Molybdate Recovery by Adsorption onto Silica Matrix and Iron Oxide Based Composites
Abstract
:1. Introduction
2. Results and Discussion
2.1. Material Characterization
2.1.1. Scanning Electron Microscopy (SEM) Coupled with X-ray Dispersive Energy Spectroscopy (EDX)
2.1.2. Raman Spectroscopy
2.1.3. FT-IR Spectroscopy
2.1.4. Thermogravimetric Analysis, DTG
2.1.5. Atomic Force Microscopy (AFM)
2.1.6. Point of Zero Charge, pHpZc
2.2. Studies Regarding Molybdate Ion Recovery by Adsorption onto SiO2FexOy Material
2.2.1. S:L Ratio Effect
2.2.2. pH Effect
2.2.3. Contact Time and Temperature Effect
2.3. Kinetic Studies
2.4. Thermodynamic Studies
2.5. Equilibrium Studies Initial Concentration Effect
2.6. Equilibrium Studies
2.7. Desorption Studies
3. Conclusions
4. Materials and Methods
4.1. Material Synthesis and Characterization
4.2. Studies Regarding Molybdate Ion Recovery by Adsorption onto SiO2FexOy Material
4.2.1. Solid:Liquid (S:L) Ratio Effect
4.2.2. pH Effect
4.2.3. Contact Time and Temperature Effect
4.2.4. Initial Concentration Effect
4.3. Desorption Studies
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- National Research Council; Food and Nutrition Board; Commission on Life Sciences; Subcommittee on the Tenth Edition of the Recommended Dietary Allowances. The National Academies Collection: Reports funded by National Institutes of Health. In Recommended Dietary Allowances, 10th, ed.; National Academies Press: Washington, DC, USA, 1989. [Google Scholar]
- Clayton, G.D.; Clayton, F.E. Patty’s Industrial Hygiene and Toxicology, Toxicology; Wiley: Hoboken, NJ, USA, 1994. [Google Scholar]
- Namasivayam, C.; Sangeetha, D. Removal of molybdate from water by adsorption onto ZnCl2 activated coir pith carbon. Bioresour. Technol. 2006, 97, 1194–1200. [Google Scholar] [CrossRef] [PubMed]
- Schafer, L.; Hofer, M.; Harig, T.; Laukart, A. Method for Depositing a Coating. U.S. Patent US 2011/0318490 A1, 29 November 2011. [Google Scholar]
- Yulin, S. Multilayer Mirror for the Euv Spectral Range. Europaishe Patents chrift EP 2 864 825 B1, 20 June 2012. [Google Scholar]
- Risse, S.; Gebhardt, A.; Peschel, T.; Stockl, W. Substrat aus Einer Aluminium-Silizium-Legierung Oder Kristallinem Silizium, Metallspiegel, Verfahren zu Dessen Herstellung Sowie Dessen Verwendung. Offenlegungsschrift DE 10 2009 040 785 A1, 10 March 2011. [Google Scholar]
- Marafi, M.; Stanislaus, A. Spent hydroprocessing catalyst management: A review: Part II. Advances in metal recovery and safe disposal methods. Resour. Conserv. Recycl. 2008, 53, 1–26. [Google Scholar] [CrossRef]
- Pagnanelli, F.; Ferella, F.; De Michelis, I.; Vegliò, F. Adsorption onto activated carbon for molybdenum recovery from leach liquors of exhausted hydrotreating catalysts. Hydrometallurgy 2011, 110, 67–72. [Google Scholar] [CrossRef]
- Aulnette, C.; Krause, R.; Dimroth, F.; Grave, M.; Guiot, E.; Mazaleyrat, E.; Drazek, C. Advanced cpv Solar Cell Assembly Process. European Patent WO/2014/154769, 2 October 2014. [Google Scholar]
