Current Understanding of the Applications of Photocrosslinked Hydrogels in Biomedical Engineering
Abstract
:1. Introduction
2. Chemically Synthesized Molecules for Preparation of Photocrosslinked Hydrogels
2.1. Ethylenes
2.2. Acrylic Acid
2.3. Acrylamide
2.4. Acrylates
3. Chemically Modified Natural Materials
3.1. Polysaccharides
3.2. Proteins/Peptides
4. Preparation of Photocrosslinked Hydrogels with Different Morphologies
4.1. Fiber
4.2. Microballoons
4.2.1. Homogeneous Micropellets
4.2.2. Antiopal Micropellets
4.2.3. Nuclear-Shell Microspheres (Microcapsules)
4.3. Thin Film
4.4. Microacupuncture Needle
4.5. Amorphous (Injectable) Hydrogels
5. Biomedical Applications
5.1. Biomedical Sensor
5.2. Flexible Wearable Devices
5.3. Drug Delivery and Tissue Engineering
5.4. Cellular Microcarrier
5.5. Bionic Organ
6. Conclusions and Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Naseri, N.; Deepa, B.; Mathew, A.P.; Oksman, K.; Girandon, L. Nanocellulose-based interpenetrating polymer network (IPN) hydrogels for cartilage applications. Biomacromolecules 2011, 3, 1877–1888. [Google Scholar] [CrossRef] [PubMed]
- Dragan, E.S. Design and applications of interpenetrating polymer network hydrogels. A review. Chem. Eng. J. 2014, 243, 572–590. [Google Scholar] [CrossRef]
- Norioka, C.; Inamoto, Y.; Hajime, C.; Kawamura, A.; Miyata, T. A universal method to easily design tough and stretchable hydrogels. NPG Asia Mater. 2021, 13, 34. [Google Scholar] [CrossRef]
- Hennink, W.E.; van Nostrum, C.F. Novel crosslinking methods to design hydrogels. Adv. Drug Deliv. Rev. 2012, 64, 223–236. [Google Scholar] [CrossRef]
- Zhao, G.; Li, T.; Brochet, D.X.; Rosenberg, P.B.; Lederer, W.J. STIM1 enhances SR Ca2+ content through binding phospholamban in rat ventricular myocytes. Proc. Natl. Acad. Sci. USA 2015, 112, 4792–4801. [Google Scholar] [CrossRef] [Green Version]
- Sperinde, J.J.; Griffith, L.G. Synthesis and characterization of enzymatically-cross-linked poly(ethylene glycol) hydrogels. Macromolecules 1997, 30, 5255–5264. [Google Scholar] [CrossRef]
- Sperinde, J.J.; Griffith, L.G. Control and prediction of gelation kinetics in enzymatically cross-linked poly(ethylene glycol) hydrogels. Macromolecules 2000, 33, 5476–5480. [Google Scholar] [CrossRef]
- Westhaus, E.; Messersmith, P.B. Triggered release of calcium from lipid vesicles: A bioinspired strategy for rapid gelation of polysaccharide and protein hydrogels. Biomaterials 2001, 22, 453–462. [Google Scholar] [CrossRef]
- Gottlieb, R.; Schmidt, T.; Arndt, K.F. Synthesis of temperature-sensitive hydrogel blends by high-energy irradiation. Nucl. Instrum. Methods Phys. Res. 2005, 236, 371–376. [Google Scholar] [CrossRef]
- Oezdemir, S.; Oezdemir, E.; Tunca, R.; Haziroglu, R.; Sen, M.; Kantoglu, O.E.; Gueven, O. In vivo biocompatibility studies of poly hydrogels synthesized by γ-rays. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2003, 208, 395–399. [Google Scholar] [CrossRef]
- Karakecili, A.G.; Satriano, C.; Gumusderelioglu, M.; Marletta, G. Thermoresponsive and bioactive poly(vinyl ether)-based hydrogels synthesized by radiation copolymerization and photochemical immobilization. Radiat. Phys. Chem. 2008, 77, 154–161. [Google Scholar] [CrossRef]
- Chen, M.; Shen, Y.; Xu, L.; Xiang, G.; Ni, Z. Highly efficient and rapid adsorption of methylene blue dye onto vinyl hybrid silica nano-cross-linked nanocomposite hydrogel. Colloids Surf. A Physicochem. Eng. Asp. 2021, 613, 126050. [Google Scholar] [CrossRef]
- Kao, F.J.; Manivannan, G.; Sawan, S.P. UV curable bioadhesives: Copolymers of N-vinyl pyrrolidone. J. Biomed. Mater. Res. 1997, 38, 191–196. [Google Scholar] [CrossRef]
- Lopergolo, L.C.; Lugao, A.B.; Catalani, L.H. Direct UV photocrosslinking of poly( N-vinyl-2-pyrrolidone) (PVP) to produce hydrogels. Polymer 2003, 44, 6217–6222. [Google Scholar] [CrossRef] [Green Version]
- Fechine, G.; Barros, J.; Catalani, L.H. Poly(N-vinyl-2-pyrrolidone) hydrogel production by ultraviolet radiation: New methodologies to accelerate crosslinking. Polymer 2004, 45, 4705–4709. [Google Scholar] [CrossRef]
- Lee, C.Y.; Teymour, F.; Camastral, H.; Tirelli, N.; Hubbell, J.A.; Elbert, D.L.; Papavasiliou, G. Characterization of the network structure of PEG diacrylatehy drogels formed in the presence of N-Vinyl pyrrolidone. Macromol. React. Eng. 2014, 8, 314–328. [Google Scholar] [CrossRef]
