Influence of Levan on the Thermally Induced Gel Formation of β-Lactoglobulin
Abstract
:1. Introduction
- Heat-induced aggregation of β-lg enhances the segregative forces between β-lg and levan, due to the excluded volume effect.
- A higher levan content and molecular weight promotes phase separation between β-lg and levan, and therefore, the formation of phase-separated networks.
- A higher ionic strength promotes phase separation since the reduced electrostatic repulsion between the β-lg molecules facilitates the accumulation of the protein.
2. Results and Discussion
2.1. Heat Induced Gelation
2.2. Water Binding
2.3. Phase Behavior and Network Structure
2.3.1. Rheology
2.3.2. Microstructure
3. Conclusions
4. Materials and Methods
4.1. β-Lactoglobulin and Levan Production
4.2. Sample Preparation
4.3. Rheological Measurements
4.4. Scanning Electron Microscopy (SEM)
4.5. NMR
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hundschell, C.S.; Bäther, S.; Drusch, S.; Wagemans, A.M. Osmometric and viscometric study of levan, β-lactoglobulin and their mixtures. Food Hydrocoll. 2020, 101, 105580. [Google Scholar] [CrossRef]
- Mohanan, A.; Nickerson, M.T.; Ghosh, S. Utilization of pulse protein-xanthan gum complexes for foam stabilization: The effect of protein concentrate and isolate at various pH. Food Chem. 2020, 316, 126282. [Google Scholar] [CrossRef] [PubMed]
- Behrouzain, F.; Razavi, S.M.A.; Joyner, H. Mechanisms of whey protein isolate interaction with basil seed gum: Influence of pH and protein-polysaccharide ratio. Carbohydr. Polym. 2020, 232, 115775. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Chen, J.; Hemar, Y.; Cui, B. Improvement of the rheological and textural properties of calcium sulfate-induced soy protein isolate gels by the incorporation of different polysaccharides. Food Chem. 2020, 310, 125983. [Google Scholar] [CrossRef] [PubMed]
- Gentile, L. Protein–polysaccharide interactions and aggregates in food formulations. Curr. Opin. Colloid Interface Sci. 2020, 48, 18–27. [Google Scholar] [CrossRef]
- Doublier, J.L.; Garnier, C.; Renard, D.; Sanchez, C. Protein-polysaccharide interactions. Curr. Opin. Colloid Interface Sci. 2000, 5, 202–214. [Google Scholar] [CrossRef]
- Tolstoguzov, V.B. Functional properties of food proteins and role of protein-polysaccharide interaction. Food Hydrocoll. 1991, 4, 429–468. [Google Scholar] [CrossRef]
- De Kruif, C.G.; Tuinier, R. Polysaccharide protein interactions. Food Hydrocoll. 2001, 15, 555–563. [Google Scholar] [CrossRef]
- Zasypkin, D.V.; Braudo, E.E.; Tolstoguzov, V.B. Multicomponent biopolymer gels. Food Hydrocoll. 1997, 11, 159–170. [Google Scholar] [CrossRef]
- Tolstoguzov, V.B. Some physico-chemical aspects of protein processing in foods. Multicomponent gels. Top. Catal. 1995, 9, 317–332. [Google Scholar] [CrossRef]
- Morris, V.J.; Wilde, P.J. Interactions of food biopolymers. Curr. Opin. Colloid Interface Sci. 1997, 2, 567–572. [Google Scholar] [CrossRef]
- Turgeon, S.L.; Beaulieu, M.; Schmitt, C.; Sanchez, C. Protein-polysaccharide interactions: Phase-ordering kinetics, thermodynamic and structural aspects. Curr. Opin. Colloid Interface Sci. 2003, 8, 401–414. [Google Scholar] [CrossRef]
- Banerjee, S.; Bhattacharya, S. Food Gels: Gelling Process and New Applications. Crit. Rev. Food Sci. Nutr. 2012, 52, 334–346. [Google Scholar] [CrossRef] [PubMed]
- Aymard, P.; Durand, D.; Nicolai, T. The effect of temperature and ionic strength on the dimerisation of β-lactoglobulin. Int. J. Biol. Macromol. 1996, 19, 213–221. [Google Scholar] [CrossRef]
