Lime Peel Oil–Incorporated Rosin-Based Antimicrobial In Situ Forming Gel
Abstract
:1. Introduction
2. Results and Discussion
2.1. Study of Gel Formation
2.1.1. Gel Formation
2.1.2. Microscopic Observation of Gel Formation
2.1.3. Interfacial Phenomena
2.2. Viscosity and Injectability
2.3. Mechanical Properties
2.4. Wettability of In Situ Forming Gel
2.5. In Vitro Drug Release
2.6. Drug Release Mechanism
2.7. Scanning Electron Microscopy (SEM)
2.8. Antimicrobial Activities
3. Conclusions
4. Materials and Methods
4.1. Materials
4.2. Preparation of In Situ Forming Gel
4.3. Study of Gel Formation
4.3.1. Gel Formation
4.3.2. Microscopic Observation of Gel Formation
4.3.3. Interfacial Phenomenon
4.4. Viscosity and Injectability
4.5. Mechanical Properties Study
4.6. Wettability Study
4.7. In Vitro Drug Release Studies
4.8. Scanning Electron Microscopy (SEM)
4.9. Antimicrobial Activity Study
4.10. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Martínez-García, M.; Hernández-Lemus, E. Periodontal inflammation and systemic diseases: An overview. Front. Physiol. 2021, 12, 709438. [Google Scholar] [CrossRef]
- Kinane, D.F.; Stathopoulou, P.G.; Papapanou, P.N. Periodontal diseases. Nat. Rev. Dis. Primers 2017, 3, 17038. [Google Scholar] [CrossRef] [PubMed]
- Rams, T.E.; Degener, J.E.; van Winkelhoff, A.J. Antibiotic resistance in human chronic periodontitis microbiota. J. Periodontol. 2014, 85, 160–169. [Google Scholar] [CrossRef] [PubMed]
- Rajeshwari, H.R.; Dhamecha, D.; Jagwani, S.; Rao, M.; Jadhav, K.; Shaikh, S.; Puzhankara, L.; Jalalpure, S. Local drug delivery systems in the management of periodontitis: A scientific review. J. Control Release 2019, 307, 393–409. [Google Scholar] [CrossRef]
- Kempe, S.; Mader, K. In situ forming implants-an attractive formulation principle for parenteral depot formulations. J. Control Release 2012, 161, 668–679. [Google Scholar] [CrossRef] [PubMed]
- Geng, Z.; Luo, X.; Zhang, Z.; Li, H.; Tian, J.; Yu, Z. Study of an injectable in situ forming gel for sustained-release of Ivermectin in vitro and in vivo. Int. J. Biol. Macromol. 2016, 85, 271–276. [Google Scholar] [CrossRef]
- Manaspon, C.; Nasongkla, N.; Chaimongkolnukul, K.; Nittayacharn, P.; Vejjasilpa, K.; Kengkoom, K.; Boongird, A.; Hongeng, S. Injectable SN-38-loaded polymeric depots for cancer chemotherapy of glioblastoma multiforme. Pharm. Res. 2016, 33, 2891–2903. [Google Scholar] [CrossRef]
- Agossa, K.; Lizambard, M.; Rongthong, T.; Delcourt-Debruyne, E.; Siepmann, J.; Siepmann, F. Physical key properties of antibiotic-free, PLGA/HPMC-based in-situ forming implants for local periodontitis treatment. Int. J. Pharm. 2017, 521, 282–293. [Google Scholar] [CrossRef]
- ATRIDOX. Package Insert. TOLMAR Inc. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/1998/50751lbl.pdf (accessed on 24 November 2021).