- Devine, D.M.; Higginbotham, C.L. Synthesis and characterisation of chemically crosslinked N-vinyl pyrrolidinone (NVP) based hydrogels. Eur. Polym. J. 2005, 41, 1272–1279. [Google Scholar] [CrossRef]
- Sahiner, N.; Sagbas, S. The preparation of poly(vinyl phosphonic acid) hydrogels as new functional materials for in situ metal nanoparticle preparation. Colloids Surf. A Physicochem. Eng. Asp. 2013, 418, 76–83. [Google Scholar] [CrossRef]
- Sagbas, S.; Sahiner, N. A novel p (AAm-co-VPA) hydrogel for the Co and Ni nanoparticle preparation and their use in hydrogel generation from NaBH4. Fuel Process. Technol. 2012, 104, 31–36. [Google Scholar] [CrossRef]
- Ren, Z.Q.; Zhang, Y.Y.; Li, Y.M.; Xu, B.; Liu, W.G. Hydrogen bonded and ionically crosslinked high strength hydrogels exhibiting Ca2+-triggered shape memory properties and volume shrinkage for cell detachment. J. Mater. Chem. B Mater. Biol. Med. 2015, 3, 6347–6354. [Google Scholar] [CrossRef]
- Hou, N.; Wang, R.; Wang, F.; Bai, J.; Zhou, J.; Hu, J.; Liu, S.; Jiao, T. Fabrication of hydrogels via host–guest polymers as highly efficient organic dye adsorbents for wastewater treatment. ACS Omega 2020, 5, 5470–5479. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, R.; Peng, H.; Zhou, T.; Li, M.; Guo, X.; Yao, Y. Selective adsorption and separation oforganic dyes by poly(acrylic acid) hydrogels formed withspherical polymer brushes and chitosan. Aust. J. Chem. 2018, 71, 846–854. [Google Scholar] [CrossRef] [Green Version]
- Jana, S.; Ray, J.; Jana, D.; Mondal, B.; Bhanja, S.K.; Tripathy, T. Removal of vanadium (IV) from water solution by sulfated Katira gum-cl-poly(acrylic acid) hydrogel. Colloids Surf. A Physicochem. Eng. Asp. 2019, 566, 70–83. [Google Scholar] [CrossRef]
- Anah, L.; Astrini, N. Isotherm adsorption studies of Ni (II) ion removal from aqueous solutions by modified carboxymethyl cellulose hydrogel. Conf. Ser. Earth Environ. Sci. IOP Publ. 2018, 160, 012017. [Google Scholar] [CrossRef]
- Makhado, E.; Pandey, S.; Nomngongo, P.N.; Ramontja, J. Preparation and characterization of xanthan gum-cl-poly(acrylic acid)/o-MWCNTs hydrogel nanocomposite as highly effective re-usable adsorbent for removal of methylene blue from aqueous solutions. J. Colloid Interface Sci. 2018, 513, 700–714. [Google Scholar] [CrossRef]
- Gwon, S.; Park, S. Preparation of uniformly sized interpenetrating polymer network polyelectrolyte hydrogel droplets from a solid-state liquid crystal shell. J. Ind. Eng. Chem. 2021, 99, 235–245. [Google Scholar] [CrossRef]
- Liu, J.; Liu, G.; Liu, W. Preparation of water-soluble β-cyclodextrin/poly(acrylic acid)/graphene oxide nanocomposites as new adsorbents to remove cationic dyes from aqueous solutions. Chem. Eng. J. 2014, 257, 299–308. [Google Scholar] [CrossRef]
- Hu, X.S.; Liang, R.; Sun, G. Super-adsorbent hydrogel for removal of methylene blue dye from aqueous solution. J. Mater. Chem. A 2018, 6, 17612–17624. [Google Scholar] [CrossRef]
- Ma, Y.; Lyu, L.; Guo, Y.; Fu, Y.; Wu, T.; Guo, S.; Sun, K.; Wujcik, E.K.; Guo, Z. Porous lignin based poly(acrylic acid)/organo-montmorillonite nanocomposites: Swelling behaviors and rapid removal of Pb (II) ions. Polymer 2017, 128, 12–23. [Google Scholar] [CrossRef]
- Kong, W.; Yue, Q.; Li, Q.; Gao, B. Adsorption of Cd2+ on GO/PAA hydrogel and preliminary recycle to GO/PAA-CdS as efficient photocatalyst. Sci. Total Environ. 2019, 668, 1165–1174. [Google Scholar] [CrossRef]
- Lu, F.; Wang, Y.; Wang, C.; Kuga, S.; Huang, Y.; Wu, M. Two-dimensional nanocellulose-enhanced high-strength, self-adhesive, and strain-sensitive poly(acrylic acid) hydrogels fabricated by a radical-induced strategy for a skin sensor. ACS Sustain. Chem. Eng. 2020, 8, 3427–3436. [Google Scholar] [CrossRef]
- Wang, H.; Gu, H.; Chen, Z.; Shang, L.; Zhao, Z.; Gu, Z.; Zhao, Y. Enzymatic Inverse Opal Hydrogel Particles for Biocatalyst. ACS Appl. Mater. Interfaces 2017, 9, 12914–12918. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Zhang, H.; Zhang, D.; Wang, J.; Tan, H.; Kong, T. Enzyme-functionalized structural color hydrogel particles for urea detection and elimination. J. Clean. Prod. 2021, 315, 128149. [Google Scholar] [CrossRef]
- Chen, C.; Liu, Y.; Wang, H.; Chen, G.; Ren, J.; Zhang, H. Multifunctional chitosan inverse opal particles for wound healing. ACS Nano 2018, 12, 10493–10500. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Cheng, Y.; Wang, H.; Ye, B.; Shang, L.; Zhao, Y.; Gu, Z. Multifunctional inverse opal particles for drug delivery and monitoring. Nanoscale 2015, 7, 10590. [Google Scholar] [CrossRef]
