Improvement of the Thermal Insulation Performance of Silica Aerogel by Proper Heat Treatment: Microporous Structures Changes and Pyrolysis Mechanism
Abstract
:1. Introduction
2. Results and Discussion
2.1. Thermal Insulation Performance and Micro Morphology
2.2. Surface Groups and BET Analysis
2.3. XPS Analysis
2.4. Pyrolysis Mechanism
3. Numerical Simulation
4. Conclusions
5. Experimental Methodology
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ibn-Mohammed, T.; Greenough, R.; Taylor, S.; Ozawa-Meida, L.; Acquaye, A. Operational vs. embodied emissions in buildings—A review of current trends. Energy Build. 2013, 66, 232–245. [Google Scholar] [CrossRef]
- Nejat, P.; Jomehzadeh, F.; Taheri, M.M.; Gohari, M.; Majid, M.Z.A. A global review of energy consumption, CO2 emissions and policy in the residential sector (with an overview of the top ten CO2 emitting countries). Renew. Sustain. Energy Rev. 2015, 43, 843–862. [Google Scholar] [CrossRef]
- Xing, Y.; Hewitt, N.; Griffiths, P. Zero carbon buildings refurbishment—A Hierarchical pathway. Renew. Sustain. Energy Rev. 2011, 15, 3229–3236. [Google Scholar] [CrossRef]
- Aditya, L.; Mahlia, T.M.I.; Rismanchi, B.; Ng, H.M.; Hasan, M.H.; Metselaar, H.S.C.; Muraza, O.; Aditiya, H.B. A review on insulation materials for energy conservation in buildings. Renew. Sustain. Energy Rev. 2017, 73, 1352–1365. [Google Scholar] [CrossRef]
- Cuce, E.; Harjunowibowo, D.; Cuce, P.M. Renewable and sustainable energy saving strategies for greenhouse systems: A comprehensive review. Renew. Sustain. Energy Rev. 2016, 64, 34–59. [Google Scholar] [CrossRef]
- Omrany, H.; Ghaffarianhoseini, A.; Ghaffarianhoseini, A.; Raahemifar, K.; Tookey, J. Application of passive wall systems for improving the energy efficiency in buildings: A comprehensive review. Renew. Sustain. Energy Rev. 2016, 62, 1252–1269. [Google Scholar] [CrossRef]
- Lv, S.; Liu, M.; He, W.; Li, X.; Gong, W.; Shen, S. Study of thermal insulation materials influence on the performance of thermoelectric generators by creating a significant effective temperature difference. Energy Convers. Manag. 2020, 207, 112516. [Google Scholar] [CrossRef]
- Leventis, N.; Sadekar, A.; Chandrasekaran, N.; Sotiriou-Leventis, C. Click Synthesis of Monolithic Silicon Carbide Aerogels from Polyacrylonitrile-Coated 3D Silica Networks. Chem. Mater. 2010, 22, 2790–2803. [Google Scholar] [CrossRef]
- Baetens, R.; Jelle, B.P.; Gustavsen, A. Aerogel insulation for building applications: A state-of-the-art review. Energy Build. 2011, 43, 761–769. [Google Scholar] [CrossRef] [Green Version]
- Kistler, S.S. Coherent expanded aerogels and jellies. Nature 1931, 127, 741. [Google Scholar] [CrossRef]
- Dorcheh, A.S.; Abbasi, M.H. Silica aerogel; synthesis, properties and characterization. J. Mater. Process. Technol. 2008, 199, 10–26. [Google Scholar] [CrossRef]
- Lamy-Mendes, A.; Silva, R.F.; Durães, L. Advances in carbon nanostructure–silica aerogel composites: A review. J. Mater. Chem. A 2018, 6, 1340–1369. [Google Scholar] [CrossRef]
- Vacher, R.; Woignier, T.; Pelous, J.; Courtens, E. Structure and self-similarity of silica aerogels. Phys. Rev. B 1988, 37, 6500–6503. [Google Scholar] [CrossRef] [PubMed]
- Kim, G.-S.; Hyun, S.-H. Synthesis of window glazing coated with silica aerogel films via ambient drying. J. Non-Cryst. Solids 2003, 320, 125–132. [Google Scholar] [CrossRef]
- An, Z.; Hou, X.; Zhou, P.; Zhang, R.; Fang, D. A novel flexible, layered, recoverable SiO2 fiber skeleton and aerogel composites material prepared by papermaking process. Ceram. Int. 2021, 47, 12963–12969. [Google Scholar] [CrossRef]