- Kinsella, J.E.; Whitehead, D.M. Proteins in whey: Chemical, physical, and functional properties. Adv. Food Nutr. Res. 1989, 33, 343–438. [Google Scholar]
- Alting, A.C.; De Jongh, H.H.J.; Visschers, R.W.; Simons, J.W.F.A. Physical and chemical interactions in cold gelation of food proteins. J. Agric. Food Chem. 2002, 50, 4682–4689. [Google Scholar] [CrossRef]
- Li, X.; Mao, L.; He, X.; Ma, P.; Gao, Y.; Yuan, F. Characterization of β-lactoglobulin gels induced by high pressure processing. Innov. Food Sci. Emerg. Technol. 2018, 47, 335–345. [Google Scholar] [CrossRef]
- Stading, M.; Hermansson, A.M. Viscoelastic behaviour of β-lactoglobulin gel structures. Top. Catal. 1990, 4, 121–135. [Google Scholar] [CrossRef]
- Twomey, M.; Keogh, M.K.; Mehra, R.; O’Kennedy, B.T. Gel characteristics of β-lactoglobulin, whey protein concentrate and whey protein isolate. J. Texture Stud. 1997, 28, 387–403. [Google Scholar] [CrossRef]
- Stading, M.; Langton, M.; Hermansson, A. Small and large deformation studies of protein gels. J. Rheol. 1995, 39, 1445–1450. [Google Scholar] [CrossRef]
- Stading, M.; Langton, M.; Hermansson, A.M. Microstructure and rheological behaviour of particulate β-lactoglobulin gels. Top. Catal. 1993, 7, 195–212. [Google Scholar] [CrossRef]
- Dumay, E.; Laligant, A.; Zasypkin, D.; Cheftel, J.C. Pressure- and heat-induced gelation of mixed β-lactoglobulin/polysaccharide solutions: Scanning electron microscopy of gels. Food Hydrocoll. 1999, 13, 339–351. [Google Scholar] [CrossRef]
- Rafe, A.; Razavi, S.M.A.; Farhoosh, R. Rheology and microstructure of basil seed gum and β-lactoglobulin mixed gels. Food Hydrocoll. 2013, 30, 134–142. [Google Scholar] [CrossRef]
- Jakob, F.; Meißner, D.; Vogel, R.F. Comparison of novel GH 68 levansucrases of levan-overproducing Gluconobacter species. Acetic Acid Bact. 2012, 1, 6–14. [Google Scholar] [CrossRef] [Green Version]
- Tieking, M.; Ehrmann, M.A.; Vogel, R.F.; Gänzle, M.G. Molecular and functional characterization of a levansucrase from the sourdough isolate Lactobacillus sanfranciscensis TMW 1.392. Appl. Microbiol. Biotechnol. 2005, 66, 655–663. [Google Scholar] [CrossRef] [PubMed]
- Jakob, F.; Quintero, Y.; Musacchio, A.; Estrada-de los Santos, P.; Hernández, L.; Vogel, R.F. Acetic acid bacteria encode two levansucrase types of different ecological relationship. Environ. Microbiol. 2019, 21, 4151–4165. [Google Scholar] [CrossRef] [Green Version]
- Van Hijum, S.A.F.T.; Bonting, K.; Van Der Maarel, M.J.E.C.; Dijkhuizen, L. Purification of a novel fructosyltransferase from Lactobacillus reuteri strain 121 and characterization of the levan produced. FEMS Microbiol. Lett. 2001, 205, 323–328. [Google Scholar] [CrossRef]
- Korakli, M.; Pavlovic, M.; Gänzle, M.G.; Vogel, R.F. Exopolysaccharide and kestose production by Lactobacillus sanfranciscensis LTH2590. Appl. Environ. Microbiol. 2003, 69, 2073–2079. [Google Scholar] [CrossRef] [Green Version]
- Galle, S.; Arendt, E.K. Exopolysaccharides from Sourdough Lactic Acid Bacteria. Crit. Rev. Food Sci. Nutr. 2014, 54, 891–901. [Google Scholar] [CrossRef]
- Fels, L.; Jakob, F.; Vogel, R.F.; Wefers, D. Structural characterization of the exopolysaccharides from water kefir. Carbohydr. Polym. 2018, 189, 296–303. [Google Scholar] [CrossRef]
- Jakob, F.; Pfaff, A.; Novoa-Carballal, R.; Rübsam, H.; Becker, T.; Vogel, R.F. Structural analysis of fructans produced by acetic acid bacteria reveals a relation to hydrocolloid function. Carbohydr. Polym. 2013, 92, 1234–1242. [Google Scholar] [CrossRef] [PubMed]