- Zhao, Z.; Wang, H.; Shang, L.; Yu, Y.; Fu, F.; Zhao, Y.; Gu, Z. Bioinspired heterogeneous structural color stripes from capillaries. Adv. Mater. 2017, 29, 1704569. [Google Scholar] [CrossRef]
- Fu, F.; Chen, Z.; Wang, H.; Liu, C.; Liu, Y.; Zhao, Y. Graphene hybrid colloidal crystal arrays with photo-controllable structural colors. Nanoscale 2019, 11, 10846–10851. [Google Scholar] [CrossRef]
- Li, L.; Chen, Z.; Shao, C.; Sun, L.; Zhao, Y. Graphene hybrid anisotropic structural color film for cardiomyocytes’monitoring. Adv. Funct. Mater. 2020, 30, 1906353. [Google Scholar] [CrossRef]
- Manz, A.; Graber, N.; Widmer, H.M. Miniaturized total chemical analysis systems: A novel concept for chemical sensing. Sens. Actuators B Chem. 1990, 1, 244–248. [Google Scholar] [CrossRef]
- Hou, K.; Hu, Z.; Mugaanire, I.T.; Li, C.; Chen, G.; Zhu, M. Fiber forming mechanism and reaction kinetics of novel dynamic-crosslinking-spinning for poly(ethylene glycol) diacrylate fiber fabrication. Polymer 2019, 183, 121903. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, Y.S.; Yue, K.; Khademhosseini, A. Cell-laden hydrogels for osteochondral and cartilage tissue engineering. Acta Biomater. 2017, 57, 1–25. [Google Scholar] [CrossRef] [PubMed]
- Colinet, I.; Dulong, V.; Mocanu, G.; Picton, L.; Cerf, D.L. New amphiphilic and pH-sensitive hydrogel for controlled release of a model poorly water-soluble drug. Eur. J. Pharm. Biopharm. 2009, 73, 345–350. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.; Kowalczuk, M.; Heaselgrave, W.; Britland, S.T.; Martin, C.; Radecka, I. The production and application of hydrogels for wound management: A review. Eur. Polym. J. 2019, 111, 134–151. [Google Scholar] [CrossRef]
- Goh, C.H.; Heng, P.W.S.; Chan, L.W. Alginates as a useful natural polymer for microencapsulation and therapeutic applications. Carbohydr. Polym. 2012, 88, 1–12. [Google Scholar] [CrossRef]
- Xu, S.; Liang, W.; Xu, G.; Huang, C.; Zhang, J.; Lang, M. A fast and dual crosslinking hydrogel based on vinyl ether sodium alginate. Appl. Surf. Sci. 2020, 515, 145811. [Google Scholar] [CrossRef]
- Bukhari, A.A.H.; Elsayed, N.H.; Monier, M. Development and characterization of photo-responsive cinnamoly modified alginate. Carbohydr. Polym. 2021, 260, 117771. [Google Scholar] [CrossRef]
- Huang, H.; Feng, J.; Wismeijer, D.; Wu, G.; Hunziker, E.B. Hyaluronic acid promotes the osteogenesis of BMP-2 in an absorbable collagen sponge. Polymers 2017, 9, 339. [Google Scholar] [CrossRef] [Green Version]
- Nielsen, J.J.; Low, S.A. Bone-targeting systems to systemically deliver therapeutics to bone fractures for accelerated healing. Curr. Osteoporos. Rep. 2020, 18, 449–459. [Google Scholar] [CrossRef]
- Lee, H.; Park, T.G. Photocrosslinkable, biomimetic, and thermo-sensitive pluronic grafted hyaluronic acid copolymers for injectable delivery of chondrocytes. J. Biomed. Mater. Res. Part A 2009, 88, 797–806. [Google Scholar] [CrossRef]
- Jenjob, R.; Nguyen, H.P.; Kim, M.K.; Jiang, Y.; Kim, J.J.; Yang, S.G. Bisphosphonate-conjugated photo-crosslinking polyanionic hyaluronic acid microbeads for controlled BMP2 delivery and enhanced bone formation efficacy. Biomacromolecules 2021, 22, 4138–4145. [Google Scholar] [CrossRef]
- Monier, M.; Youssef, I.; Abdel-Latif, D.A. Synthesis of photo-responsive chitosan-cinnamate for efficient entrapment of β-galactosidase enzyme. React. Funct. Polym. 2018, 124, 129–138. [Google Scholar] [CrossRef]
- Jeong, S.I.; Jeon, O.; Krebs, M.D.; Hill, M.C.; Alsberg, E. Biodegradable photo-crosslinked alginate nanofibre scaffolds with tuneable physical properties, cell adhesivity and growth factor release. Eur. Cells Mater. 2012, 24, 331–343. [Google Scholar] [CrossRef] [PubMed]
- Younes, I.; Rinaudo, M. Chitin and chitosan preparetion from marine sources. Structure, properties and applications. Mar. Drugs 2015, 13, 1133–1174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, Y.; Dong, Q.; Yang, H.; Liu, X.; Yin, X.; Tao, Y.; Bai, Z. Photocrosslinked maleilated chitosan/methacrylated poly (vinyl alcohol) bicomponent nanofibrous scaffolds for use as potential wound dressings. Carbohydr. Polym. 2017, 168, 220–226. [Google Scholar] [CrossRef]