- Kaiser, B.N.; Gridley, K.L.; Ngaire Brady, J.; Phillips, T.; Tyerman, S.D. The role of molybdenum in agricultural plant production. Ann. Bot. 2005, 96, 745–754. [Google Scholar] [CrossRef]
- Martens, D.C.; Westermann, D.T. Fertilizer Applications for Correcting Micronutrient Deficiencies. Micronutr. Agric. 1991, 4, 549–592. [Google Scholar] [CrossRef] [Green Version]
- Zeng, L.; Cheng, C.Y. A literature review of the recovery of molybdenum and vanadium from spent hydrodesulphurisation catalysts: Part I: Metallurgical processes. Hydrometallurgy 2009, 98, 1–9. [Google Scholar] [CrossRef]
- Ruiz, V.; Meux, E.; Schneider, M.; Georgeaud, V. Hydrometallurgical Treatment for Valuable Metals Recovery from Spent CoMo/Al2O3 Catalyst. 2. Oxidative Leaching of an Unroasted Catalyst Using H2O2. Ind. Eng. Chem. Res. 2011, 50, 5307–5315. [Google Scholar] [CrossRef]
- Arslanoğlu, H.; Yaraş, A. Recovery of precious metals from spent Mo–Co–Ni/Al2O3 catalyst in organic acid medium: Process optimization and kinetic studies. Pet. Sci. Technol. 2019, 37, 2081–2093. [Google Scholar] [CrossRef]
- Kar, B.B.; Datta, P.; Misra, V.N. Spent catalyst: Secondary source for molybdenum recovery. Hydrometallurgy 2004, 72, 87–92. [Google Scholar] [CrossRef]
- Chen, Y.; Feng, Q.; Shao, Y.; Zhang, G.; Ou, L.; Lu, Y. Research on the recycling of valuable metals in spent Al2O3-based catalyst. Miner. Eng. 2006, 19, 94–97. [Google Scholar] [CrossRef]
- Navarro, R.; Guzman, J.; Saucedo, I.; Revilla, J.; Guibal, E. Vanadium recovery from oil fly ash by leaching, precipitation and solvent extraction processes. Waste Manag. 2007, 27, 425–438. [Google Scholar] [CrossRef]
- Agarwal, V.; Khalid, M.K.; Porvali, A.; Wilson, B.P.; Lundström, M. Recycling of spent NiMH batteries: Integration of battery leach solution into primary Ni production using solvent extraction. Sustain. Mater. Technol. 2019, 22, e00121. [Google Scholar] [CrossRef]
- Chen, Y.; Feng, Q.; Shao, Y.; Zhang, G.; Ou, L.; Lu, Y. Investigations on the extraction of molybdenum and vanadium from ammonia leaching residue of spent catalyst. Int. J. Mineral Process. 2006, 79, 42–48. [Google Scholar] [CrossRef]
- Hirai, T.; Komasawa, I. Separation of Rare Metals by Solvent Extraction Employing Reductive Stripping Technique. Miner. Process. Extr. Metall. Rev. 1997, 17, 81–107. [Google Scholar] [CrossRef]
- Le, M.N.; Lee, M.S. Separation of Al(III), Mo(VI), Ni(II), and V(V) from model hydrochloric acid leach solutions of spent petroleum catalyst by solvent extraction. J. Chem. Technol. Biotechnol. 2020, 95, 2886–2897. [Google Scholar] [CrossRef]
- Zhang, P.; Inoue, K.; Yoshizuka, K.; Tsuyama, H. Extraction and selective stripping of molybdenum(VI) and vanadium(IV) from sulfuric acid solution containing aluminum(III), cobalt(II), nickel(II) and iron(III) by LIX 63 in Exxsol D80. Hydrometallurgy 1996, 41, 45–53. [Google Scholar] [CrossRef]
- Guo, W.-J.; Shen, Y.-H. Recovery of molybdenum and vanadium from acidic sulfate leach solution of blue sludge by ion exchange. Environ. Prog. Sustain. Energy 2016, 35, 156–160. [Google Scholar] [CrossRef]
