Super-Adsorptive Biodegradable Hydrogel from Simply Treated Sugarcane Bagasse
Abstract
:1. Introduction
2. Results and Discussion
2.1. Preparation of Bagasse-Based Cellulose-g-poly (AM-co-MMA) Hydrogels
2.2. Influence of Different Parameters on Reaction Conditions of Synthesis Hydrogel
2.3. Characterizations and Morphology of Synthesized Hydrogel
2.4. Water Absorption Capacity, Biodegradability of Hydrogel and Gel Content in Hydrogel
2.5. Water Retention Capacity of Hydrogels
2.6. Adsorption of Metal Ions and Dyes
3. Materials and Methods
3.1. Materials and Hydrogel Preparation
3.1.1. Materials
3.1.2. Preparation of Bagasse-g-poly (AM-co-MMA) Hydrogels
3.2. Characterizations of Hydrogels
3.2.1. Grafting Percentage, Water Absorbency, Effect of pH and Temperature of Hydrogels
3.2.2. Determination of Gel Content
3.2.3. FTIR Analysis
3.2.4. Surface Morphology and Crystallinity Analysis of Hydrogels
3.2.5. Thermal Analysis of Sample
3.3. Biodegradation and Water Retention Capacity of Hydrogels
3.4. Inorganic and Organic Ion Adsorption Capacities of Hydrogels
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xie, Y.; Wang, A. Study on superabsorbent composites XIX. Synthesis, characterization and performance of chitosan-g-poly(acrylic acid)/vermiculite superabsorbent composites. J. Polym. Res. 2009, 16, 143–150. [Google Scholar] [CrossRef]
- Ahmed, E.M. Hydrogel: Preparation, characterization, and applications: A review. J. Adv. Res. 2015, 6, 105–121. [Google Scholar] [CrossRef] [Green Version]
- Bashir, S.; Hina, M.; Iqbal, J.; Rajpar, A.H.; Mujtaba, M.A.; Alghamdi, N.A.; Wageh, S.; Ramesh, K.; Ramesh, S. Fundamental Concepts of Hydrogels: Synthesis, Properties, and Their Applications. Polymers 2020, 12, 2702. [Google Scholar] [CrossRef]
- Karadag, E.; Uzum, O.B.; Saraydin, D.; Guven, O. Dynamic swelling behaviour of radiation induced polyelectrolyte poly (AAM-co-CA) hydrogels in urea solution. Int. J. Pharm. 2005, 301, 102–111. [Google Scholar] [CrossRef]
- Tanaka, T. Gels. Sci. Am. 1981, 244, 124–136. [Google Scholar] [CrossRef]
- Smith, M.J.; Flowers, T.H.; Cowling, M.J.; Duncan, H.J. Release studies of benzalkonium chloride from hydrogel in a freshwater environment. J. Environ. Monit. 2003, 5, 359–362. [Google Scholar] [CrossRef]
- Johnson, M.S. The effects of gel-forming polyacrylamides on moisture storage in sandy soils. J. Sci. Food Agric. 1984, 35, 1063–1066. [Google Scholar] [CrossRef]
- Bakass, M.; Mokhlisse, A.; Lallemant, M. Absorption and desorption of liquid water by a superabsorbent polymer: Effect of polymer in the drying of the soil and the quality of certain plants. J. Appl. Polym. Sci. 2002, 83, 234–243. [Google Scholar] [CrossRef]
- Ravish, H.S.; Prashanth, R.M.; Kumari, N.; Siddhareddy, I.; Pradeepkumar, D.P.; Surendran, J. Personal hygiene practices and related skin diseases among primary school children of urban poor locality. Int. J. Community Med. Public Health 2019, 6, 2526–2532. [Google Scholar]
- Holland, K. Creating a Personal Hygiene Routine: Tips and Benefits. Available online: https://www.healthline.com/health/personal-hygiene (accessed on 18 May 2018).