- Gospodarowicz, D.; Cheng, J. Heparin protects basic and acidic FGF from inactivation. J. Cell. Physiol. 1986, 128, 475–484. [Google Scholar] [CrossRef]
- Wissink, M.J.B.; Beernink, R.; Pieper, J.S.; Poot, A.A.; Engbers, G.H.M.; Beugeling, T.; Aken, W.G.V.; Feijen, J. Binding and release of basic fibroblast growth factor from heparinized collagen matrices. Biomaterials 2001, 22, 2291–2299. [Google Scholar] [CrossRef]
- Yoon, J.J.; Chung, H.J.; Park, T.G. Photocrosslinkable and biodegradable pluronic/heparin hydrogels for local and sustained delivery of angiogenic growth factor. J. Biomed. Mater. Res. Part A 2007, 83, 597–605. [Google Scholar] [CrossRef]
- Ma, L.; Li, X.; Guo, X.; Jiang, Y.; Li, X.M.; Guo, H.; Zhang, B.; Xu, Y.; Wang, X.; Li, Q. Promotion of endothelial cell adhesion and antithrombogenicity of polytetrafluoroethylene by chemical grafting of chondroitin sulfate. ACS Appl. Bio. Mater. 2019, 3, 891–901. [Google Scholar] [CrossRef]
- Bai, X.; Lü, S.; Cao, Z.; Ni, B.; Wang, X.; Ning, P.; Ma, D.; Wei, H.; Liu, M. Dual crosslinked chondroitin sulfate injectable hydrogel formed via continuous Diels-Alder (DA) click chemistry for bone repair. Carbohydr. Polym. 2017, 166, 123–130. [Google Scholar] [CrossRef]
- Li, S.; Ma, F.; Pang, X.; Tang, B.; Lin, L. Synthesis of chondroitin sulfate magnesium for osteoarthritis treatment. Carbohydr. Polym. 2019, 212, 387–394. [Google Scholar] [CrossRef]
- Kim, H.D.; Lee, E.A.; An, Y.H.; Kim, S.L.; Lee, S.S.; Yu, S.J.; Jang, H.L.; Nam, K.T.; Lm, S.G.; Hwang, N.S.Y. Chondroitin sulfate-based biomineralizing surface hydrogels for bone tissue engineering. ACS Appl. Mater. Interfaces 2017, 9, 21639–21650. [Google Scholar] [CrossRef] [PubMed]
- Ornell, K.J.; Lozada, D.; Phan, N.V.; Coburn, J.M. Controlling methacryloyl substitution of chondroitin sulfate: Injectable hydrogels with tunable long-term drug release profiles. J. Mater. Chem. B 2019, 7, 2151–2161. [Google Scholar] [CrossRef] [PubMed]
- Cerqueira, M.T.; Silva, L.P.D.; Santos, T.C.; Pirraco, R.P.; Correlo, V.M.; Reis, R.L.; Marques, A.P. Gellan gum-hyaluronic acid spongy-like hydrogels and cells from adipose tissue synergize promoting neoskin vascularization. ACS Appl. Mater. Interfaces 2014, 6, 19668–19679. [Google Scholar] [CrossRef] [PubMed]
- Cerqueira, M.T.; Silva, L.P.D.; Santos, T.C.; Pirraco, R.P.; Correlo, V.M.; Marques, A.P.; Reis, R.L. Human skin cell fractions fail to self-organize within a gellan gum/hyaluronic acid matrix but positively influence early wound healing. Tissue Eng. Part A 2014, 20, 1369–1378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ichibouji, T.; Miyazaki, T.; Ishida, E.; Sugino, A.; Ohtsuki, C. Apatite mineralization abilities and mechanical properties of covalently crosslinked pectin hydrogels. Mater. Sci. Eng. C 2009, 29, 1765–1769. [Google Scholar] [CrossRef] [Green Version]
- Monier, M.; Shafik, A.L.; El-Mekabaty, A. Designing and investigation of photo-active gellan gum for the efficient immobilization of catalase by entrapment. Int. J. Biol. Macromol. 2020, 161, 539–549. [Google Scholar] [CrossRef]
- Oliveira, M.B.; Custódio, C.A.; Gasperini, L.; Reis, R.L.; Mano, J.F. Autonomous osteogenic differentiation of hASCs encapsulated in methacrylated gellan-gum hydrogels. Acta Biomater. 2016, 41, 119–132. [Google Scholar] [CrossRef]
- Serafini, M.R.; Menezes, P.P.; Costa, L.P. Interaction of p-cymene with β-cyclodextrin. J. Therm. Anal. Calorim. 2010, 109, 951–955. [Google Scholar] [CrossRef]
- Kurkov, S.V.; Loftsson, T. Cyclodextrins. Int. J. Pharm. 2013, 453, 167–180. [Google Scholar] [CrossRef]
- Cosola, A.; Conti, R.; Grützmacher, H.; Sangermano, M.; Roppolo, L.; Pirri, C.F.; Chiappone, A. Multiacrylated Cyclodextrin: A Bio-Derived Photocurable Macromer for VAT 3D Printing. Macromol. Mater. Eng. 2020, 305, 2000350. [Google Scholar] [CrossRef]
- Rezanka, M. Synthesis of substituted cyclodextrins. Environ. Chem. Lett. 2019, 17, 49–63. [Google Scholar] [CrossRef]
- Yamasaki, H.; Odamura, A.; Makihata, Y.; Fukunaga, K. Preparation of new photo-crosslinked β-cyclodextrin polymer beads. Polym. J. 2017, 49, 377–383. [Google Scholar] [CrossRef]
- Yin, R.; Wang, K.; Han, J.; Nie, J. Photo-crosslinked glucose-sensitive hydrogels based on methacrylate modified dextran–concanavalin A and PEG dimethacrylate. Carbohydr. Polym. 2010, 82, 412–418. [Google Scholar] [CrossRef]