- Joo, S.-H.; Kim, Y.-U.; Kang, J.-G.; Kumar, J.R.; Yoon, H.-S.; Parhi, P.K.; Shin, S.M. Recovery of Rhenium and Molybdenum from Molybdenite Roasting Dust Leaching Solution by Ion Exchange Resins. Mater. Trans. 2012, 53, 2034–2037. [Google Scholar] [CrossRef] [Green Version]
- Qasem, N.A.A.; Mohammed, R.H.; Lawal, D.U. Removal of heavy metal ions from wastewater: A comprehensive and critical review. NPJ Clean Water 2021, 4, 36. [Google Scholar] [CrossRef]
- Zhou, Z.; Niu, Y.; Deng, H.; Zhang, Y.; Chang, X.; Cao, X.; Ye, K. Recovery of molybdenum from uranium raffinate solution containing phosphorus. Sep. Sci. Technol. 2020, 56, 2920–2929. [Google Scholar] [CrossRef]
- Cibati, A.; Pagnanelli, F.; Toro, L. Metal recovery from end-of-life hydrotreating catalysts by selective precipitation: Laboratory tests and preliminary process analysis. Environ. Prog. Sustain. Energy 2015, 34, 703–712. [Google Scholar] [CrossRef]
- Park, K.H.; Mohapatra, D.; Reddy, B.R. Selective recovery of molybdenum from spent HDS catalyst using oxidative soda ash leach/carbon adsorption method. J. Hazard. Mater. 2006, 138, 311–316. [Google Scholar] [CrossRef] [PubMed]
- Atia, A.A. Adsorption of chromate and molybdate by cetylpyridinium bentonite. Appl. Clay Sci. 2008, 41, 73–84. [Google Scholar] [CrossRef]
- Deng, B.; Caviness, M.; Gu, Z. Arsenic Removal by Activated Carbon-Based Materials. In Advances in Arsenic Research; American Chemical Society: Washington, DC, USA, 2005; Volume 915, pp. 284–293. [Google Scholar]
- Santonastaso, G.F.; Erto, A.; Bortone, I.; Chianese, S.; Di Nardo, A.; Musmarra, D. Experimental and simulation study of the restoration of a thallium (I)-contaminated aquifer by Permeable Adsorptive Barriers (PABs). Sci. Total Environ. 2018, 630, 62–71. [Google Scholar] [CrossRef] [Green Version]
- Zghida, H.; Baouab, M.H.V.; Gauthier, R. Sorption of chromium oxy-anions onto cationized ligno-cellulosic material. J. Appl. Polym. Sci. 2003, 87, 1660–1665. [Google Scholar] [CrossRef]
- Melendres, C.A.; Hahn, F.; Bowmaker, G.A. Oxyanion adsorption and competition at a gold electrode. Electrochim. Acta 2000, 46, 9–13. [Google Scholar] [CrossRef]
- Cumberland, S.L.; Strouse, G.F. Analysis of the Nature of Oxyanion Adsorption on Gold Nanomaterial Surfaces. Langmuir 2002, 18, 269–276. [Google Scholar] [CrossRef]
- Stevenson, K.J.; Gao, X.; Hatchett, D.W.; White, H.S. Voltammetric measurement of anion adsorption on Ag(111). J. Electroanal. Chem. 1998, 447, 43–51. [Google Scholar] [CrossRef]
- Zhu, H.; Jia, Y.; Wu, X.; Wang, H. Removal of arsenic from water by supported nano zero-valent iron on activated carbon. J. Hazard. Mater. 2009, 172, 1591–1596. [Google Scholar] [CrossRef]
- Figueiredo, H.; Quintelas, C. Tailored zeolites for the removal of metal oxyanions: Overcoming intrinsic limitations of zeolites. J. Hazard. Mater. 2014, 274, 287–299. [Google Scholar] [CrossRef] [Green Version]