- Martinez, R.G.; Goiti, E.; Reichenauer, G.; Zhao, S.; Koebel, M.; Barrio, A. Thermal assessment of ambient pressure dried silica aerogel composite boards at laboratory and field scale. Energy Build. 2016, 128, 111–118. [Google Scholar] [CrossRef]
- Nikpourian, H.; Bahramian, A.R. Thermo-physical properties of multilayer super insulation: The role of aerogel blanket. Therm. Sci. Eng. Prog. 2020, 20, 100751. [Google Scholar] [CrossRef]
- Li, Z.; Cheng, X.; He, S.; Shi, X.; Yang, H.; Zhang, H. Tailoring thermal properties of ambient pressure dried MTMS/TEOS co-precursor aerogels. Mater. Lett. 2016, 171, 91–94. [Google Scholar] [CrossRef]
- Zhou, T.; Cheng, X.; Pan, Y.; Li, C.; Gong, L.; Zhang, H. Mechanical performance and thermal stability of glass fiber reinforced silica aerogel composites based on co-precursor method by freeze drying. Appl. Surf. Sci. 2018, 437, 321–328. [Google Scholar] [CrossRef]
- Haq, E.U.; Zaidi, S.F.A.; Zubair, M.; Karim, M.R.A.; Padmanabhan, S.K.; Licciulli, A. Hydrophobic silica aerogel glass-fibre composite with higher strength and thermal insulation based on methyltrimethoxysilane (MTMS) precursor. Energy Build. 2017, 151, 494–500. [Google Scholar] [CrossRef]
- Pan, Y.; He, S.; Gong, L.; Cheng, X.; Li, C.; Li, Z.; Liu, Z.; Zhang, H. Low thermal-conductivity and high thermal stable silica aerogel based on MTMS/Water-glass co-precursor prepared by freeze drying. Mater. Des. 2017, 113, 246–253. [Google Scholar] [CrossRef]
- Iswar, S.; Griffa, M.; Kaufmann, R.; Beltran, M.; Huber, L.; Brunner, S.; Lattuada, M.; Koebel, M.M.; Malfait, W.J. Effect of aging on thermal conductivity of fiber-reinforced aerogel composites: An X-ray tomography study. Microporous Mesoporous Mater. 2019, 278, 289–296. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.; He, S.; Feng, M.; Dai, H.; Pan, Y.; Cheng, X. Organic solvent-saving preparation of water glass based aerogel granules under ambient pressure drying. J. Non-Cryst. Solids 2019, 521, 119507. [Google Scholar] [CrossRef]
- Sarawade, P.B.; Kim, J.-K.; Hilonga, A.; Quang, D.V.; Kim, H.T. Synthesis of hydrophilic and hydrophobic xerogels with superior properties using sodium silicate. Microporous Mesoporous Mater. 2011, 139, 138–147. [Google Scholar] [CrossRef]
- Jullien, R.; Olivi-Train, N.; Hasmy, A.; Woignier, T.; Phalippou, J.; Bourret, D.; Sempéré, R. Scaling theory and numerical simulations of aerogel sintering. J. Non-Cryst. Solids 1995, 188, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.; Zhong, K.; Ding, J.; Shen, X.; Cui, S.; Zhong, Y.; Ma, J.; Chen, X. Facile synthesis of flexible and hydrophobic polymethylsilsesquioxane based silica aerogel via the co-precursor method and ambient pressure drying technique. J. Non-Cryst. Solids 2020, 530, 119826. [Google Scholar] [CrossRef]
- Grill, A.; Patel, V. Ultralow-k dielectrics prepared by plasma-enhanced chemical vapor deposition. Appl. Phys. Lett. 2001, 79, 803–805. [Google Scholar] [CrossRef]
- Zhao, J.; Yin, Z.; Shahid, M.U.; Xing, H.; Cheng, X.; Fu, Y.; Lu, S. Superhydrophobic and oleophobic ultra-fine dry chemical agent with higher chemical activity and longer fire-protection. J. Hazard Mater. 2019, 380, 120625. [Google Scholar] [CrossRef]
- el Rassy, H.; Pierre, A.C. NMR and IR spectroscopy of silica aerogels with different hydrophobic characteristics. J. Non-Cryst. Solids 2005, 351, 1603–1610. [Google Scholar] [CrossRef]
- He, S.; Yang, H.; Chen, X. Facile synthesis of highly porous silica aerogel granules and its burning behavior under radiation. J. Sol-Gel Sci. Technol. 2017, 82, 407–416. [Google Scholar] [CrossRef]
- Zhao, J.; Fu, Y.; Lu, S.; Tao, N.; Yin, Z.; Shahid, M.U.; Zhang, H. Pyrolysis of a perfluoro copolymer and its contribution to hydrogen fluoride (HF). Polym. Degrad. Stab. 2020, 173, 109083. [Google Scholar] [CrossRef]