- Peppas, N.A. Hydrogels and drug delivery. Curr. Opin. Col. Interf. Sci. 1997, 2, 531–537. [Google Scholar] [CrossRef]
- Qiu, Y.; Park, K. Environment-sensitive hydrogels for drug delivery. Adv. Drug Deliv. Rev. 2005, 53, 321–339. [Google Scholar] [CrossRef]
- Francois, P.; Vaudaux, P.; Nurdin, P.; Descouts, P. Physical and biological effects of a hydrophilic coating on polyurethane catheters. Biomaterials 1996, 17, 667–676. [Google Scholar] [CrossRef]
- Demitri, C.; Sannino, A.; Conversano, F.; Casciaro, S.; Distante, A.; Maffezzoli, A. Hydrogel based tissue mimicking phantom for in-vitro ultrasound contrast agent’s studies. J. Biomed. Mater. Res. Part. B Appl. Biomat. 2008, 87, 338–345. [Google Scholar] [CrossRef]
- Balakrishnan, B.; Mohanty, M.; Umashankar, P.R.; Jayakrishnan, A. Evaluation of an in situ forming hydrogel wound dressing based on oxidized alginate and gelatin. Biomaterials 2005, 26, 6335–6342. [Google Scholar] [CrossRef]
- Drury, J.L.; Mooney, D.J. Hydrogels for tissue engineering: Scaffold design variables and applications. Biomaterials 2003, 24, 4337–4351. [Google Scholar] [CrossRef]
- Seliktar, D. Extracellular stimulation in tissue engineering. Ann. N. Y. Acad. Sci. 2005, 1047, 386–394. [Google Scholar] [CrossRef]
- Jen, A.C.; Wake, M.C.; Mikos, A.G. Hydrogels for cell immobilization. Biotechnol. Bioeng. 1996, 50, 357–364. [Google Scholar] [CrossRef]
- Jing, Z.; Xu, A.; Liang, Y.Q.; Zhang, Z.; Yu, C.; Hong, P.; Li, A. Biodegradable Poly(acrylic acid-co-acrylamide)/Poly(vinyl alcohol) Double Network Hydrogels with Tunable Mechanics and High Self-healing Performance. Polymers 2019, 11, 952. [Google Scholar] [CrossRef] [Green Version]
- Shang, J.; Shao, Z.; Chen, X. Electrical behavior of a natural polyelectrolyte hydrogel: Chitosan/carboxymethylcellulose hydrogel. Biomacromolecules 2008, 9, 1208–1213. [Google Scholar] [CrossRef]
- Eichhorn, S.J.; Dufresne, A.; Aranguren, M.; Marcovich, N.E.; Capadona, J.R.; Rowan, S.J.; Weder, C.; Thielemans, W.; Roman, M.; Renneckar, S.; et al. Current international research into cellulose nanofibers and nanocomposites. J. Mat. Sci. 2010, 45, 1–33. [Google Scholar] [CrossRef] [Green Version]
- Alam, M.N.; Islam, M.S.; Christopher, L.P. Sustainable Production of Cellulose-Based Hydrogels with Superb Absorbing Potential in Physiological Saline. ACS Omega 2019, 4, 9419–9426. [Google Scholar] [CrossRef] [PubMed]
- Fu, L.-H.; Qi, C.; Ma, M.G.; Wan, P. Multifunctional cellulose-based hydrogels for biomedical applications. J. Mater. Chem. B 2021, 7, 1541–1562. [Google Scholar] [CrossRef] [PubMed]
- Mondal, M.I.H. (Ed.) Cellulose-Based Superabsorbent Hydrogels; Springer Nature: Cham, Switzerland, 2019; pp. 3–35. [Google Scholar]
- Lu, P.; Yang, Y.; Ren, L.; Xin, L.; Jinxia, M.; Min, W.; Shuangfei, W. Preparation of sugarcane bagasse nanocellulose hydrogel as a colourimetric freshness indicator for intelligent food packaging. Carbohydr. Polym. 2020, 249, 116831. [Google Scholar] [CrossRef] [PubMed]
- Maity, J.; Ray, S.K. Removal of Cu (II) ion from water using sugar cane bagasse cellulose and gelatin based composite hydrogels. Int. J. Biol. Macromol. 2017, 97, 238–248. [Google Scholar] [CrossRef] [PubMed]
