Cleaning of Wastewater Using Crosslinked Poly(Acrylamide-co-Acrylic Acid) Hydrogels: Analysis of Rotatable Bonds, Binding Energy and Hydrogen Bonding
Abstract
:1. Introduction
2. Results and Discussion
2.1. Effect of Crosslinker Content on Equilibrium Swelling
2.2. Effect of Crosslinker Content on Absorbance
2.2.1. Rose Bengal Dye
2.2.2. Methylene Blue Dye
2.2.3. Eosin Y Dye
2.3. Binding Energy and Number of Rotatable Bonds Analysis
3. Conclusions
4. Materials and Methods
4.1. Materials
4.2. Hydrogel Synthesis
4.3. Dye Retention Experiments
4.4. Equilibrium Swelling Measurements
4.5. Model Proposition
4.6. Software
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Popkin, B.M.; D’Anci, K.E.; Rosenberg, I.H. Water, Hydration and Health. Nutr. Rev. 2010, 68, 439–458. [Google Scholar] [CrossRef] [PubMed]
- Bayu, T.; Kim, H.; Oki, T. Water Governance Contribution to Water and Sanitation Access Equality in Developing Countries. Water Resour. Res. 2020, 56, e2019WR025330. [Google Scholar] [CrossRef] [Green Version]
- Aminul, I.M.; Imran, A.; Karim, S.M.A.; Firoz, M.S.H.; Al-Nakib, C.; Morton, D.W.; Angove, M.J. Removal of dye from polluted water using novel nano manganese oxide-based materials. J. Water Process. Eng. 2019, 32, 100911. [Google Scholar]
- Piaskowski, K.; Świderska-Dąbrowska, R.; Zarzycki, P.K. Dye removal from water and wastewater using various physical, chemical, and biological processes. J. AOAC Int. 2018, 101, 1371–1384. [Google Scholar] [CrossRef]
- Ranganathan, K.; Jeyapaul, S.; Sharma, D.C. Assessment of water pollution in different bleaching based paper manufacturing and textile dyeing industries in India. Environ. Monit. Assess. 2007, 134, 363. [Google Scholar] [CrossRef]
- Pang, Y.L.; Abdullah, A.Z. Current status of textile industry wastewater management and research progress in Malaysia: A review. Clean–Soil Air Water 2013, 41, 751–764. [Google Scholar] [CrossRef]
- Deng, H.; Wei, R.; Luo, W.; Hu, L.; Li, B.; Di, Y.; Shi, H. Microplastic pollution in water and sediment in a textile industrial area. Environ. Pollut. 2019, 258, 113658. [Google Scholar] [CrossRef]
- Mia, R.; Selim, M.; Shamim, A.; Chowdhury, M.; Sultana, S.; Armin, M.; Hossain, M.; Akter, R.; Dey, S.; Naznin, H. Review on various types of pollution problem in textile dyeing & printing industries of Bangladesh and recommandation for mitigation. J. Text. Eng. Fash. Technol. 2019, 5, 220–226. [Google Scholar]
- Wang, Z.; Shao, D.; Westerhoff, P. Wastewater discharge impact on drinking water sources along the Yangtze River (China). Sci. Total Environ. 2017, 599, 1399–1407. [Google Scholar] [CrossRef]
- Adar, E. Removal of acid yellow 17 from textile wastewater by adsorption and heterogeneous persulfate oxidation. Int. J. Environ. Sci. Technol. 2021, 18, 483–498. [Google Scholar] [CrossRef]
- Kong, Y.; Zhuang, Y.; Han, Z.; Yu, J.; Shi, B.; Han, K.; Hao, H. Dye removal by eco-friendly physically cross-linked double network polymer hydrogel beads and their functionalized composites. J. Environ. Sci. 2019, 78, 81–91. [Google Scholar] [CrossRef] [PubMed]
- Lellis, B.; Fávaro-Polonio, C.Z.; Pamphile, J.A.; Polonio, J.C. Effects of textile dyes on health and the environment and bioremediation potential of living organisms. Biotechnol. Res. Innov. 2019, 3, 275–290. [Google Scholar] [CrossRef]
- Wang, J.; Wang, Z.; Vieira, C.L.Z.; Wolfson, J.M.; Pingtian, G.; Huang, S. Review on the treatment of organic pollutants in water by ultrasonic technology. Ultrason. Sonochem. 2019, 55, 273–278. [Google Scholar] [CrossRef]