- Phaechamud, T.; Chanyaboonsub, N.; Setthajindalert, O. Doxycycline hyclate-loaded bleached shellac in situ forming microparticle for intraperiodontal pocket local delivery. Eur. J. Pharm. Sci. 2016, 93, 360–370. [Google Scholar] [CrossRef]
- Phaechamud, T.; Setthajindalert, O. Cholesterol in situ forming gel loaded with doxycycline hyclate for intra-periodontal pocket delivery. Eur. J. Pharm. Sci. 2017, 99, 258–265. [Google Scholar] [CrossRef]
- Chantadee, T.; Santimaleeworagun, W.; Phorom, Y.; Phaechamud, T. Saturated fatty acid-based in situ forming matrices for localized antimicrobial delivery. Pharmaceutics 2020, 12, 808. [Google Scholar] [CrossRef] [PubMed]
- Lertsuphotvanit, N.; Santimaleeworagun, W.; Narakornwit, W.; Chuenbarn, T.; Mahadlek, J.; Chantadee, T.; Phaechamud, T. Borneol-based antisolvent-induced in situ forming matrix for crevicular pocket delivery of vancomycin hydrochloride. Int. J. Pharm. 2022, 617, 121603. [Google Scholar] [CrossRef] [PubMed]
- Rochmadi, M.P.; Azis, M.M. Kinetic studies of esterification of rosin and pentaerythritol. Processes 2022, 10, 39. [Google Scholar] [CrossRef]
- Yadav, B.K.; Gidwani, B.; Vyas, A. Rosin: Recent advances and potential applications in novel drug delivery system. J. Bioact. Compat. Polym. 2015, 31, 111–126. [Google Scholar] [CrossRef]
- Lee, C.-M.; Lim, S.; Kim, G.-Y.; Kim, D.-W.; Rhee, J.H.; Lee, K.-Y. Rosin nanoparticles as a drug delivery carrier for the controlled release of hydrocortisone. Biotechnol. Lett. 2005, 27, 1487–1490. [Google Scholar] [CrossRef]
- Khaing, E.M.; Intaraphairot, T.; Chuenbarn, T.; Chantadee, T.; Phaechamud, T. Natural resin-based solvent exchange induced in-situ forming gel for vancomycin HCl delivery to periodontal pocket. Mater. Today Proc. 2021, 47, 3585–3593. [Google Scholar] [CrossRef]
- Phaechamud, T.; Mahadlek, J.; Tuntarawongsa, S. Peppermint oil/doxycycline hyclate-loaded Eudragit RS in situ forming gel for periodontitis treatment. J. Pharm. Investig. 2017, 48, 451–464. [Google Scholar] [CrossRef]
- Phaechamud, T.; Thurein, S.M.; Chantadee, T. Role of clove oil in solvent exchange-induced doxycycline hyclate-loaded Eudragit RS in situ forming gel. Asian J. Pharm. Sci. 2018, 13, 131–142. [Google Scholar] [CrossRef]
- Do, M.P.; Neut, C.; Delcourt, E.; Seixas Certo, T.; Siepmann, J.; Siepmann, F. In situ forming implants for periodontitis treatment with improved adhesive properties. Eur. J. Pharm. Biopharm. 2014, 88, 342–350. [Google Scholar] [CrossRef]
- Bode, C.; Kranz, H.; Kruszka, A.; Siepmann, F.; Siepmann, J. In-situ forming PLGA implants: How additives affect swelling and drug release. J. Drug Deliv. Sci. Technol. 2019, 53, 101180. [Google Scholar] [CrossRef]
- Lin, L.Y.; Chuang, C.H.; Chen, H.C.; Yang, K.M. Lime (Citrus aurantifolia (Christm.) Swingle) essential oils: Volatile compounds, antioxidant capacity, and hypolipidemic effect. Foods 2019, 8, 398. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jomaa, S.; Rahmo, A.; Alnori, A.S.; Chatty, M.E. The cytotoxic effect of essential oil of Syrian Citrus limon peel on human colorectal carcinoma cell line (Lim1863). Middle East J. Cancer 2012, 3, 15–21. [Google Scholar]
