020, 34, 289–300. [Google Scholar] [CrossRef]
- Sena, B.; Dhal, S.; Sahu, D.; Sarkar, P.; Mohanty, B.; Jarzębski, M.; Wieruszewski, M.; Behera, H.; Pal, K. Variations in Microstructural and Physicochemical Properties of Soy Wax/Soybean Oil-Derived Oleogels Using Soy Lecithin. Polymers 2022, 14, 3928. [Google Scholar] [CrossRef] [PubMed]
Run | Numeric Factors | Responses | ||||||
---|---|---|---|---|---|---|---|---|
Wax (%) (m/m) | Water (%) (m/m) | Hardness (g) | Adhesive Force (g) | GLVR (Pa) | Cross over Point G′ = G″ | Stability | Whiteness Index | |
EM1 | 7 | 60 | 415.5 ± 43.13 | 127.5 ± 4.95 | 32,405 ± 3428.05 | 1028.28 ± 126.16 | 99.99 ± 0.00 | 78.50 ± 0.45 |
EM2 | 5 | 20 | 160 ± 15.55 | 68.5 ± 8.13 | 5946.3 ± 102.81 | 69.85 ± 9.25 | 99.93 ± 0.003 | 58.12 ± 1.36 |
EM3 | 7 | 40 | 600 ± 31.11 | 255 ± 2.82 | 40,513.5 ± 40,372.04 | 462.44 ± 39.6 | 99.98 ± 0.00 | 71.96 ± 0.16 |
EM4 | 7 | 20 | 560.5 ± 54.80 | 196.5 ± 16.61 | 35,938 ± 2804.39 | 1731.5 ± 54.16 | 99.96 ± 0.006 | 61.41 ± 0.17 |
EM5 | 3 | 40 | 134 ± 9.90 | 57.5 ± 3.53 | 5014.4 ± 409.41 | 54.33 ± 4.75 | 99.92 ± 0.004 | 64.65 ± 0.39 |
EM6 | 3 | 20 | 54 ± 1.41 | 27 ± 2.82 | 1064.2 ± 113.13 | 38 ± 3.92 | 99.88 ± 0.003 | 58.99 ± 0.33 |
EM7 | 5 | 40 | 342 ± 11.31 | 144.5 ± 14.85 | 22,300 ± 2406.99 | 166.8 ± 14.14 | 99.95 ± 0.01 | 70.69 ± 0.71 |
EM8 | 3 | 60 | 63 ± 2.82 | 28.5 ± 0.70 | 4264.2 ± 264.45 | 87.55 ± 7.28 | 99.95 ± 0.01 | 75.61 ± 0.30 |
EM9 | 5 | 60 | 301.5 ± 19.09 | 126 ± 4.24 | 15,928.5 ± 267.99 | 223.84 ± 19.82 | 99.98 ± 0.001 | 76.66 ± 0.20 |
Source | Hardness (g) | Adhesive Force (g) | G′LVR (Pa) | Cross over Point G′ = G″ | Stability | Whiteness Index |
---|---|---|---|---|---|---|
Model F value | 12.55 | 12.11 | 30.09 | 15.97 | 130.22 | 24.88 |
Model p value | 0.0318 | 0.0333 | 0.0091 | 0.0226 | 0.0011 | 0.0041 |
A-Water % p value | 0.5700 | 0.7633 | 0.0465 | 0.0710 | 0.0005 | 0.0004 |
B-Structurant % p value | 0.0010 | 0.0058 | 0.0016 | 0.0037 | 0.0003 | 0.0605 |
AB | 0.4519 | 0.4574 | 0.0777 | 0.1289 | 0.0138 | 0.9653 |
A2 | 0.1106 | 0.0728 | 0.0534 | 0.9035 | 0.5828 | 0.4254 |
B2 | 0.3547 | 0.1875 | 0.3203 | 0.7596 | 0.0916 | 0.8168 |
R2 | 0.9544 | 0.9528 | 0.9804 | 0.9638 | 0.9954 | 0.9688 |
Residual | 0.2949 | 0.2454 | 0.2396 | 0.0007 | 4.449 × 10−9 | 0.0034 |
Cor total | 6.46 | 5.20 | 12.55 | 0.0187 | 9.701 × 10−7 | 0.10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Puşcaş, A.; Mureşan, V. The Feasibility of Shellac Wax Emulsion Oleogels as Low-Fat Spreads Analyzed by Means of Multidimensional Statistical Analysis. Gels 2022, 8, 749. https://doi.org/10.3390/gels8110749
Puşcaş A, Mureşan V. The Feasibility of Shellac Wax Emulsion Oleogels as Low-Fat Spreads Analyzed by Means of Multidimensional Statistical Analysis. Gels. 2022; 8(11):749. https://doi.org/10.3390/gels8110749
Chicago/Turabian StylePuşcaş, Andreea, and Vlad Mureşan. 2022. "The Feasibility of Shellac Wax Emulsion Oleogels as Low-Fat Spreads Analyzed by Means of Multidimensional Statistical Analysis" Gels 8, no. 11: 749. https://doi.org/10.3390/gels8110749
APA StylePuşcaş, A., & Mureşan, V. (2022). The Feasibility of Shellac Wax Emulsion Oleogels as Low-Fat Spreads Analyzed by Means of Multidimensional Statistical Analysis. Gels, 8(11), 749. https://doi.org/10.3390/gels8110749