- Ribeiro, A.R.; Nunes, O.C.; Pereira, M.F.R.; Silva, A.M.T. An overview on the advanced oxidation processes applied for the treatment of water pollutants defined in the recently launched. Directive 2013/39/EU. Environ. Int. 2015, 75, 33–51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamri, S.; Bouchaour, T.; Maschke, U. Erythrosine/triethanolamine system to elaborate crosslinked poly(2-hydroxyethylmethacrylate): UV-photopolymerization and swelling studies. Macromol. Symp. 2014, 336, 75–81. [Google Scholar] [CrossRef]
- Adewuyi, Y.G. Sonochemistry in environmental remediation. 2. Heterogeneous sonophotocatalytic oxidation processes for the treatment of pollutants in water. Environ. Sci. Technol. 2005, 39, 8557–8570. [Google Scholar] [CrossRef] [PubMed]
- Wang, A.M.; Qu, J.H.; Liu, H.J.; Lei, P.J. Dyes wastewater treatment by reduction-oxidation process in an electrochemical reactor packed with natural manganese mineral. J. Environ. Sci. 2006, 18, 17–22. [Google Scholar]
- Orimolade, B.O.; Arotiba, O.A. Towards visible light driven photoelectrocatalysis for water treatment: Application of a FTO/BiVO4/Ag2S heterojunction anode for the removal of emerging pharmaceutical pollutants. Sci. Rep. 2020, 10, 5348. [Google Scholar] [CrossRef] [Green Version]
- Amin, M.T.; Alazba, A.A.; Manzoor, U. A review of removal of pollutants from water/wastewater using different types of nanomaterials. Adv. Mater. Sci. Eng. 2014, 24, 825910. [Google Scholar] [CrossRef] [Green Version]
- Poulopoulos, S.G.; Yerkinova, A.; Ulykbanova, G.; Inglezakis, V.J. Photocatalytic treatment of organic pollutants in a synthetic wastewater using UV light and combinations of TiO2, H2O2 and Fe(III). PLoS ONE 2019, 14, e0216745. [Google Scholar] [CrossRef]
- Ali, I.; Gupta, V. Advances in water treatment by adsorption technology. Nat. Protoc. 2006, 1, 2661–2667. [Google Scholar] [CrossRef] [PubMed]
- Basak, S.; Nandi, N.; Paul, S.; Banerjee, I.W.H.A.A. A tripeptide-based self-shrinking hydrogel for waste-water treatment: Removal of toxic organic dyes and lead (Pb2+) ions. Chem. Commun. 2017, 53, 5910–5913. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Craciun, G.; Manaila, E.; Stelescu, M.D. Flocculation efficiency of poly(acrylamide-co-acrylic acid) obtained by electron beam irradiation. J. Mater. 2013, 7, 297123. [Google Scholar] [CrossRef] [Green Version]
- Sun, W.; Zhang, G.; Pan, L.; Li, H.; Shi, A. Synthesis, characterization, and flocculation properties of branched cationic polyacrylamide. Int. J. Polym. Sci. 2013, 10, 397027. [Google Scholar] [CrossRef] [Green Version]
- Munishwar, N.G. Electrophoresis. Gel electrophoresis: Polyacrylamide gels. In Encyclopedia of Analytical Science, 3rd ed.; Worsfold, P., Poole, C., Townshend, A., Miró, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 447–456. [Google Scholar]
- Parikh, P.; Sina, M.; Banerjee, A.; Wang, X.; D’Souza, M.S.; Doux, J.M.; Wu, E.A.; Trieu, O.Y.; Gong, Y.; Zhou, Q.; et al. Role of polyacrylic acid (paa) binder on the solid electrolyte interphase in silicon anodes. Chem. Mater. 2019, 31, 2535–2544. [Google Scholar] [CrossRef]
- Wiśniewska, M.; Urban, T.; Grządka, E.; Zarko, V.I.; Gun’ko, V.M. Comparison of adsorption affinity of polyacrylic acid for surfaces of mixed silica-alumina. Colloid. Polym. Sci. 2014, 292, 699–705. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tomar, R.S.; Gupta, I.; Singhal, R.; Nagpal, A.K. Synthesis of poly (acrylamide-co-acrylic acid) based superabsorbent hydrogels: Study of network parameters and swelling behavior. Polym. Plast. Technol. Eng. 2007, 46, 481–488. [Google Scholar] [CrossRef]