- Nakasone, K.; Shinya, I.; Takaomi, K. Biocompatibility evaluation of cellulose hydrogel film regenerated from sugar cane bagasse waste and its in vivo behavior in mice. Ind. Eng. Chem. Res. 2016, 55, 30–37. [Google Scholar] [CrossRef]
- Chanklinhorm, P.; Thitirat, R.; Sarute, U. Development of Cellulose from Sugarcane Bagasse and Polyacrylamide-Based Hydrogel Composites by Gamma Irradiation Technique: A Study of Controlled-Release Behavior of Urea. J. Polym. Environ. 2022, 1–11. [Google Scholar] [CrossRef]
- Wang, S.Y.; Wang, L.P.; Kong, W.Q.; Ren, J.L.; Liu, C.F.; Wang, K.; Sun, R.C.; She, D. Preparation, characterization of carboxylated bamboo fibers and their adsorption for lead (II) ions in aqueous solution. Cellulose 2013, 20, 2091–2100. [Google Scholar] [CrossRef]
- Krusic, M.K.; Milosavlievic, N.; Debelikovic, A.; Uzum, O.B.; Karadag, E. Removal of Pb2+ ions from water by poly(acryl amide-co-sodium methacrylate) hydrogels. Water Air Soil Pollut. 2012, 223, 4355–4368. [Google Scholar] [CrossRef]
- Ahmed, A.E.I. Hydrogels for water filters: Preparation and antibacterial evaluation. J. Appl. Polym. Sci. 2011, 122, 1162–1167. [Google Scholar] [CrossRef]
- Marc, G.; Mele, G.; Palmisano, L.; Pulit, P.; Sannino, A. Environmentally sustainable production of cellulose-based superabsorbent hydrogels. Green Chem. 2006, 8, 439–444. [Google Scholar] [CrossRef]
- Bao, Y.; Ma, J.; Li, N. Synthesis and swelling behaviors of sodium carboxymethyl cellulose-g-poly (AA-co-AM-co-AMPS)/MMT superabsorbent hydrogel. Carbohydr. Polym. 2011, 84, 76–82. [Google Scholar] [CrossRef]
- Wach, R.A.; Mitomo, H.; Yoshii, F.; Kume, T. Hydrogel of Biodegradable Cellulose Derivatives. II. Effect of Some Factors on Radiation-Induced Crosslinking of CMC. J. Appl. Polym. Sci. 2001, 81, 3030–3037. [Google Scholar] [CrossRef]
- Ren, J.; Kong, W.; Sun, R. Preparation of Sugarcane Bagasse/Poly(Acrylic Acid-co-Acrylamide) Hydrogels and their Application. BioResources 2014, 9, 3290–3303. [Google Scholar] [CrossRef] [Green Version]
- Kandisa, R.V.; Saibaba, N.K.V.; Shaik, K.B.; Gopinath, R. Dye Removal by Adsorption: A Review. J. Bioremed. Biodeg. 2016, 7, 1000371. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; An, Y.; Li, S.; Liu, Z.; Chen, Z.; Ren, Y.; Wang, S.; Zhang, X.; Wang, X. Enhanced heavy metal removal from an aqueous environment using an eco-friendly and sustainable adsorbent. Sci. Rep. 2020, 10, 16453. [Google Scholar] [CrossRef]
- Shabaan, O.A.; Jahin, H.S.; Mohamed, G.G. Removal of anionic and cationic dyes from wastewater by adsorption using multiwall carbon nanotubes. Arab. J. Chem. 2020, 13, 4797–4810. [Google Scholar] [CrossRef]
- Mondal, M.I.H.; Haque, M.; Pervez, M.N.; Roknuzzaman, M.; Huda, M.N.; Khatun, M. Formation and Development of Ecofriend Antimicrobial Superabsorbent Hydrogel for Personal Healthcare. Biomed. J. Sci. Tech. Res. 2020, 30, 23666–23676. [Google Scholar]
- Gürdağ, G.; Sarmad, S. Cellulose graft copolymers: Synthesis, properties, and applications. In Polysaccharide Based Graft Copolymers; Springer: Berlin/Heidelberg, Germany, 2013; pp. 15–57. [Google Scholar]
- Rashidzadeh, A.; Olad, A.; Salari, D.; Reyhanitabar, A. On the preparation and swelling properties of healing/clinoptilolite and its application as slow release fertilizer. J. Polym. Res. 2014, 21, 344–359. [Google Scholar] [CrossRef]