- Zhuravlev, L.T. The surface chemistry of amorphous silica. Zhuravlev model. Colloids Surf. A 2000, 173, 1–38. [Google Scholar] [CrossRef] [Green Version]
- Good, B. Structure and Thermal Conductivity of Silica Aerogels from Computer Simulations. Mrs Proc. 2005, 885, 227. [Google Scholar] [CrossRef]
- Xie, T.; He, Y.-L.; Hu, Z.-J. Theoretical study on thermal conductivities of silica aerogel composite insulating material. Int. J. Heat Mass Transfer 2013, 58, 540–552. [Google Scholar] [CrossRef]
- He, S.; Huang, Y.; Chen, G.; Feng, M.; Dai, H.; Yuan, B.; Chen, X. Effect of heat treatment on hydrophobic silica aerogel. J. Hazard Mater. 2019, 362, 294–302. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.; Guo, C.; Zhang, M.; Shi, L. Characteristics of nanoporous silica aerogel under high temperature from 950 °C to 1200 °C. Mater. Des. 2017, 129, 82–90. [Google Scholar] [CrossRef]
- Ayral, A.; Phalippou, J.; Woignier, T. Skeletal density of silica aerogels determined by helium pycnometry. J. Non-Cryst. Solids 1992, 27, 1166–1170. [Google Scholar] [CrossRef]
- Zhou, Z.; Du, X.; Yang, J.; Wang, Y.; Li, C.; Wei, S.; Du, L.; Li, Y.; Qi, F.; Wang, Q. The vacuum ultraviolet beamline/endstations atNSRL dedicated to combustion research. J. Synchrotron Radiat. 2016, 23, 1035–1045. [Google Scholar] [CrossRef]
- Zhu, Y.; Chen, X.; Wang, Y.; Wen, W.; Qi, F. Online Study on the Catalytic Pyrolysis of Bituminous Coal over HUSY and HZSM-5 with Photoionization Time-of-Flight Mass Spectrometry. Energy Fuels 2016, 30, 1598–1604. [Google Scholar] [CrossRef]
Sample | Bulk Density (g/cm3) | Thermal Conductivity (W/m·K) |
---|---|---|
Unheated | 0.109 | 0.02321 |
150 °C | 0.107 | 0.02290 |
200 °C | 0.104 | 0.02256 |
250 °C | 0.101 | 0.02240 |
300 °C | 0.102 | 0.02242 |
350 °C | 0.107 | 0.02286 |
400 °C | 0.113 | 0.02430 |
450 °C | 0.115 | 0.02489 |
500 °C | 0.118 | 0.02514 |
550 °C | 0.120 | 0.02599 |
600 °C | 0.130 | 0.02697 |
800 °C | 0.311 | 0.08450 |
1000 °C | 0.497 | 0.12185 |
Sample | BET Surface Area (m2/g) | Total Volume in Pores (cm3/g) |
---|---|---|
Unheated | 878 | 3.23 |
200 °C | 889 | 3.55 |
400 °C | 993 | 4.75 |
600 °C | 667 | 3.76 |
800 °C | 508 | 2.78 |
1000 °C | 54 | 0.23 |
Sample | Si (%) | O (%) | C (%) | Si/O | Si/C |
---|---|---|---|---|---|
Unheated | 22.88 | 44.28 | 32.84 | 0.52 | 0.70 |
200 °C | 23.47 | 44.51 | 32.02 | 0.53 | 0.73 |
400 °C | 20.72 | 51.42 | 27.86 | 0.40 | 0.74 |
600 °C | 22.10 | 52.27 | 25.63 | 0.42 | 0.86 |
800 °C | 25.92 | 58.47 | 15.61 | 0.44 | 1.66 |
1000 °C | 29.96 | 64.07 | 5.97 | 0.47 | 5.02 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lun, Z.; Gong, L.; Zhang, Z.; Deng, Y.; Zhou, Y.; Pan, Y.; Cheng, X. Improvement of the Thermal Insulation Performance of Silica Aerogel by Proper Heat Treatment: Microporous Structures Changes and Pyrolysis Mechanism. Gels 2022, 8, 141. https://doi.org/10.3390/gels8030141
Lun Z, Gong L, Zhang Z, Deng Y, Zhou Y, Pan Y, Cheng X. Improvement of the Thermal Insulation Performance of Silica Aerogel by Proper Heat Treatment: Microporous Structures Changes and Pyrolysis Mechanism. Gels. 2022; 8(3):141. https://doi.org/10.3390/gels8030141
Chicago/Turabian StyleLun, Zhiyi, Lunlun Gong, Zhongxin Zhang, Yurui Deng, Yong Zhou, Yuelei Pan, and Xudong Cheng. 2022. "Improvement of the Thermal Insulation Performance of Silica Aerogel by Proper Heat Treatment: Microporous Structures Changes and Pyrolysis Mechanism" Gels 8, no. 3: 141. https://doi.org/10.3390/gels8030141
APA StyleLun, Z., Gong, L., Zhang, Z., Deng, Y., Zhou, Y., Pan, Y., & Cheng, X. (2022). Improvement of the Thermal Insulation Performance of Silica Aerogel by Proper Heat Treatment: Microporous Structures Changes and Pyrolysis Mechanism. Gels, 8(3), 141. https://doi.org/10.3390/gels8030141