- Dhanavade, M.J.; Jalkute, C.B.; Ghosh, J.S.; Sonawane, K.D. Study antimicrobial activity of lemon (Citrus lemon L.) peel extract. Br. J. Pharm. Toxicol. 2011, 2, 119–122. [Google Scholar]
- Aitboulahsen, M.; El Galiou, O.; Laglaoui, A.; Bakkali, M.; Hassani Zerrouk, M. Effect of plasticizer type and essential oils on mechanical, physicochemical, and antimicrobial characteristics of gelatin, starch, and pectin-based films. J. Food Process. Preserv. 2020, 44, e14480. [Google Scholar] [CrossRef]
- Valcourt, C.; Saulnier, P.; Umerska, A.; Zanelli, M.P.; Montagu, A.; Rossines, E.; Joly-Guillou, M.L. Synergistic interactions between doxycycline and terpenic components of essential oils encapsulated within lipid nanocapsules against gram negative bacteria. Int. J. Pharm. 2016, 498, 23–31. [Google Scholar] [CrossRef]
- Kopytynska-Kasperczyk, A.; Dobrzynski, P.; Pastusiak, M.; Jarzabek, B.; Prochwicz, W. Local delivery system of doxycycline hyclate based on epsilon-caprolactone copolymers for periodontitis treatment. Int. J. Pharm. 2015, 491, 335–344. [Google Scholar] [CrossRef] [PubMed]
- Ranch, K.M.; Maulvi, F.A.; Koli, A.R.; Desai, D.T.; Parikh, R.K.; Shah, D.O. Tailored doxycycline hyclate loaded in situ gel for the treatment of periodontitis: Optimization, in vitro characterization, and antimicrobial studies. AAPS PharmSciTech 2021, 22, 77. [Google Scholar] [CrossRef]
- Phaechamud, T.; Setthajindalert, O. Antimicrobial in-situ forming gels based on bleached shellac and different solvents. J. Drug Deliv. Sci. Technol. 2018, 46, 285–293. [Google Scholar] [CrossRef]
- Chantadee, T.; Santimaleeworagun, W.; Phorom, Y.; Chuenbarn, T.; Phaechamud, T. Vancomycin HCl-loaded lauric acid in situ-forming gel with phase inversion for periodontitis treatment. J. Drug Deliv. Sci. Technol. 2020, 57, 101615. [Google Scholar] [CrossRef]
- Mahadlek, J.; Rein, S.M.T.; Chinpaisal, C.; Phaechamud, T. Physical properties and bioactivity of clove oil-loaded solvent exchange-induced in situ forming gel. Mater. Today Proc. 2021, 47, 3509–3516. [Google Scholar] [CrossRef]
- Soliman, A.A.; Alian, N.A.; Elsawy, M.M.; Shaker, N.O. Characterization and evaluation of novel sustainable polymers derived from renewable rosin. Pigment Resin Technol. 2021. [Google Scholar] [CrossRef]
- Phaechamud, T.; Senarat, S.; Puyathorn, N.; Praphanwittaya, P. Solvent exchange and drug release characteristics of doxycycline hyclate-loaded bleached shellac in situ-forming gel and -microparticle. Int. J. Biol. Macromol. 2019, 135, 1261–1272. [Google Scholar] [CrossRef] [PubMed]
- Rein, S.M.T.; Lwin, W.W.; Tuntarawongsa, S.; Phaechamud, T. Meloxicam-loaded solvent exchange-induced in situ forming beta-cyclodextrin gel and microparticle for periodontal pocket delivery. Mater. Sci. Eng. C Mater. Biol. Appl. 2020, 117, 111275. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, T.A.; Ibrahim, H.M.; Ibrahim, F.; Samy, A.M.; Kaseem, A.; Nutan, M.T.; Hussain, M.D. Development of biodegradable in situ implant and microparticle injectable formulations for sustained delivery of haloperidol. J. Pharm. Sci. 2012, 101, 3753–3762. [Google Scholar] [CrossRef] [PubMed]