- Lee, M.H.; Boettiger, D.; Composto, R.J. Biomimetic carbohydrate substrates of tunable properties using immobilized dextran hydrogels. Biomacromolecules 2008, 9, 2315–2321. [Google Scholar] [CrossRef]
- Pacelli, S.; Paolicelli, P.; Casadei, M.A. New biodegradable dextran-based hydrogels for protein delivery: Synthesis and characterization. Carbohydr. Polym. 2015, 126, 208–214. [Google Scholar] [CrossRef] [PubMed]
- Yang, K.; Sun, J.; Guo, Z.; Yang, J.; Wei, D.; Tan, Y.; Guo, L.; Luo, H.; Fan, H.; Zhang, X. Methacrylamide-modified collagen hydrogel with improved anti-actin-mediated matrix contraction behavior. J. Mater. Chem. B 2018, 6, 7543–7555. [Google Scholar] [CrossRef]
- Tytgat, L.; Markovic, M.; Qazi, T.H.; Vagenende, M.; Bray, F.; Martins, J.C.; Rolando, C.; Thienpont, H.; Ottevaere, H.; Ovsianikov, A.; et al. Photo-crosslinkable recombinant collagen mimics for tissue engineering applications. J. Mater. Chem. B 2019, 7, 3100–3108. [Google Scholar] [CrossRef] [Green Version]
- Song, X.; Dong, P.; Gravesande, J.; Cheng, B.; Xing, J. UV-mediated solid-state crosslinking of electrospinning nanofibers of modified collagen. Int. J. Biol. Macromol. 2018, 120, 2086–2093. [Google Scholar] [CrossRef]
- Yang, K.; Sun, J.; Wei, D.; Yuan, L.; Yang, J.; Guo, L.; Fan, H.; Zhang, X. Photo-crosslinked mono-component type II collagen hydrogel as a matrix to induce chondrogenic differentiation of bone marrow mesenchymal stem cells. J. Mater. Chem. B 2017, 5, 8707–8718. [Google Scholar] [CrossRef]
- Nichol, J.W.; Koshy, S.T.; Bae, H.; Hwang, C.M.; Yamanlar, S.; Khademhosseini, A. Cell-laden microengineered gelatin methacrylate hydrogels. Biomaterials 2010, 31, 5536–5544. [Google Scholar] [CrossRef] [Green Version]
- Hu, Y.; Wang, W.; Yu, D. Preparation of antibacterial keratin fabrics via UV curing and click chemistry. RSC Adv. 2016, 6, 81731–81735. [Google Scholar] [CrossRef]
- Xuan, M.; Sahoo, J.K.; Cebe, P.; Kaplan, D.L. Photo-crosslinked silk fibroin for 3D printing. Polymers 2020, 12, 2936. [Google Scholar] [CrossRef]
- Rusu, A.G.; Chiriac, A.P.; Nita, L.E.; Mititelu-Tartau, L.; Tudorachi, N.; Ghilan, A.; Rusu, D. Multifunctional BSA scaffolds prepared with a novel combination of UV-crosslinking systems. Macromol. Chem. Phys. 2019, 220, 1900378. [Google Scholar] [CrossRef]
- Chiriac, A.P.; Ghilan, A. Advancement in the biomedical applications of the nanogel structures based on particular polysaccharides. Macromol. Biosci. 2019, 15, 1903104. [Google Scholar]
- Fu, F.; Shang, L.; Zheng, F.; Chen, Z.; Wang, H.; Wang, J.; Gu, Z. Cells cultured on core–shell photonic crystal barcodes for drug screening. ACS Appl. Mater. Interfaces 2016, 8, 13840–13848. [Google Scholar] [CrossRef]
- Chevallay, B.; Abdul-Malak, N.; Herbage, D. Mouse fibroblasts in long-term culture within collagen three-dimensional scaffolds: Influence of crosslinking with diphenylphosphorylazide on matrix reorganization, growth, and biosynthetic and proteolytic activities. J. Biomed. Mater. Res. 2000, 49, 448–459. [Google Scholar] [CrossRef]
- Wu, Y.L.; Lin, C.W.; Cheng, N.C.; Yang, K.C.; Yu, J. Modulation of keratin in adhesion, proliferation, adipogenic, and osteogenic differentiation of porcine adipose-derived stem cells. J. Biomed. Mater. Res. Part B Appl. Biomater. 2017, 105, 180–192. [Google Scholar] [CrossRef]
- Yu, D.; Cai, J.Y.; Church, J.S.; Wang, L. Modifying surface resistivity and liquid moisture management property of keratin fibers through thiol–Ene click reactions. ACS Appl. Mater. Interfaces 2014, 6, 1236–1242. [Google Scholar] [CrossRef]
- Qi, C.; Liu, J.; Jin, Y.; Xu, L.; Wang, G.; Wang, Z.; Wang, L. Photo-crosslinkable, injectable sericin hydrogel as 3D biomimetic extracellular matrix for minimally invasive repairing cartilage. Biomaterials 2018, 163, 89–104. [Google Scholar] [CrossRef]
- Ju, J.; Hu, N.; Cairns, D.M.; Liu, H.; Timko, B.P. Photo-cross-linkable, insulating silk fibroin for bioelectronics with enhanced cell affinity. Proc. Natl. Acad. Sci. USA 2020, 117, 15482–15489. [Google Scholar] [CrossRef]
- Aduba, D.C.; Hammer, J.A.; Yuan, Q.; Andrew Yeudall, W.; Bowlin, G.L.; Yang, H. Semi-interpenetrating network (sIPN) gelatin nanofiber scaffolds for oral mucosal drug delivery. Acta Biomater. 2013, 9, 6576–6584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rong, L.; Dou, J.; Jiang, Q.; Jing, L.; Ren, X. Preparation and antimicrobial activity of β-cyclodextrin derivative copolymers/cellulose acetate nanofibers. Chem. Eng. J. 2014, 248, 264–272. [Google Scholar]