- Ua-Arak, T.; Jakob, F.; Vogel, R.F. Influence of levan-producing acetic acid bacteria on buckwheat-sourdough breads. Food Microbiol. 2017, 65, 95–104. [Google Scholar] [CrossRef] [PubMed]
- Ua-Arak, T.; Jakob, F.; Vogel, R.F. Fermentation pH modulates the size distributions and functional properties of Gluconobacter albidus TMW 2.1191 levan. Front. Microbiol. 2017, 8, 807. [Google Scholar] [CrossRef] [PubMed]
- Ua-Arak, T.; Jakob, F.; Vogel, R.F. Characterization of growth and exopolysaccharide production of selected acetic acid bacteria in buckwheat sourdoughs. Int. J. Food Microbiol. 2016, 239, 103–112. [Google Scholar] [CrossRef]
- Jakob, F.; Steger, S.; Vogel, R.F. Influence of novel fructans produced by selected acetic acid bacteria on the volume and texture of wheat breads. Eur. Food Res. Technol. 2012, 234, 493–499. [Google Scholar] [CrossRef]
- Banguela, A.; Hernandez, L. Fructans: From natural surces to transgenic plants. Biotecnol. Apl. 2006, 23, 202–210. [Google Scholar]
- Hundschell, C.S.; Wagemans, A.M. Rheology of common uncharged exopolysaccharides for food applications. Curr. Opin. Food Sci. 2019, 27, 1–7. [Google Scholar] [CrossRef]
- Hundschell, C.S.; Jakob, F.; Wagemans, A.M. Molecular weight dependent structure of the exopolysaccharide levan. Int. J. Biol. Macromol. 2020, 161, 398–405. [Google Scholar] [CrossRef]
- Hundschell, C.S.; Braun, A.; Wefers, D.; Vogel, R.F.; Jakob, F. Size-Dependent Variability in Flow and Viscoelastic Behavior of Levan Produced by Gluconobacter albidus. Foods 2020, 9, 192. [Google Scholar] [CrossRef] [Green Version]
- Renard, D.; Van De Velde, F.; Visschers, R.W. The gap between food gel structure, texture and perception. Food Hydrocoll. 2006, 20, 423–431. [Google Scholar] [CrossRef]
- De la Fuente, M.A.; Singh, H.; Hemar, Y. Recent advances in the characterisation of heat-induced aggregates and intermediates of whey proteins. Trends Food Sci. Technol. 2002, 13, 262–274. [Google Scholar] [CrossRef]
- Langton, M.; Hermansson, A.M. Fine-stranded and particulate gels of β-lactoglobulin and whey protein at varying pH. Top. Catal. 1992, 5, 523–539. [Google Scholar] [CrossRef]
- Renard, D.; Lefebvre, J. Gelation of globular proteins: Effect of pH and ionic strength on the critical concentration for gel formation. A simple model and its application to β-lactoglobulin heat-induced gelation. Int. J. Biol. Macromol. 1992, 14, 291. [Google Scholar] [CrossRef]
- Tavares, C.; Monteiro, S.R.; Moreno, N.; Lopes Da Silva, J.A. Does the branching degree of galactomannans influence their effect on whey protein gelation? Colloids Surf. A Physicochem. Eng. Asp. 2005, 270–271, 213–219. [Google Scholar] [CrossRef]
- Monteiro, S.R.; Tavares, C.; Evtuguin, D.V.; Moreno, N.; Lopes da Silva, J.A. Influence of galactomannans with different molecular weights on the gelation of whey proteins at neutral pH. Biomacromolecules 2005, 6, 3291–3299. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, S.R.; Lopes-da-Silva, J.A. Effect of the molecular weight of a neutral polysaccharide on soy protein gelation. Food Res. Int. 2017, 102, 14–24. [Google Scholar] [CrossRef] [PubMed]
- Tavares, C.; Lopes Da Silva, J.A. Rheology of galactomannan-whey protein mixed systems. Int. Dairy J. 2003, 13, 699–706. [Google Scholar] [CrossRef]
- Beaulieu, M.; Turgeon, S.L.; Doublier, J.L. Rheology, texture and microstructure of whey proteins/low methoxyl pectins mixed gels with added calcium. Int. Dairy J. 2001, 11, 961–967. [Google Scholar] [CrossRef]