- de Vries, A.; Gomez, Y.L.; van der Linden, E.; Scholten, E. The effect of oil type on network formation by protein aggregates into oleogels. RSC Adv. 2017, 7, 11803–11812. [Google Scholar] [CrossRef] [Green Version]
- Kakran, M.; Sahoo, N.G.; Tan, I.L.; Li, L. Preparation of nanoparticles of poorly water-soluble antioxidant curcumin by antisolvent precipitation methods. J. Nanopart Res. 2012, 14, 757. [Google Scholar] [CrossRef]
- Phaechamud, T.; Praphanwittaya, P.; Laotaweesub, K. Solvent effect on fluid characteristics of doxycycline hyclate-loaded bleached shellac in situ-forming gel and -microparticle formulations. J. Pharm. Investig. 2017, 48, 409–419. [Google Scholar] [CrossRef]
- Nasra, M.M.; Khiri, H.M.; Hazzah, H.A.; Abdallah, O.Y. Formulation, in-vitro characterization and clinical evaluation of curcumin in-situ gel for treatment of periodontitis. Drug Deliv. 2017, 24, 133–142. [Google Scholar] [CrossRef] [Green Version]
- Altuntas, E.; Yener, G. Formulation and evaluation of thermoreversible in situ nasal gels containing mometasone furoate for allergic rhinitis. AAPS PharmSciTech 2017, 18, 2673–2682. [Google Scholar] [CrossRef]
- Rungseevijitprapa, W.; Bodmeier, R. Injectability of biodegradable in situ forming microparticle systems (ISM). Eur. J. Pharm. Sci. 2009, 36, 524–531. [Google Scholar] [CrossRef]
- Pereira, L.A.S.; Silva, P.D.C.; Pagnossa, J.P.; Miranda, K.W.E.; Medeiros, E.S.; Piccoli, R.H.; Oliveira, J.E.D. Antimicrobial zein coatings plasticized with garlic and thyme essential oils. Braz. J. Food Technol. 2019, 22. [Google Scholar] [CrossRef]
- Wroblewska, M.; Szymanska, E.; Winnicka, K. The influence of tea tree oil on antifungal activity and pharmaceutical characteristics of pluronic((R)) F-127 gel formulations with ketoconazole. Int. J. Mol. Sci. 2021, 22, 11326. [Google Scholar] [CrossRef] [PubMed]
- Vigani, B.; Rossi, S.; Sandri, G.; Bonferoni, M.C.; Caramella, C.M.; Ferrari, F. Recent advances in the development of in situ gelling drug delivery systems for non-parenteral administration routes. Pharmaceutics 2020, 12, 859. [Google Scholar] [CrossRef]
- De Souza Ferreira, S.B.; Moco, T.D.; Borghi-Pangoni, F.B.; Junqueira, M.V.; Bruschi, M.L. Rheological, mucoadhesive and textural properties of thermoresponsive polymer blends for biomedical applications. J. Mech. Behav. Biomed. Mater. 2015, 55, 164–178. [Google Scholar] [CrossRef]
- Lertsuphotvanit, N.; Tuntarawongsa, S.; Mahadlek, J.; Phaechamud, T. Surface tension/contact angle characters of aprotic binary borneol-dimethyl sulphoxide mixture. Key Eng. Mater. 2020, 859, 74–80. [Google Scholar] [CrossRef]
- Prabhu, S.; Tran, L.P.; Betageri, G.V. Effect of co-solvents on the controlled release of calcitonin polypeptide from in situ biodegradable polymer implants. Drug Deliv. 2005, 12, 393–398. [Google Scholar] [CrossRef]
- Do, M.P.; Neut, C.; Metz, H.; Delcourt, E.; Mäder, K.; Siepmann, J.; Siepmann, F. In-situ forming composite implants for periodontitis treatment: How the formulation determines system performance. Int. J. Pharm. 2015, 486, 38–51. [Google Scholar] [CrossRef]