- Şolpan, D.; Duran, S.; Torun, M. Removal of cationic dyes by poly(acrylamide-co-acrylic acid) hydrogels in aqueous solutions. Radiat. Phys. Chem. 2008, 77, 447–452. [Google Scholar] [CrossRef]
- Corona-Rivera, M.A.; Ovando-Medina, V.M.; Bernal-Jacome, L.A.; Cervantes-González, E.; Antonio-Carmona, I.D.; Dávila-Guzmán, N.E. Remazol red dye removal using poly(acrylamide-co-acrylic acid) hydrogels and water absorbency studies. Colloid Polym. Sci. 2017, 295, 227–236. [Google Scholar] [CrossRef]
- Loulidi, I.; Boukhlifi, F.; Ouchabi, M.; Amar, A.; Jabri, M.; Kali, A.; Chraibi, S.; Hadey, C.; Aziz, F. Adsorption of crystal violet onto an agricultural waste residue: Kinetics, isotherm, thermodynamics, and mechanism of adsorption. Sci. World J. 2020, 9, 5873521. [Google Scholar] [CrossRef]
- Labena, A.; Abdelhamid, A.E.; Amin, A.S.; Husien, S.; Hamid, L.; Safwat, G.; Diab, A.; Gobouri, A.A.; Azab, E. Removal of methylene blue and congo red using adsorptive membrane impregnated with dried ulvafasciata and sargassumdentifolium. Plants 2021, 10, 384. [Google Scholar] [CrossRef] [PubMed]
- Jabar, J.M.; Odusote, Y.A.; Alabi, K.A.; Ahmed, I.B. Kinetics and mechanisms of congo-red dye removal from aqueous solution using activated Moringa oleifera seed coat as adsorbent. Appl. Water Sci. 2020, 10, 136. [Google Scholar] [CrossRef]
- Weill, N.; Therrien, E.; Campagna-Slater, V.; Moitessier, N. Methods for docking small molecules to macromolecules: A user’s perspective. 1. The theory. Curr. Pharm. Des. 2014, 20, 3338–3359. [Google Scholar] [CrossRef] [PubMed]
- Meng, X.Y.; Zhang, H.X.; Mezei, M.; Cui, M. Molecular docking: A powerful approach for structure-based drug discovery. Curr. Comput. Aided Drug Des. 2011, 7, 146–157. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, O.; Masuda, Y.; Muroya, A.; Furuya, T. Theory of docking scores and its application to a customizable scoring function. SAR QSAR Environ. Res. 2010, 21, 5–6. [Google Scholar] [CrossRef] [PubMed]
- Kumalo, H.M.; Bhakat, S.; Soliman, M.E.S. Theory and applications of covalent docking in drug discovery: Merits and pitfalls. Molecules 2015, 20, 1984–2000. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rudden, L.S.P.; Degiacomi, M.T. Protein docking using a single representation for protein surface, electrostatics, and local dynamics. J. Chem. Theory Comput. 2019, 15, 5135–5143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balius, T.E.; Fischer, M.; Stein, R.M.; Adler, T.B.; Nguyen, C.N.; Cruz, A.; Gilson, M.K.; Kurtzman, T.; Shoichet, B.K. Testing inhomogeneous solvation theory in docking. Proc. Natl. Acad. Sci. USA 2017, 114, E6839–E6846. [Google Scholar] [CrossRef] [Green Version]
- Sarfaraz, S.; Muneer, I.; Liu, H. Combining fragment docking with graph theory to improve ligand docking for homology model structures. J. Comput. Aided Mol. Des. 2020, 34, 1237–1259. [Google Scholar] [CrossRef]
- Bendahma, Y.H.; Hamri, S.; Merad, M.; Bouchaour, T.; Maschke, U. Conformational modeling of the system pollutant/three-dimensional poly (2-hydroxyethyl methacrylate) (PHEMA) in aqueous medium: A new approach. Polym. Bull. 2019, 76, 1517–1530. [Google Scholar] [CrossRef]
- Fuxman, A.M.; McAuley, K.B.; Schreiner, L.J. Modeling of free-radical crosslinking copolymerization of acrylamide and n,n′-methylenebis(acrylamide) for radiation dosimetry. Macromol. Theory Simul. 2003, 12, 647–662. [Google Scholar] [CrossRef]
- Paljevac, M.; Jeřabek, K.; Krajnc, P. Crosslinked poly(2-hydroxyethyl methacrylate) by emulsion templating: Influence of crosslinker on microcellular structure. J. Polym. Environ. 2012, 20, 1095–1102. [Google Scholar] [CrossRef]