- Baccile, N.; Falco, C.; Titirici, M.-M. Characterization of biomass and its derived char using 13C-solid state nuclear magnetic resonance. Green Chem. 2014, 16, 4839–4869. [Google Scholar] [CrossRef] [Green Version]
- Chao, H.-P.; Lee, C.-K.; Juang, L.-C.; Han, Y.-L. Sorption of Organic Compounds, Oxyanions, and Heavy Metal Ions on Surfactant Modified Titanate Nanotubes. Ind. Eng. Chem. Res. 2013, 52, 9843–9850. [Google Scholar] [CrossRef]
- Hemming, N.G.; Reeder, R.J.; Hart, S.R. Growth-step-selective incorporation of boron on the calcite surface. Geochim. Cosmochim. Acta 1998, 62, 2915–2922. [Google Scholar] [CrossRef]
- Hajji, S.; Montes-Hernandez, G.; Sarret, G.; Tordo, A.; Morin, G.; Ona-Nguema, G.; Bureau, S.; Turki, T.; Mzoughi, N. Arsenite and chromate sequestration onto ferrihydrite, siderite and goethite nanostructured minerals: Isotherms from flow-through reactor experiments and XAS measurements. J. Hazard. Mater. 2019, 362, 358–367. [Google Scholar] [CrossRef]
- Hiemstra, T.; Van Riemsdijk, W.H. Fluoride Adsorption on Goethite in Relation to Different Types of Surface Sites. J. Colloid Interface Sci. 2000, 225, 94–104. [Google Scholar] [CrossRef] [PubMed]
- Iwai, T.; Hashimoto, Y. Adsorption of tungstate (WO4) on birnessite, ferrihydrite, gibbsite, goethite and montmorillonite as affected by pH and competitive phosphate (PO4) and molybdate (MoO4) oxyanions. Appl. Clay Sci. 2017, 143, 372–377. [Google Scholar] [CrossRef]
- Manning, B.A.; Fendorf, S.E.; Goldberg, S. Surface Structures and Stability of Arsenic(III) on Goethite: Spectroscopic Evidence for Inner-Sphere Complexes. Environ. Sci. Technol. 1998, 32, 2383–2388. [Google Scholar] [CrossRef]
- Hiemstra, T.; Van Riemsdijk, W.H. Surface Structural Ion Adsorption Modeling of Competitive Binding of Oxyanions by Metal (Hydr)oxides. J. Colloid Interface Sci. 1999, 210, 182–193. [Google Scholar] [CrossRef]
- Matis, K.A.; Zouboulis, A.I.; Zamboulis, D.; Valtadorou, A.V. Sorption of As(V) by Goethite Particles and Study of Their Flocculation. Water Air Soil Pollut. 1999, 111, 297–316. [Google Scholar] [CrossRef]
- Li, Z.; Bowman, R.S. Retention of inorganic oxyanions by organo-kaolinite. Water Res. 2001, 35, 3771–3776. [Google Scholar] [CrossRef]
- Sherlala, A.I.A.; Raman, A.A.A.; Bello, M.M. Synthesis and characterization of magnetic graphene oxide for arsenic removal from aqueous solution. Environ. Technol. 2019, 40, 1508–1516. [Google Scholar] [CrossRef] [PubMed]
- Xu, N.; Christodoulatos, C.; Braida, W. Modeling the competitive effect of phosphate, sulfate, silicate, and tungstate anions on the adsorption of molybdate onto goethite. Chemosphere 2006, 64, 1325–1333. [Google Scholar] [CrossRef]
- Laudadio, E.D.; Bennett, J.W.; Green, C.M.; Mason, S.E.; Hamers, R.J. Impact of Phosphate Adsorption on Complex Cobalt Oxide Nanoparticle Dispersibility in Aqueous Media. Environ. Sci. Technol. 2018, 52, 10186–10195. [Google Scholar] [CrossRef] [PubMed]