- Siepmann, J.; Peppas, N.A. Modeling of drug release from delivery systems based on hydroxypropyl methylcellulose (HPMC). Adv. Drug Deliv. Rev. 2012, 64, 163–174. [Google Scholar] [CrossRef]
- Siepmann, J.; Siepmann, F. Mathematical modeling of drug delivery. Int. J. Pharm. 2008, 364, 328–343. [Google Scholar] [CrossRef]
- Arun Karthick, R.; Ramya Devi, D.; Vedha Hari, B.N. Investigation of sustained release mucoadhesive in-situ gel system of Secnidazole for the persistent treatment of vaginal infections. J. Drug Deliv. Sci. Technol. 2018, 43, 362–368. [Google Scholar] [CrossRef]
- Lwin, W.W.; Puyathorn, N.; Senarat, S.; Mahadlek, J.; Phaechamud, T. Emerging role of polyethylene glycol on doxycycline hyclate-incorporated Eudragit RS in situ forming gel for periodontitis treatment. J. Pharm. Investig. 2019, 50, 81–94. [Google Scholar] [CrossRef]
- Li, Z.; Mu, H.; Weng, S.; Henrik, L.; Østergaard, J.J. An in vitro gel-based system for characterizing and predicting the long-term performance of PLGA in situ forming implants. Int. J. Pharm. 2021, 609, 121183. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Venkatraman, S.S. Cosolvent effects on the drug release and depot swelling in injectable in situ depot-forming systems. J. Pharm. Sci. 2012, 101, 1783–1793. [Google Scholar] [CrossRef]
- Souto, R.; Andrade, A.F.B.d.; Uzeda, M.; Colombo, A.P.V. Prevalence of “non-oral” pathogenic bacteria in subgingival biofilm of subjects with chronic periodontitis. Braz. J. Microbiol. 2006, 37, 208–215. [Google Scholar] [CrossRef] [Green Version]
- Amel, Y.; Bouziane, D.; Leila, M.; Ahmed, B. Microbiological study of periodontitis in the west of Algeria. World J. Med. Sci. 2010, 5, 7–12. [Google Scholar]
- Santovito, E.; das Neves, J.; Greco, D.; D’Ascanio, V.; Sarmento, B.; Logrieco, A.F.; Avantaggiato, G. Antimicrobial properties of rosin acids-loaded nanoparticles against antibiotic-sensitive and antibiotic-resistant foodborne pathogens. Artif. Cells Nanomed. Biotechnol. 2018, 46 (Suppl. 3), S414–S422. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palazzo, I.V.; Gir, E.; Pimenta, F.C.; de Carvalho, M.J.; Canini, S.D.S.; Cruz, E.D.A.; Darini, A.D.C. Does the oral cavity represent an important reservoir for MRSA in healthcare workers? J. Hosp. Infect. 2010, 76, 277–278. [Google Scholar] [CrossRef]
- Koukos, G.; Sakellari, D.; Arsenakis, M.; Tsalikis, L.; Slini, T.; Konstantinidis, A. Prevalence of Staphylococcus aureus and methicillin resistant Staphylococcus aureus (MRSA) in the oral cavity. Arch. Oral Biol. 2015, 60, 1410–1415. [Google Scholar] [CrossRef]
- Cuesta, A.I.; Jewtuchowicz, V.M.; Brusca, M.I.; Rosa, A.C.; Mujica, M.T. Antibiotic susceptibility of staphylococcus aureus isolates in oral mucosa and pockets of patients with gingivitis-periodontitis. Acta Odontol. Lat. 2011, 24, 35–40. [Google Scholar]
- Chanthaphon, S.; Chanthachum, S.; Hongpattarakere, T. Antimicrobial activities of essential oils and crude extracts from tropical Citrus spp. against food-related microorganisms. Songklanakarin J. Sci. Technol. 2008, 30 (Suppl. 1), 125–131. [Google Scholar]