- Bryant, C.M.; McClements, D.J. Influence of xanthan gum on physical characteristics of heat-denatured whey protein solutions and gels. Food Hydrocoll. 2000, 14, 383–390. [Google Scholar] [CrossRef]
- van den Berg, L.; Rosenberg, Y.; van Boekel, M.A.J.S.; Rosenberg, M.; van de Velde, F. Microstructural features of composite whey protein/polysaccharide gels characterized at different length scales. Food Hydrocoll. 2009, 23, 1288–1298. [Google Scholar] [CrossRef]
- Rodríguez-Alonso, E.; Vergeldt, F.J.; van der Goot, A.J. TD-NMR to understand water-binding food properties. Magn. Reson. Chem. 2019, 57, 603–606. [Google Scholar] [CrossRef] [Green Version]
- Ruan, R.R.; Chen, P.L. Water in Foods an Biological Materials: A NMR Approach; Technomic Publishing: Lancaster, UK, 1998; pp. 149–228. ISBN 2013206534. [Google Scholar]
- Esselink, E.; Van Aalst, H.; Maliepaard, M.; Henderson, T.M.H.; Hoekstra, N.L.L.; Van Duynhoven, J. Impact of industrial dough processing on structure: A rheology, nuclear magnetic resonance, and electron microscopy study. Cereal Chem. 2003, 80, 419–423. [Google Scholar] [CrossRef]
- Wangler, J.; Kohlus, R. Development and Validation of Methods to Characterize Rehydration Behavior of Food Hydrocolloids. Food Hydrocoll. 2018, 82, 500–509. [Google Scholar] [CrossRef]
- Williams, P.D.; Oztop, M.H.; Mccarthy, M.J.; Mccarthy, K.L.; Lo, Y.M. Characterization of water distribution in xanthan-curdlan hydrogel complex using magnetic resonance imaging, nuclear magnetic resonance relaxometry, rheology, and scanning electron microscopy. J. Food Sci. 2011, 76, 472–478. [Google Scholar] [CrossRef] [PubMed]
- Ozel, B.; Uguz, S.S.; Kilercioglu, M.; Grunin, L.; Oztop, M.H. Effect of different polysaccharides on swelling of composite whey protein hydrogels: A low field (LF) NMR relaxometry study. J. Food Process Eng. 2017, 40, e12465. [Google Scholar] [CrossRef]
- Borzacchiello, A.; Sala, F.D.; Ambrosio, L.A. Rheometry of Polymeric Biomaterials. In Characterization of Polymeric Biomaterials; Woodhead Publishing: Witney, UK, 2017; pp. 233–253. [Google Scholar]
- Tunick, M.H. Small-strain dynamic rheology of food protein networks. J. Agric. Food Chem. 2011, 59, 1481–1486. [Google Scholar] [CrossRef]
- Nicolai, T. Gelation of food protein-protein mixtures. Adv. Colloid Interface Sci. 2019, 270, 147–164. [Google Scholar] [CrossRef]
- Ikeda, S.; Foegeding, E.A.; Hagiwara, T. Rheological study on the fractal nature of the protein gel structure. Langmuir 1999, 15, 8584–8589. [Google Scholar] [CrossRef]
- Mehalebi, S.; Nicolai, T.; Durand, D. The influence of electrostatic interaction on the structure and the shear modulus of heat-set globular protein gels. Soft Matter 2008, 4, 893–900. [Google Scholar] [CrossRef]
- Morris, E.R. Functional Interactions in Gelling Biopolymer Mixtures. In Modern Biopolymer Science: Bridging the Divide between Fundamental Treatise and Industrial Application, 1st ed.; Elsevier Inc.: San Diego, CA, USA, 2009; pp. 167–198. [Google Scholar]
- Keppler, J.K.; Sönnichsen, F.D.; Lorenzen, P.C.; Schwarz, K. Differences in heat stability and ligand binding among β-lactoglobulin genetic variants A, B and C using 1H NMR and fluorescence quenching. Biochim. Biophys. Acta 2014, 1844, 1083–1093. [Google Scholar] [CrossRef]
- Marino, I.-G. Rilt Regularized Inverse Laplace Transformation (2007) 1.0.0.0 (4.39 KB). 2007. Available online: https://de.mathworks.com/matlabcentral/fleexchange/6523-rilt (accessed on 1 March 2018).