- Maciejewska, B.M.; Wychowaniec, J.K.; Woniak-Budych, M.; Popenda, L.; Jurga, S. UV cross-linked polyvinylpyrrolidone electrospun fibres as antibacterial surfaces. Sci. Technol. Adv. Mater. 2019, 20, 979–991. [Google Scholar] [CrossRef] [Green Version]
- Rosa, R.M.; Silva, J.C.; Sanches, I.S.; Henriques, C. Simultaneous photo-induced crosslinking and silver nanoparticle formation in a PVP electrospun wound dressing. Mater. Lett. 2017, 207, 145–148. [Google Scholar] [CrossRef]
- Son, W.K.; Ji, H.Y.; Park, W.H. Antimicrobial cellulose acetate nanofibers containing silver nanoparticles. Carbohydr. Polym. 2006, 65, 430–434. [Google Scholar] [CrossRef]
- Wang, Y.S.; Cheng, C.C.; Ye, Y.S.; Yen, Y.C.; Chang, F.C. Bioinspired photo-cross-linked nanofibers from uracil-functionalized polymers. ACS Macro Lett. 2012, 1, 159–162. [Google Scholar] [CrossRef]
- Singh, U.; Mohan, S.; Davis, F.; Mitchell, G. Modifying the thermomechanical properties of electrospun fibres of poly-vinyl cinnamate by photo-cross-linking. SN Appl. Sci. 2019, 1, 31. [Google Scholar] [CrossRef] [Green Version]
- Tang, Z.; Jie, W.; Yung, L.; Ji, B.; Ma, H.; Qiu, C.; Yoon, K.; Wan, F.; Fang, D.; Hsiao, B.S. UV-cured poly(vinyl alcohol) ultrafiltration nanofibrous membrane based on electrospun nanofiber scaffolds. J. Membr. Sci. 2009, 328, 1–5. [Google Scholar] [CrossRef]
- Zhao, X.; Liu, S.; Yildirimer, L.; Zhao, H.; Ding, R.H.; Wang, H.N.; Cui, W.G.; Weitz, D. Injectable stem cell-laden photocrosslinkable microspheres fabricated using microfluidics for rapid generation of osteogenic tissue constructs. Adv. Funct. Mater. 2016, 26, 2809–2819. [Google Scholar] [CrossRef]
- Lee, G.H.; Jeon, T.Y.; Kim, J.B.; Lee, B.; Lee, C.S.; Lee, S.Y.; Kim, S.H. Multicompartment photonic microcylinders toward structural color inks. Chem. Mater. 2018, 30, 3789–3797. [Google Scholar] [CrossRef]
- Zhao, C.; Chen, G.; Wang, H.; Zhao, Y.; Chai, R. Bio-inspired intestinal scavenger from microfluidic electrospray for detoxifying lipopolysaccharide. Bioact. Mater. 2021, 6, 1653–1662. [Google Scholar] [CrossRef]
- Schonberg, J.N.; Zinggeler, M.; Fosso, P.L.; Brandstetter, T.; Ruhe, J. One-step photochemical generation of biofunctionalized hydrogel particles via two-phaseflow. ACS Appl. Mater. Interfaces 2018, 10, 39411–39416. [Google Scholar]
- Zhang, H.Z.; Xu, R.H.; Yin, Z.W.; Yu, J.; Liang, N.; Geng, Q. Drug-loaded chondroitin sulfate microspheres generated from microfluidic electrospray for wound healing. Macromol. Res. 2022, 30, 36–42. [Google Scholar] [CrossRef]
- Ye, B.; Ding, H.; Cheng, Y.; Gu, H.C.; Gu, Z.Z. Photonic crystal microcapsules for label-free multiplex detection. Adv. Mater. 2014, 26, 3270–3274. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.S.; Wang, H.; Luan, C.X.; Fu, F.F.; Chen, B.A.; Liu, H.; Zhao, Y.J. Porous hydrogel encapsulated photonic barcodes for multiplex microRNA quantification. Adv. Funct. Mater. 2018, 28, 1704458. [Google Scholar] [CrossRef]
- Xin, T.; Gu, Y.; Cheng, R.; Tang, J.; Sun, Z.; Cui, W.; Chen, L. Inorganic strengthened hydrogel membrane as regenerative periosteum. ACS Appl. Mater. Interfaces 2017, 9, 41168–41180. [Google Scholar] [CrossRef] [PubMed]
- Luo, Z.; Che, J.; Sun, L.; Yang, L.; Zu, Y.; Wang, H.; Zhao, Y. Microfluidic electrospray photo-crosslinkable κ-Carrageenan microparticles for wound healing. Eng. Regen. 2021, 2, 257–262. [Google Scholar] [CrossRef]
- Zhao, Z.; Wang, J.; Lu, J.; Yu, Y.R.; Fu, F.F.; Wang, H.; Liu, Y.X.; Zhao, Y.J.; Gu, Z.Z. Tubular inverse opal scaffolds for biomimetic vessels. Nanoscale 2016, 8, 13574–13580. [Google Scholar] [CrossRef]
- Zhang, Z.H.; Chen, Z.Y.; Wang, Y.; Chi, J.J.; Wang, Y.T.; Zhao, Y.J. Bioinspired bilayer structural color hydrogel actuator with multienvironment responsiveness and survivability. Small Methods 2019, 3, 1900519. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, C.W.; Zhang, H.; Chen, G.P.; Wang, Y.T.; Zhao, Y.J. Janus medical sponge dressings with anisotropic wettability for wound healing. Appl. Mater. Today 2021, 23, 101068. [Google Scholar] [CrossRef]
- GhavamiNejad, A.; Li, J.; Lu, B.; Zhou, L.; Lam, L.; Giacca, A.; Wu, X.Y. Glucose-responsive composite microneedle patch for hypoglycemia-triggered delivery of native glucagon. Adv. Mater. 2019, 31, 1901051. [Google Scholar] [CrossRef]