- Chavda, H.; Patel, C. Effect of crosslinker concentration on characteristics of superporous hydrogel. Int. J. Pharm. Investig. 2011, 1, 17–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, X.F.; Li, Z.J.; Wang, L.; Lai, X.J. Synthesis, characterization, and adsorption capacity of crosslinked starch microspheres with N,N′-methylene bisacrylamide. J. Appl. Polym. Sci. 2008, 109, 2571–2575. [Google Scholar] [CrossRef]
- Abraham, J.; Pillai, V.N.R. N,N’-methylene bisacrylamide-crosslinked polyacrylamide for controlled release urea fertilizer formulations. Commun. Soil Sci. Plant Anal. 1995, 26, 3231–3241. [Google Scholar] [CrossRef]
- Hamri, S.; Lerari, D.; Sehailia, M.; Dali-Youcef, B.; Bouchaour, T.; Bachari, K. Prediction of equilibrium swelling ratio on synthesized polyacrylamide hydrogel using central composite design modeling. Int. J. Plast. Technol. 2018, 22, 247–261. [Google Scholar] [CrossRef]
- Gölgelioğlu, C.; Tuncel, A. Butyl methacrylate based monoliths with different cross-linking agents using DMF-aqueous buffer as porogen. Electrophoresis 2013, 34, 331–342. [Google Scholar] [CrossRef]
- Hamri, S.; Bouchaour, T. pH-dependent swelling behaviour of interpenetrating polymer network hydrogels based on poly(hydroxybutyl methacrylate) and poly(2-hydroxyethyl methacrylate). Int. J. Plast. Technol. 2016, 20, 279–293. [Google Scholar] [CrossRef]
- Zhu, L.; Guan, C.; Zhou, B.; Zhang, Z.; Yang, R.; Tang, Y.; Yang, J. Adsorption of dyes onto sodium alginate graft poly(acrylic acid-co-2-acrylamide-2-methyl propane sulfonic acid)/ kaolin hydrogel composite. Polym. Polym. Compos. 2017, 25, 627. [Google Scholar] [CrossRef]
- Saraydin, D.; Solpan, D.; Işıkver, Y.; Ekici, S.; Güven, O. Radiation crosslinked poly(acrylamide/2-hydroxypropyl methacrylate/maleic acid) and their usability in the uptake of uranium. J. Macromol. Sci. A 2002, 39, 969–990. [Google Scholar] [CrossRef]
- Heidari, S.; Esmaeilzadeh, F.; Mowla, D.; Ghasemi, S. Synthesis of an efficient copolymer of acrylamide and acrylic acid and determination of its swelling behavior. J. Petrol. Explor. Prod. Technol. 2018, 8, 1331–1340. [Google Scholar] [CrossRef] [Green Version]
- Sheth, S.; Jain, E.; Karadaghy, A.; Syed, S.; Stevenson, H.; Zustiak, S.P. UV dose governs uv-polymerized polyacrylamide hydrogel modulus. Int. J. Polym. Sci. 2017, 9, 5147482. [Google Scholar] [CrossRef] [Green Version]
- Lum, C.H.; Marshall, W.J.; Kozoll, D.D.; Meyer, K.A. The use of radioactive (I 131-labeled) rose bengal in the study of human liver disease: Its correlation with liver function tests. Ann. Surg. 1959, 149, 353–367. [Google Scholar] [CrossRef]
- Dukhopelnykov, E.; Bereznyak, E.; Gladkovskaya, N.; Skuratovska, A.; Krivonos, D. Studies of eosin Y—DNA interaction using a competitive binding assay. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2021, 15, 119114. [Google Scholar] [CrossRef]
- Kellner-Rogers, J.S.; Taylor, J.K.; Masud, A.M.; Aich, N.; Pinto, A.H. Kinetic and thermodynamic study of methylene blue adsorption onto chitosan: Insights about metachromasy occurrence on wastewater remediation. Energ. Ecol. Environ. 2019, 4, 85–102. [Google Scholar] [CrossRef]
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading. J. Comput. Chem. 2010, 31, 455–461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murcko, M.A. Computational methods to predict binding free energy in ligand-receptor complexes. J. Med. Chem. 1995, 38, 4953–4967. [Google Scholar] [CrossRef]
- Zhou, Q.H.; Li, M.; Yang, P.; Gu, Y. Effect of hydrogen bonds on structures and glass transition temperatures of maleimide–isobutene alternating copolymers: Molecular dynamics simulation study. Macromol. Theory Simul. 2013, 22, 107–114. [Google Scholar] [CrossRef]