Sample | G′ω = 0.45 (10−3 Pa) | G″ω = 0.45 (10−3 Pa) | tan(δ)ω = 0.45 (-) | n (-) |
---|---|---|---|---|
β-lg 10 mM | 1.6 ± 0.3 | 0.18 ± 0.01 | 0.11 ± 0.02 | 0.071 ± 0.009 |
+1% Lev4 | 3.6 ± 0.7 | 0.30 ± 0.02 | 0.09 ± 0.02 | 0.054 ± 0.008 |
+2% Lev4 | 5.1 ± 0.1 | 0.38 ± 0.01 | 0.07 ± 0.00 | 0.048 ± 0.000 |
+3% Lev4 | 11.4 ± 1.2 | 0.83 ± 0.11 | 0.07 ± 0.00 | 0.047 ± 0.001 |
+5% Lev4 | 6.8 ± 0.4 | 0.51 ± 0.03 | 0.08 ± 0.00 | 0.048 ± 0.000 |
+3% LevF | 2.9 ± 0.5 | 0.25 ± 0.03 | 0.09 ± 0.00 | 0.055 ± 0.004 |
+3% Lev5 | 9.5 ± 1.0 | 0.64 ± 0.09 | 0.07 ± 0.00 | 0.041 ± 0.001 |
β-lg 100 mM | 75.6 ± 15.4 | 8.06 ± 1.76 | 0.11 ± 0.00 | 0.071 ± 0.001 |
+1% Lev4 | 115.5 ± 1.6 | 13.28 ± 0.15 | 0.12 ± 0.00 | 0.071 ± 0.001 |
+2% Lev4 | 122.7 ± 1.4 | 14.13 ± 0.32 | 0.12 ± 0.00 | 0.070 ± 0.000 |
+3% Lev4 | 40.0 ± 7.5 | 4.54 ± 0.83 | 0.11 ± 0.00 | 0.068 ± 0.000 |
+5% Lev4 | 22.0 ± 0.9 | 2.40 ± 0.09 | 0.11 ± 0.00 | 0.068 ± 0.000 |
+3% LevF | 33.5 ± 1.4 | 3.59 ± 0.16 | 0.11 ± 0.00 | 0.068 ± 0.000 |
+3% Lev5 | 82.5 ± 11.3 | 9.18 ± 1.35 | 0.11 ± 0.00 | 0.071 ± 0.000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hundschell, C.S.; Brühan, J.; Anzmann, T.; Kohlus, R.; Wagemans, A.M. Influence of Levan on the Thermally Induced Gel Formation of β-Lactoglobulin. Gels 2022, 8, 228. https://doi.org/10.3390/gels8040228
Hundschell CS, Brühan J, Anzmann T, Kohlus R, Wagemans AM. Influence of Levan on the Thermally Induced Gel Formation of β-Lactoglobulin. Gels. 2022; 8(4):228. https://doi.org/10.3390/gels8040228
Chicago/Turabian StyleHundschell, Christoph S., Juliane Brühan, Theresa Anzmann, Reinhard Kohlus, and Anja M. Wagemans. 2022. "Influence of Levan on the Thermally Induced Gel Formation of β-Lactoglobulin" Gels 8, no. 4: 228. https://doi.org/10.3390/gels8040228
APA StyleHundschell, C. S., Brühan, J., Anzmann, T., Kohlus, R., & Wagemans, A. M. (2022). Influence of Levan on the Thermally Induced Gel Formation of β-Lactoglobulin. Gels, 8(4), 228. https://doi.org/10.3390/gels8040228