- Liang, Y.; Li, Z.; Huang, Y.; Yu, R.; Guo, B. Dual-dynamic-bond cross-linked antibacterial adhesive hydrogel sealants with on-demand removability for post-wound-closure and infected wound healing. ACS Nano 2021, 15, 7078–7093. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Yeo, D.C.; Wiraja, C.; Tey, H.L.; Mrsksich, M.; Xu, C. Peptide delivery with poly(ethylene glycol) diacrylate microneedles through swelling effect. Bioeng. Transl. Med. 2017, 2, 258–267. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Sun, B.; Guo, J.; Wang, M.; Yan, F. Active pharmaceutical ingredient poly(ionic liquid)-based microneedles for the treatment of skin acne infection. Acta Biomater. 2020, 115, 136–147. [Google Scholar] [CrossRef]
- Yu, X.; Li, M.; Zhu, L.; Li, J.; Jin, Y. Amifostine-loaded armored dissolving microneedles for long-term prevention of ionizing radiation-induced injury. Acta Biomater. 2020, 112, 87–100. [Google Scholar] [CrossRef] [PubMed]
- Zhao, F.; Wu, D.; Yao, D.; Guo, R.; Wang, W.; Dong, A.; Kong, D.; Zhang, J. An injectable particle-hydrogel hybrid system for glucose-regulatory insulin delivery. Acta Biomater. 2017, 64, 334–345. [Google Scholar] [CrossRef]
- Yue, S.; Sun, X.T.; Wang, N.; Wang, Y.N.; Wang, Y.; Xu, Z.R.; Chen, M.L.; Wang, J.H. SERS–fluorescence dual-mode pH-sensing method based on Janus microparticles. ACS Appl. Mater. Interfaces 2017, 9, 39699–39707. [Google Scholar] [CrossRef]
- Ye, B.F.; Wang, H.; Ding, H.B.; Zhao, Y.J.; Pu, Y.P.; Gu, Z.Z. Colorimetric logic response based on aptamer functionalized colloidal crystal hydrogels. Nanoscale 2015, 7, 7565–7568. [Google Scholar] [CrossRef]
- Qin, M.; Sun, M.; Bai, R.B.; Mao, Y.Q.; Qin, X.S.; Sikka, D.; Zhao, Y.; Qi, H.J.; Suo, Z.G.; He, X.M. Bioinspired hydrogel interferometer for adaptive coloration and chemical sensing. Adv. Mater. 2018, 30, 1800468. [Google Scholar] [CrossRef] [Green Version]
- Elsherif, M.; Hassan, M.U.; Yetisen, A.K.; Butt, H. Wearable contact lens biosensors for continuous glucose monitoring using smartphones. ACS Nano 2018, 2, 5452–5462. [Google Scholar] [CrossRef]
- Yu, H.C.; Hao, X.P.; Zhang, C.W.; Zheng, S.Y.; Du, M.; Liang, S.M.; Wu, Z.L.; Zheng, Q. Engineering tough metallosupramolecular hydrogel films with kirigami structures for compliant soft electronics. Small 2021, 17, 2103836. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Liu, M.M.; Dou, S.; Sun, J.M.; Cong, Z.F.; Jiang, C.Y.; Du, C.H.; Pu, X.; Hu, W.G.; Wang, Z.L. Triboelectric-nanogenerator-based soft energy-harvesting skin enabled by toughly bonded elastomer/hydrogel hybrids. ACS Nano 2018, 12, 2818–2826. [Google Scholar] [CrossRef] [PubMed]
- Wichterle, O.; Lim, D. Hydrophilic gels for biological use. Nature 1960, 185, 117–118. [Google Scholar] [CrossRef]
- Alexeev, V.L.; Das, S.; Finegold, D.N.; Asher, S.A. Photonic crystal glucose-sensing material for noninvasive monitoring of glucose in tear fluid. Clin. Chem. 2004, 50, 2353–2360. [Google Scholar] [CrossRef] [Green Version]
- Xie, Z.Y.; Li, L.L.; Liu, P.M.; Zheng, F.Y.; Guo, L.Y.; Zhao, Y.J.; Jin, L.; Li, T.T.; Gu, Z.Z. Self-assembled coffee-ring colloidal crystals for structurally colored contact lenses. Small 2015, 11, 926–930. [Google Scholar] [CrossRef] [PubMed]
- Deng, J.Z.; Chen, S.; Chen, J.L.; Ding, H.L.; Deng, D.W.; Xie, Z.Y. Self-reporting colorimetric analysis of drug release by molecular imprinted structural color contact lens. ACS Appl. Mater. Interfaces 2018, 10, 34611–34617. [Google Scholar] [CrossRef]
- Lin, S.T.; Yuk, H.; Zhang, T.; Parada, G.A.; Koo, H.; Yu, C.J.; Zhao, X.H. Stretchable hydrogel electronics and devices. Adv. Mater. 2016, 28, 4497–4505. [Google Scholar] [CrossRef]
- Wang, M.X.; Chen, Y.M.; Gao, Y.; Hu, C.; Hu, J.; Tan, L.; Yang, Z.M. Rapid self-recoverable hydrogels with high toughness and excellent conductivity. ACS Appl. Mater. Interfaces 2018, 10, 26610–26617. [Google Scholar] [CrossRef]
- Lei, L.J.; Lv, Q.Z.; Jin, Y.; An, H.; Shi, Z.; Hu, G.; Yang, Y.Z.; Wang, X.G.; Yang, L. Angiogenic microspheres for the treatment of a thin endometrium. ACS Biomater. Sci. Eng. 2021, 7, 4914–4920. [Google Scholar] [CrossRef]
- Lei, L.J.; Wang, X.G.; Zhu, Y.L.; Su, W.T.; Lv, Q.Z.; Li, D. Antimicrobial hydrogel microspheres for protein capture and wound healing. Mater. Des. 2022, 215, 110478. [Google Scholar] [CrossRef]