- Behrooz Alizadeh, B.; Falah, F.; Lavi Arab, F.; Vasiee, M.; Tabatabaee Yazdi, F. Chemical composition and antioxidant, antimicrobial, and antiproliferative activities of Cinnamomum zeylanicum bark essential oil. Evid.-Based Complementary Altern Med. 2020, 2020, 5190603. [Google Scholar]
- Liew, S.N.; Utra, U.; Alias, A.K.; Tan, T.B.; Tan, C.P.; Yussof, N.S. Physical, morphological and antibacterial properties of lime essential oil nanoemulsions prepared via spontaneous emulsification method. LWT 2020, 128, 109388. [Google Scholar] [CrossRef]
- Minuth, J.N.; Holmes, T.M.; Musher, D.M. Activity of tetracycline, doxycycline, and minocycline against methicillin-susceptible and -resistant Staphylococci. Antimicrob. Agents Chemother. 1974, 6, 411–414. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oettinger-Barak, O.; Dashper, S.G.; Catmull, D.V.; Adams, G.G.; Sela, M.N.; Machtei, E.E.; Reynolds, E.C. Antibiotic susceptibility of Aggregatibacter actinomycetemcomitans JP2 in a biofilm. J. Oral Microbiol. 2013, 5, 20320. [Google Scholar] [CrossRef] [PubMed]
- Fass, R.J.; Barnishan, J. Minimal inhibitory concentrations of 34 antimicrobial agents for control strains Escherichia coli ATCC 25922 and Pseudomonas aeruginosa ATCC 27853. Antimicrob. Agent Chemother. 1979, 16, 622–624. [Google Scholar] [CrossRef] [Green Version]
- Bevilacqua, L.; Biasi, M.D.; Lorenzon, M.G.; Frattini, C.; Angerame, D. Volumetric analysis of gingival crevicular fluid and peri-implant sulcus fluid in healthy and diseased sites: A cross-sectional split mouth pilot study. Open Dent. J. 2016, 10, 131–138. [Google Scholar] [CrossRef] [Green Version]
- Charoensuksai, P.; Jongjan Mahadlek, J.; Phaechamud, T.; Charoenteeraboon, J. Doxycycline and metronidazole exhibit a synergistic antibacterial activity against Porphyromonas gingivalis. Thai. Pharm. Health Sci. J. 2016, 11, 92–97. [Google Scholar]
Formula | Viscosity (cP) | Injectability (24 Gauge Needle) | |
---|---|---|---|
Force (N) | Work (N.mm) | ||
NRL0 | 191.40 ± 0.36 a | 4.05 ± 0.13 a | 69.57 ± 0.98 |
NRL1 | 172.23 ± 1.2 b | 3.53 ± 0.49 ab | 59.42 ± 2.78 |
NRL2.5 | 169.13 ± 0.93 c | 3.46 ± 0.14 b | 60.84 ± 0.64 |
NRL5 | 136.67 ± 1.62 d | 2.81 ± 0.13 c | 51.36 ± 3.49 |
NRL10 | 140.30 ± 0.72 e | 2.81 ± 0.17 c | 51.95 ± 2.07 |
NRL15 | 140.73 ± 1.00 e | 2.92 ± 0.16 c | 52.05 ± 1.60 |
NRL20 | 143.37 ± 1.32 f | 2.78 ± 0.13 c | 51.94 ± 0.22 |
DRL0 | 177.57 ± 2.93 a | 3.00 ± 0.29 a | 52.76 ± 1.02 |
DRL1 | 157.61 ± 2.02 b | 2.52 ± 0.18 ab | 45.87 ± 2.14 |
DRL2.5 | 158.20 ± 1.15 b | 2.58 ± 0.13 ab | 46.89 ± 1.92 |
DRL5 | 141.80 ± 2.75 c | 2.57 ± 0.19 ab | 46.19 ± 2.23 |
DRL10 | 134.17 ± 2.37 d | 2.41 ± 0.22 b | 45.21 ± 2.57 |
DRL15 | 124.37 ± 0.64 e | 2.37 ± 0.13 b | 43.09 ± 2.10 |
DRL20 | 122.60 ± 0.26 e | 2.42 ± 0.08 b | 43.76 ± 1.37 |
DH-RL0 | 624.51 ± 10.39 a | 14.7 ± 1.58 a | 258.2 ± 32.76 |
DH-RL2.5 | 644.09 ± 3.25 a | 14.90 ± 0.12 a | 262.84 ± 12.52 |
DH-RL5 | 665.94 ± 10.16 ab | 17.81 ± 0.50 b | 315.69 ± 16.40 |
DH-RL10 | 684.15 ± 11.85 bc | 21.47 ± 1.48 c | 359.69 ± 30.68 |
Formula | Zero Order | First Order | Higuchi’s | Korsmeyer–Peppas | ||
---|---|---|---|---|---|---|
r2 | r2 | r2 | r2 | n | Release Mechanism | |