- Davis, S.A.; Misra, M. Transport Model for the Adsorption of Oxyanions of Selenium (IV) and Arsenic (V) from Water onto Lanthanum- and Aluminum-Based Oxides. J. Colloid Interface Sci. 1997, 188, 340–350. [Google Scholar] [CrossRef]
- Ianăşi, C.; Ianăşi, P.; Negrea, A.; Ciopec, M.; Ivankov, O.I.; Kuklin, A.I.; Almásy, L.; Putz, A.-M. Effects of catalysts on structural and adsorptive properties of iron oxide-silica nanocomposites. Korean J. Chem. Eng. 2021, 38, 292–305. [Google Scholar] [CrossRef]
- Handa, M.; Miyamoto, H.; Suzuki, T.; Sawada, K.; Yukawa, Y. Formation of acetylacetonato iron complexes in acetonitrile and their resonance Raman spectra. Inorg. Chim. Acta 1993, 203, 61–65. [Google Scholar] [CrossRef]
- Colomban, P.; Slodczyk, A. Preface: Raman Intensity: An Important Tool in the Study of Nanomaterials and Nanostructures. Acta Phys. Pol. A 2009, 116, 7. [Google Scholar] [CrossRef]
- Ramalla, I.; Gupta, R.; Bansal, K. Effect on superhydrophobic surfaces on electrical porcelain insulator, improved technique at polluted areas for longer life and reliability. Int. J. Eng. Technol. 2015, 4, 509. [Google Scholar] [CrossRef] [Green Version]
- Ianasi, C.; Costisor, O.; Putz, A.-M.; Lazau, R.; Adina, N.; Niznansky, D.; Sacarescu, L.; Savii, C. Low temperature superparamagnetic nanocomposites obtained by Fe(acac)3-SiO2-PVA hybrid xerogel thermolysis. Process. Appl. Ceram. 2016, 10, 265. [Google Scholar] [CrossRef]
- Jitianu, A.; Raileanu, M.; Crisan, M.; Predoi, D.; Jitianu, M.; Stanciu, L.; Zaharescu, M. Fe3O4–SiO2 nanocomposites obtained via alkoxide and colloidal route. J. Sol.-Gel Sci. Technol. 2006, 40, 317–323. [Google Scholar] [CrossRef]
- Popovici, M.; Gich, M.; Nižňanský, D.; Roig, A.; Savii, C.; Casas, L.; Molins, E.; Zaveta, K.; Enache, C.; Sort, J.; et al. Optimized Synthesis of the Elusive ε-Fe2O3 Phase via Sol−Gel Chemistry. Chem. Mater. 2004, 16, 5542–5548. [Google Scholar] [CrossRef]
- Stefanescu, M.; Stoia, M.; Stefanescu, O.; Davidescu, C.-M.; Vlase, G.; Sfîrloagǎ, P. Synthesis and characterization of poly(vinyl alcohol)/ethylene glycol /silica hybrids. Thermal analysis and ft-ir study. Rev. Roum. Chim. 2010, 55, 17–23. [Google Scholar]
- Oliveira, R.R.L.; Albuquerque, D.A.C.; Cruz, T.; Yamaji, F.; Leite, F. Measurement of the Nanoscale Roughness by Atomic Force Microscopy: Basic Principles and Applications; IntechOpen: London, UK, 2012. [Google Scholar] [CrossRef] [Green Version]
- Bhushan, B. Modern Tribology Handbook: Principles of Tribology; CRC Press: Boca Raton, FL, USA, 2000; Volume 1, pp. 1–1697. [Google Scholar]
- Sedlaček, M.; Gregorčič, P.; Podgornik, B. Use of the Roughness Parameters Ssk and Sku to Control Friction—A Method for Designing Surface Texturing. Tribol. Trans. 2017, 60, 260–266. [Google Scholar] [CrossRef]
- Al-Maliky, E.A.; Gzar, H.A.; Al-Azawy, M.G. Determination of Point of Zero Charge (PZC) of Concrete Particles Adsorbents. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1184, 012004. [Google Scholar] [CrossRef]