- Lei, L.J.; Zhu, Y.L.; Qin, X.Y.; Chai, S.L.; Liu, G.X.; Su, W.T.; Lv, Q.Z.; Li, D. Magnetic biohybrid microspheres for protein purification and chronic wound healing in diabetic mice. Chem. Eng. J. 2021, 425, 130671. [Google Scholar] [CrossRef]
- Yang, L.; Liu, Y.X.; Shou, X.; Ni, D.; Kong, T.T.; Zhao, Y.J. Bio-inspired lubricant drug delivery particles for the treatment of osteoarthritis. Nanoscale 2020, 12, 17093–17102. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Tan, Y.; Ayers, D.C.; Song, J. Anionic and zwitterionic residues modulate stiffness of photocrosslinked hydrogels and cellular behavior of encapsulated chondrocytes. ACS Biomater. Sci. Eng. 2018, 4, 1843–1851. [Google Scholar]
- Salahuddin, B.; Wang, S.; Sangian, D.; Aziz, S.; Gu, Q. Hybrid gelatinhydrogels in nanomedicine applications. ACS Appl. Bio Mater. 2021, 4, 2886–2906. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Shang, L.R.; Zheng, F.Y.; Lu, J.; Qian, J.L.; Zhao, Y.J.; Gu, Z.Z. Photonic crystal encoded microcarriers for biomaterial evaluation. Small 2014, 10, 88–93. [Google Scholar] [CrossRef]
- Burdick, J.A.; Khademhosseini, A.; Langer, R. Fabrication of gradient hydrogels using a microfluidics/photopolymerization process. Langmuir 2004, 20, 5153–5156. [Google Scholar] [CrossRef]
- Dadsetan, M.; Szatkowski, J.P.; Yasemski, M.J.; Lu, L.C. Characterization of photocrosslinked oligo [poly(ethylene glycol) fumarate] hydrogels for cartilage tissue engineering. Biomacromolecules 2007, 8, 1702–1709. [Google Scholar] [CrossRef]
- Sontheimer-Phelps, A.; Hassell, B.A.; Ingber, D.E. Modelling cancer in microfluidic human organs-on-chips. Nat. Rev. Cancer 2019, 19, 65–81. [Google Scholar] [CrossRef]
- Zhang, C.; Zhao, Z.Q.; Rahim, N.A.A.; Noort, D.V.; Yu, H. Towards a human-on-chip: Culturing multiple cell types on a chip with compartmentalized microenvironments. Lab Chip 2009, 9, 3185–3192. [Google Scholar] [CrossRef]
- Huh, D.; Matthews, B.D.; Mammoto, A.; Montoya-Zavala, M.; Hsin, H.Y.; Ingber, D.E. Reconstituting organ-level lung functions on a chip. Science 2010, 328, 1662–1668. [Google Scholar] [CrossRef] [Green Version]
- Huh, D.; Leslie, D.C.; Matthews, B.D.; Fraser, J.P.; Jurek, S.; Hamiton, G.A.; Throneloe, K.S.; Mcalexander, M.A.; Ingber, D.E. A human disease model of drug toxicity–induced pulmonary edema in a lung-on-a-chip microdevice. Sci. Transl. Med. 2012, 4, 147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Toh, Y.C.; Lim, T.C.; Tai, D.; Xiao, G.F.; Noort, D.V.; Yu, H. A microfluidic 3D hepatocyte chip for drug toxicity testing. Lab Chip 2009, 9, 2026–2035. [Google Scholar] [CrossRef] [PubMed]
- Fu, F.F.; Shang, L.R.; Chen, Z.Y.; Yu, Y.R.; Zhao, Y.J. Bioinspired living structural color hydrogels. Sci. Robot. 2018, 3, 8580. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, H.; Liu, Y.X.; Chen, Z.Y.; Sun, L.Y.; Zhao, Y.J. Anisotropic structural color particles from colloidal phase separation. Sci. Adv. 2020, 6, 1438. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, H.; Zhao, Z.; Liu, Y.X.; Shao, C.M.; Boan, F.K.; Zhao, Y.J. Biomimetic enzyme cascade reaction system in microfluidic electrospray microcapsules. Sci. Adv. 2018, 4, 2816. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Functional Group Category | Single Structural Formula | Polymer Structural Formula |
---|---|---|
Vinyl | ||
Acrylic class | ||
Acrylamide | ||
Acrylates |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Su, C.; Chen, Y.; Tian, S.; Lu, C.; Huang, W.; Lv, Q. Current Understanding of the Applications of Photocrosslinked Hydrogels in Biomedical Engineering. Gels 2022, 8, 216. https://doi.org/10.3390/gels8040216
Liu J, Su C, Chen Y, Tian S, Lu C, Huang W, Lv Q. Current Understanding of the Applications of Photocrosslinked Hydrogels in Biomedical Engineering. Gels. 2022; 8(4):216. https://doi.org/10.3390/gels8040216
Chicago/Turabian StyleLiu, Juan, Chunyu Su, Yutong Chen, Shujing Tian, Chunxiu Lu, Wei Huang, and Qizhuang Lv. 2022. "Current Understanding of the Applications of Photocrosslinked Hydrogels in Biomedical Engineering" Gels 8, no. 4: 216. https://doi.org/10.3390/gels8040216
APA StyleLiu, J., Su, C., Chen, Y., Tian, S., Lu, C., Huang, W., & Lv, Q. (2022). Current Understanding of the Applications of Photocrosslinked Hydrogels in Biomedical Engineering. Gels, 8(4), 216. https://doi.org/10.3390/gels8040216