DHRL0 | 0.9298 | 0.964 | 0.9475 | 0.9945 | 0.702 | Non-Fickian diffusion |
DHRL2.5 | 0.5788 | 0.7833 | 0.9194 | 0.9213 | 0.455 | Fickian diffusion |
DHRL5 | 0.5995 | 0.7912 | 0.9538 | 0.969 | 0.407 | Fickian diffusion |
DHRL10 | 0.5299 | 0.8333 | 0.9202 | 0.9452 | 0.383 | Fickian diffusion |
(a) | ||||
Microorganisms | Inhibition zone diameter (mm.) (mean ± S.D.) | |||
DRL0 | Lime peel oil | DH-D | DMSO | |
S. aureus ATCC 6538 | - | 40.3 ± 2.5 b | 31.3 ± 0.6 c | 11.7 ± 0.6 d |
S. aureus ATCC 43300 | 11.0 ± 1.0 a | 31.0 ± 1.7 b | 30.7 ± 0.6 b | 12.7 ± 1.2 a |
S. aureus DMST 6532 | 10.0 ± 0.0 a | 32.3 ± 1.5 b | 32.0 ± 1.6 b | 14.0 ± 1.0 a |
S. aureus ATCC 25923 | - | 34.0 ± 1.7 b | 31.0 ± 1.0 b | 12.3 ± 0.6 c |
P. gingivalis | - | 15.3 ± 1.0 b | 31.3 ± 1.5 c | 14.0 ± 1.0 b |
A. actinomycetemcomitans | - | 36.0 ± 1.5 b | 41.7 ± 1.5 c | 24.0 ± 1.5 d |
E. coli ATCC 8739 | - | 14.0 ± 1.0 b | 24.7 ± 1.5 c | 11.3 ± 1.2 b |
(b) | ||||
Microorganisms | Inhibition zone diameter (mm.) (mean ± S.D.) | |||
DHRL0 | DHRL2.5 | DHRL5 | DHRL10 | |
S. aureus (ATCC 6538) | 19.0 ± 1.0 a | 17.7 ± 1.2 a | 17.7 ± 0.6 a | 21.7 ± 0.6 b |
S. aureus (ATCC 43300) | 27.0 ± 0.6 a | 21.3 ± 1.2 b | 21.7 ± 0.6 b | 28.0 ± 1.0 a |
S. aureus (DMST 6532) | 28.0 ± 1.0 a | 20.0 ± 1.0 b | 21.7 ± 1.2 b | 29.3 ± 0.6 a |
S. aureus (ATCC 25923) | 27.3 ± 0.6 a | 20.7 ± 1.5 b | 21.3 ± 1.5 b | 25.0 ± 1.0 a |
P. gingivalis | 22.3 ± 1.5 a | 22.3 ± 2.1 a | 21.0 ± 1.0 a | 26.0 ± 2.6 b |
A. actinomycetemcomitans | 18.0 ± 0.0 a | 15.7 ± 0.6 b | 15.7 ± 0.6 b | 17.0 ± 1.0 ab |
E. coli ATCC 8739 | 15.3 ± 0.6 a | 11.7 ± 0.6 bc | 10.7 ± 0.7 b | 12.7 ± 0.6 c |
Formula | DH (%w/w) | LO (%w/w) | Rosin (%w/w) | NMP (%w/w) | DMSO (%w/w) |
---|---|---|---|---|---|
NRL0 | - | 0 | 55 | 45 | - |
NRL1 | - | 1 | 55 | 44 | - |
NRL2.5 | - | 2.5 | 55 | 42.5 | - |
NRL5 | - | 5 | 55 | 40 | - |
NRL10 | - | 10 | 55 | 35 | - |
NRL15 | - | 15 | 55 | 30 | - |
NRL20 | - | 20 | 55 | 25 | - |
DRL0 | - | 0 | 55 | - | 45 |
DRL1 | - | 1 | 55 | - | 44 |
DRL2.5 | - | 2.5 | 55 | - | 42.5 |
DRL5 | - | 5 | 55 | - | 40 |
DRL10 | - | 10 | 55 | - | 35 |
DRL15 | - | 15 | 55 | - | 30 |
DRL20 | - | 20 | 55 | - | 25 |
DHRL0 | 5 | 0 | 55 | 40 | - |
DHRL2.5 | 5 | 2.5 | 55 | 37.5 | - |
DHRL5 | 5 | 5 | 55 | 35 | - |
DHRL10 | 5 | 10 | 55 | 30 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khaing, E.M.; Mahadlek, J.; Okonogi, S.; Phaechamud, T. Lime Peel Oil–Incorporated Rosin-Based Antimicrobial In Situ Forming Gel. Gels 2022, 8, 169. https://doi.org/10.3390/gels8030169
Khaing EM, Mahadlek J, Okonogi S, Phaechamud T. Lime Peel Oil–Incorporated Rosin-Based Antimicrobial In Situ Forming Gel. Gels. 2022; 8(3):169. https://doi.org/10.3390/gels8030169
Chicago/Turabian StyleKhaing, Ei Mon, Jongjan Mahadlek, Siriporn Okonogi, and Thawatchai Phaechamud. 2022. "Lime Peel Oil–Incorporated Rosin-Based Antimicrobial In Situ Forming Gel" Gels 8, no. 3: 169. https://doi.org/10.3390/gels8030169
APA StyleKhaing, E. M., Mahadlek, J., Okonogi, S., & Phaechamud, T. (2022). Lime Peel Oil–Incorporated Rosin-Based Antimicrobial In Situ Forming Gel. Gels, 8(3), 169. https://doi.org/10.3390/gels8030169