- Kosmulski, M. The pH dependent surface charging and points of zero charge. IX. Update. Adv. Colloid Interface Sci. 2021, 296, 102519. [Google Scholar] [CrossRef]
- Bakatula, E.N.; Richard, D.; Neculita, C.M.; Zagury, G.J. Determination of point of zero charge of natural organic materials. Environ. Sci. Pollut. Res. 2018, 25, 7823–7833. [Google Scholar] [CrossRef]
- Zhang, L.; Hu, P.; Wang, J.; Huang, R. Crosslinked quaternized chitosan/bentonite composite for the removal of Amino black 10B from aqueous solutions. Int. J. Biol. Macromol. 2016, 93, 217–225. [Google Scholar] [CrossRef]
- Kausar, A.; Naeem, K.; Hussain, T.; Nazli, Z.-i.-H.; Bhatti, H.N.; Jubeen, F.; Nazir, A.; Iqbal, M. Preparation and characterization of chitosan/clay composite for direct Rose FRN dye removal from aqueous media: Comparison of linear and non-linear regression methods. J. Mater. Res. Technol. 2019, 8, 1161–1174. [Google Scholar] [CrossRef]
- Lagergren, S. About the theory of so-called adsorption of soluble substabces. Kungl. Sven. Vetensk. Handl. 1898, 24, 1–39. [Google Scholar]
- Ho, Y.S. Review of second-order models for adsorption systems. J. Hazard. Mater. 2006, 136, 681–689. [Google Scholar] [CrossRef] [Green Version]
- Weber, W.J.; Morris, J.C. Equilibria and Capacities for Adsorption on Carbon. J. Sanit. Eng. Div. 1964, 90, 79–108. [Google Scholar] [CrossRef]
- Zhang, S.; Ning, S.; Liu, H.; Zhou, J.; Wang, S.; Zhang, W.; Wang, X.; Wei, Y. Highly-efficient separation and recovery of ruthenium from electroplating wastewater by a mesoporous silica-polymer based adsorbent. Microporous Mesoporous Mater. 2020, 303, 110293. [Google Scholar] [CrossRef]
- Zhang, Y.; Yu, F.; Cheng, W.; Wang, J.; Ma, J. Adsorption Equilibrium and Kinetics of the Removal of Ammoniacal Nitrogen by Zeolite X/Activated Carbon Composite Synthesized from Elutrilithe. J. Chem. 2017, 2017, 1936829. [Google Scholar] [CrossRef]
- Atkins, P.; de Paula, J. Atkins’ Physical Chemistry; Oxford University Press: Oxford, UK, 2005; p. 1008. [Google Scholar]
- Langmuir, I. The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 1918, 40, 1361–1403. [Google Scholar] [CrossRef] [Green Version]
- Freundlich, H.M.F. Over the adsorption in solution. J. Phys. Chem. 1906, 57, 385–470. [Google Scholar]
- Sips, R. On the Structure of a Catalyst Surface. J. Chem. Phys. 1948, 16, 490–495. [Google Scholar] [CrossRef]
- Kucuker, M.A.; Wieczorek, N.; Kuchta, K.; Copty, N.K. Biosorption of neodymium on Chlorella vulgaris in aqueous solution obtained from hard disk drive magnets. PLoS ONE 2017, 12, e0175255. [Google Scholar] [CrossRef]
- Keskin, C.S. Arsenic and molybdenum ions removal BY Fe3O4 embedded acrylamide-triazine hybrid-polymer. Rev. Roum. Chim. 2017, 62, 139–148. [Google Scholar]
- Verbinnen, B.; Block, C.; Hannes, D.; Lievens, P.; Vaclavikova, M.; Stefusova, K.; Gallios, G.; Vandecasteele, C. Removal of Molybdate Anions from Water by Adsorption on Zeolite-Supported Magnetite. Water Environ. Res. 2012, 84, 753–760. [Google Scholar] [CrossRef]