- Maurer, J.J.; Schulz, D.N.; Siano, D.B.; Bock, J. Thermal analysis of acrylamide-based polymers. In Analytical Calorimetry; Johnson, J.F., Gill, P.S., Eds.; Springer: Boston, MA, USA, 1984; pp. 43–55. [Google Scholar]
- Ackland, G.J.; Bonny, G. Interatomic potential development. In Comprehensive Nuclear Materials, 2nd ed.; Konings, R.J.M., Stoller, R.E., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 544–572. [Google Scholar]
- Zhou, P.; Tian, F.; Lv, F.; Shang, Z. Geometric characteristics of hydrogen bonds involving sulfur atoms in proteins. Proteins 2009, 76, 151–163. [Google Scholar] [CrossRef]
- Metrangolo, P.; Resnati, G. Halogen bonding: A paradigm in supramolecular chemistry. Chem. Eur. J. 2001, 7, 2511–2519. [Google Scholar] [CrossRef]
- Politzer, P.; Lane, P.; Concha, M.C.; Ma, Y.; Murray, J.S. An overview of halogen bonding. J. Mol. Model. 2007, 13, 305–311. [Google Scholar] [CrossRef] [PubMed]
- Veber, D.F.; Johnson, R.; Cheng, Y.; Smith, R.; Ward, W.; Kopple, D. Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem. 2002, 12, 2615–2623. [Google Scholar] [CrossRef] [PubMed]
- Djamaa, Z.; Lerari, D.; Mesli, A.; Bachari, K. Poly(acrylic acid-co-styrene)/clay nanocomposites: Efficient adsorbent for methylene blue dye pollutant. Int. J. Plast. Technol. 2019, 23, 110–121. [Google Scholar] [CrossRef]
System | Bonds | Distance (Å) |
---|---|---|
Poly(AM)/RB | I...O | 4.721 |
C...O | 6.197 | |
O...H | 2.486 | |
Poly(AM-co-AA)/RB | I...O | 3.823 |
Cl...O | 3.752 | |
O...H | 2.246 |
System | Bonds | Distance (Å) |
---|---|---|
Poly(AM)/MB | S...H | 4.229 |
N...O | 5.373 | |
Poly(AM-co-AA)/MB | S...H | 2.670 |
N...O | 3.924 |
System | Bonds | Distance (Å) |
---|---|---|
Poly(AM)/EY | O...H | 6.536 |
Br...O | 3.072 | |
Poly(AM-co-AA)/EY | O...H | 1.872 |
Br...O | 3.618 |
Polymer/Dye | Binding Energy (kcal/mol) |
---|---|
Poly(AM)/RB | −7.0 |
Poly(AM)/EY | −5.2 |
Poly(AM)/MB | −4.1 |
Poly(AM-co-AA)/RB | −7.7 |
Poly(AM-co-AA)/EY | −5.1 |
Poly(AM-co-AA)/MB | −4.4 |
Product | Number of Rotatable Bonds |
---|---|
poly(AM/HDDA) | 92 |
poly(AM-co-AA)/HDDA | 104 |
AM repeat unit | 01 |
AA repeat unit | 02 |
RB | 2 |
EY | 2 |
MB | 2 |
Name | Chemical Structure |
---|---|
Acrylamide (AM) | |
Acrylic acid (AA) | |
1,6-Hexanedioldiacrylate (HDDA) | |
Rose Bengal sodium salt (RB) | |
Eosin Y (EY) | |
Methylene Blue (MB) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hamri, S.; Bouchaour, T.; Lerari, D.; Bouberka, Z.; Supiot, P.; Maschke, U. Cleaning of Wastewater Using Crosslinked Poly(Acrylamide-co-Acrylic Acid) Hydrogels: Analysis of Rotatable Bonds, Binding Energy and Hydrogen Bonding. Gels 2022, 8, 156. https://doi.org/10.3390/gels8030156
Hamri S, Bouchaour T, Lerari D, Bouberka Z, Supiot P, Maschke U. Cleaning of Wastewater Using Crosslinked Poly(Acrylamide-co-Acrylic Acid) Hydrogels: Analysis of Rotatable Bonds, Binding Energy and Hydrogen Bonding. Gels. 2022; 8(3):156. https://doi.org/10.3390/gels8030156
Chicago/Turabian StyleHamri, Salah, Tewfik Bouchaour, Djahida Lerari, Zohra Bouberka, Philippe Supiot, and Ulrich Maschke. 2022. "Cleaning of Wastewater Using Crosslinked Poly(Acrylamide-co-Acrylic Acid) Hydrogels: Analysis of Rotatable Bonds, Binding Energy and Hydrogen Bonding" Gels 8, no. 3: 156. https://doi.org/10.3390/gels8030156
APA StyleHamri, S., Bouchaour, T., Lerari, D., Bouberka, Z., Supiot, P., & Maschke, U. (2022). Cleaning of Wastewater Using Crosslinked Poly(Acrylamide-co-Acrylic Acid) Hydrogels: Analysis of Rotatable Bonds, Binding Energy and Hydrogen Bonding. Gels, 8(3), 156. https://doi.org/10.3390/gels8030156