- Thakur, S.; Sharma, B.; Verma, A.; Chaudhary, J.; Tamulevicius, S.; Thakur, V.K. Recent progress in sodium alginate based sustainable hydrogels for environmental applications. J. Clean. Product. 2018, 198, 143–159. [Google Scholar] [CrossRef] [Green Version]
- Cheng, Z.Q.; Li, J.F.; Yan, J.T.; Ru, X.; Liu, M.Z. Synthesis and properties of a novel superabsorbent polymer composite from microwave irradiation waste material cultured Auricularia auricular and poly (acrylic acid –CO-acrylamide). J. Appl. Polym. Sci. 2013, 130, 3674–3681. [Google Scholar] [CrossRef]
- Pourjavadi, A.; Barzegar, S.; Zeidabadi, F. Synthesis and properties of biodegradable hydrogels of K-carrageenam grafted acrylic acid-co-2-acryl amido-2- methyl propane sulfonic acid as canditaes for drug delivery systems. React. Funct. Polym. 2007, 67, 644–654. [Google Scholar] [CrossRef]
- Kim, M.N.; Lee, A.R.; Yoon, J.S.; Chin, I.J. Biodegradation of poly (3-hydroxybutyrate), Sky-Green(R) and Mater-Bi(R) by fungi isolated from soils. Eur. Polym. J. 2000, 36, 1677–1685. [Google Scholar] [CrossRef]
- Nagasawa, N.; Yagi, T.; Kume, T.; Yoshii, F. Radiation crosslinking of carboxymrthyl starch. Carbohydr. Polym. 2004, 58, 109–113. [Google Scholar] [CrossRef]
- Roy, A.; Bajpai, J.; Bajpai, A.K. Dynamics of controlled release of chlopyrifos from swelling and eroding biopolymeric microspheres of calcium aliginate and starch. Carbohydr. Polym. 2009, 76, 222–231. [Google Scholar] [CrossRef]
- Zhao, L.; Ma, K.; Yang, Z. Changes of Water Hydrogen Bond Network with Different Externalities. Int. J. Mol. Sci. 2015, 16, 8454–8489. [Google Scholar] [CrossRef]
- Bouhdadi, R.; Benhadi, S.; Molina, S.; George, B.; Moussaouiti1, M.E.L.; Merlin, A. Chemical modification of cellulose by acylation: Application to adsorption of methylene blue. Maderas Cienc. Tecnol. 2011, 13, 105–116. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Lu, A.; Yang, Z.; Luo, Y. Enhanced swelling and mechanical properties of P (AM-co-SMA) semi-IPN composite hydrogels by impregnation with PANI and MWNTs-COOH. Macromol. Res. 2013, 21, 376–384. [Google Scholar] [CrossRef]
No. of Sample | Initial Weight of Dry Gel, Wi (g) | Weight of Extracted Dry Gel, Wd (g) | Gel Fraction (%) | Average Percentage of Gel Fraction (%) |
---|---|---|---|---|
01 | 0.163 | 0.147 | 90.2 | 90.1 |
02 | 0.149 | 0.135 | 90.6 | |
03 | 0.144 | 0.129 | 89.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mondal, M.I.H.; Haque, M.O.; Ahmed, F.; Pervez, M.N.; Naddeo, V.; Ahmed, M.B. Super-Adsorptive Biodegradable Hydrogel from Simply Treated Sugarcane Bagasse. Gels 2022, 8, 177. https://doi.org/10.3390/gels8030177
Mondal MIH, Haque MO, Ahmed F, Pervez MN, Naddeo V, Ahmed MB. Super-Adsorptive Biodegradable Hydrogel from Simply Treated Sugarcane Bagasse. Gels. 2022; 8(3):177. https://doi.org/10.3390/gels8030177
Chicago/Turabian StyleMondal, Md. Ibrahim H., Md. Obaidul Haque, Firoz Ahmed, Md. Nahid Pervez, Vincenzo Naddeo, and Mohammad Boshir Ahmed. 2022. "Super-Adsorptive Biodegradable Hydrogel from Simply Treated Sugarcane Bagasse" Gels 8, no. 3: 177. https://doi.org/10.3390/gels8030177
APA StyleMondal, M. I. H., Haque, M. O., Ahmed, F., Pervez, M. N., Naddeo, V., & Ahmed, M. B. (2022). Super-Adsorptive Biodegradable Hydrogel from Simply Treated Sugarcane Bagasse. Gels, 8(3), 177. https://doi.org/10.3390/gels8030177