- Ştefănescu, O.; Davidescu, C.; Ştefănescu, M.; Stoia, M. Preparation of FexOy/SiO2 nanocomposites by thermal decomposition of some carboxylate precursors formed inside the silica matrix. J. Therm. Anal. Calorim. 2009, 97, 203. [Google Scholar] [CrossRef]
Elements | Wt, % | At, % |
---|---|---|
C K | 44.94 | 54.61 |
O K | 43.53 | 39.71 |
Si K | 11.14 | 5.57 |
Fe K | 0.39 | 0.10 |
TOTAL | 100.00 | 100.00 |
Sample Name | Ironed Area (µm2) | Sa (µm) | Sq (µm) | Sp (µm) | Sv (µm) | Sy (µm) | Sku | Ssk |
---|---|---|---|---|---|---|---|---|
1-2 | 810.853 | 0.527 | 0.652 | 1.569 | −2.353 | 3.922 | 2.856 | −0.352 |
1-7 | 36.054 | 0.102 | 0.129 | 0.372 | −0.677 | 1.049 | 3.733 | −0.788 |
1-8 | 537.342 | 0.344 | 0.423 | 1.414 | −1.103 | 2.517 | 3.122 | 0.699 |
1-11 | 849.807 | 0.514 | 0.629 | 1.436 | −3.478 | 4.914 | 3.818 | −0.565 |
1-13 | 894.873 | 0.642 | 0.790 | 3.182 | −1.977 | 5.159 | 3.078 | 0.838 |
1-14 | 1091.69 | 0.645 | 0.762 | 2.504 | −2.054 | 4.558 | 2.298 | 0.130 |
Pseudo-First Order | ||||
---|---|---|---|---|
Temperature (K) | qe,exp (mg g−1) | k1 (min−1) | qe,calc (mg g−1) | R2 |
298 | 1.80 | 0.004 | 2.35 | 0.7919 |
308 | 1.97 | 0.012 | 2.55 | 0.9561 |
318 | 2.02 | 0.018 | 3.44 | 0.9328 |
Pseudo-Second Order | ||||
Temperature (K) | qe,exp (mg g−1) | k2 (g mg−1∙min−1) | qe,calc (mg g−1) | R2 |
298 | 1.80 | 1.582 | 1.18 | 0.9999 |
308 | 1.97 | 2.686 | 2.04 | 0.9999 |
318 | 2.02 | 3.937 | 2.09 | 0.9996 |
Intraparticle Diffusion Model | |||
---|---|---|---|
Temperature (K) | Kdiff (mg g−1·min−1/2) | C | R2 |
298 | 0.0194 | 1.575 | 0.7874 |
308 | 0.0251 | 1.563 | 0.8888 |
318 | 0.0351 | 1.747 | 0.9324 |
ΔH°, kJ mol−1 | ΔS°, J mol−1∙K−1 | ΔG°, kJ mol−1 | R2 | ||
---|---|---|---|---|---|
19.76 | 69.96 | 298 K | 308 K | 318 K | 0.9988 |
−1.08 | −1.78 | −2.48 |
Langmuir Isotherm | |||
---|---|---|---|
qm,exp (mg/g) | KL (L mg−1) | qL (mg g−1) | R2 |
10.95 | 0.035 | 14.85 | 0.9946 |
Freundlich Isotherm | |||
KF(mg/g) | 1/nF | R2 | |
1.415 | 0.47 | 0.9696 | |
Sips Isotherm | |||
KS | qS(mg g−1) | 1/nS | R2 |
0.038 | 15.1 | 0.05 | 0.9952 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matusoiu, F.; Negrea, A.; Ciopec, M.; Duteanu, N.; Negrea, P.; Svera, P.; Ianasi, C. Molybdate Recovery by Adsorption onto Silica Matrix and Iron Oxide Based Composites. Gels 2022, 8, 125. https://doi.org/10.3390/gels8020125
Matusoiu F, Negrea A, Ciopec M, Duteanu N, Negrea P, Svera P, Ianasi C. Molybdate Recovery by Adsorption onto Silica Matrix and Iron Oxide Based Composites. Gels. 2022; 8(2):125. https://doi.org/10.3390/gels8020125
Chicago/Turabian StyleMatusoiu, Florin, Adina Negrea, Mihaela Ciopec, Narcis Duteanu, Petru Negrea, Paula Svera, and Catalin Ianasi. 2022. "Molybdate Recovery by Adsorption onto Silica Matrix and Iron Oxide Based Composites" Gels 8, no. 2: 125. https://doi.org/10.3390/gels8020125
APA StyleMatusoiu, F., Negrea, A., Ciopec, M., Duteanu, N., Negrea, P., Svera, P., & Ianasi, C. (2022). Molybdate Recovery by Adsorption onto Silica Matrix and Iron Oxide Based Composites. Gels, 8(2), 125. https://doi.org/10.3390/gels8020125