Circular Economy of Coal Fly Ash and Silica Geothermal for Green Geopolymer: Characteristic and Kinetic Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Dry Activator Synthesis
2.3. Production of Geopolymer Mortar
2.4. Instrumental Analysis
3. Results and Discussion
3.1. Raw Materials
3.2. Dry Activator
3.3. Compressive Strength
3.4. ATR-FTIR Analysis and Effect of Curing Temperature on Geopolymer Kinetics
3.5. Geopolymerization Kinetics
3.6. Limitations in This Study
3.7. Circular Economy: An Approach in Coal Fly Ash and Silica Geothermal in Green Geopolymer
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Petrus, H.T.B.M.; Olvianas, M.; Suprapta, W.; Setiawan, F.A.; Prasetya, A.; Sutijan, S.; Anggara, F. Cenospheres characterization from Indonesian coal-fired power plant fly ash and their potential utilization. J. Environ. Chem. Eng. 2020, 8, 104116. [Google Scholar] [CrossRef]
- Matzenbacher, C.A.; Ana Letícia, H.G.; Marcela Silva, D.S.; Nicolau, C.C.; Premoli, S.; Corrêa, D.S.; Telles de Souza, C.; Niekraszewicz, L.; Dias, J.F.; Delgado, T.V.; et al. DNA Damage Induced by Coal Dust, Fly and Bottom Ash from Coal Combustion Evaluated Using the Micronucleus Test and Comet Assay in Vitro. J. Hazard. Mater. 2017, 324, 781–788. [Google Scholar] [CrossRef] [PubMed]
- Xie, T.; Ozbakkaloglu, T. Behavior of Low-Calcium Fly and Bottom Ash-Based Geopolymer Concrete Cured at Ambient Temperature. Ceram. Int. 2015, 41, 5945–5958. [Google Scholar] [CrossRef]
- Huang, X.; Hu, J.; Qin, F.; Quan, W.; Cao, R.; Fan, M.; Wu, X. Heavy metal pollution and ecological assessment around the Jinsha coal-fired power plant (China). Int. J. Environ. Res. Public Health 2017, 14, 1589. [Google Scholar] [CrossRef] [Green Version]
- Verma, C.; Madan, S.; Hussain, A. Heavy metal contamination of groundwater due to fly ash disposal of coal-fired thermal power plant, Parichha, Jhansi, India. Cogent Eng. 2016, 3, 1179243. [Google Scholar] [CrossRef]
- Wang, N.; Sun, X.; Zhao, Q.; Yang, Y.; Wang, P. Leachability and adverse effects of coal fly ash: A review. J. Hazard. Mater. 2020, 396, 122725. [Google Scholar] [CrossRef] [PubMed]
- Ahmaruzzaman, M. A review on the utilization of fly ash. Prog. Energy Combust. Sci. 2010, 36, 327–363. [Google Scholar] [CrossRef]
- Xu, G.; Shi, X. Characteristics and Applications of Fly Ash as a Sustainable Construction Material: A state-of-the-Art Review. Resour. Conserv. Recycl. 2018, 136, 95–109. [Google Scholar] [CrossRef]
- Wang, N.; Sun, X.; Zhao, Q.; Yang, Y.; Wang, P. Treatment of polymer-flooding wastewater by a modified coal fly ash-catalysed Fenton-like process with microwave pre-enhancement: System parameters, kinetics, and proposed mechanism. Chem. Eng. J. 2021, 406, 126734. [Google Scholar] [CrossRef]
- Astuti, W.; Chafid, A.; Wahyuni, E.T.; Prasetya, A.; Bendiyasa, I.M.; Abasaeed, A.E. Methyl violet dye removal using coal fly ash (CFA) as a dual sites adsorbent. J. Environ. Chem. Eng. 2019, 7, 103262. [Google Scholar] [CrossRef]
- Prihutami, P.; Prasetya, A.; Sediawan, W.B.; Petrus, H.T.B.M.; Anggara, F. Study on Rare Earth Elements Leaching from Magnetic Coal Fly Ash by Citric Acid. J. Sustain. Met. 2021, 7, 1241–1253. [Google Scholar] [CrossRef]
- Manurung, H.; Rosita, W.; Bendiyasa, I.M.; Prasetya, A.; Anggara, F.; Astuti, W.; Djuanda, D.R.; Petrus, H.T.B.M. Recovery of Rare Earth Element and Yttrium from Non-magnetic Coal Fly Ash Using Acetic Acid Solution. J. Metal. Ind. 2020, 42, 35–42. [Google Scholar] [CrossRef]
- Rosita, W.; Besari, D.A.A.; Bendiyasa, I.M.; Perdana, I.; Anggara, F.; Petrus, H.T.B.M. Potency of Rare Earth Elements and Yttrium in Indonesia Coal Ash. Key. Eng. Mat. 2020, 849, 102–107. [Google Scholar] [CrossRef]
- Petrus, H.T.B.M.; Hirajima, T.; Oosako, Y.; Nonaka, M.; Sasaki, K.; Ando, T. Performance of dry separation processes in the recovery of cenospheres from fly ash and their implementation in a recovery unit. Int. J. Miner. Proc. 2011, 98, 15–23. [Google Scholar] [CrossRef]
- Hirajima, T.; Oosako, Y.; Nonaka, M.; Petrus, H.T.B.M.; Sasaki, K.; Ando, T. Recovery of Hollow and Spherical Particles from Coal Fly Ash by Wet Separation Process. J. MMIJ 2008, 124, 878–884. [Google Scholar] [CrossRef] [Green Version]
- Hirajima, T.; Petrus, H.T.B.M.; Oosako, Y.; Nonaka, M.; Sasaki, K.; Ando, T. Recovery of cenospheres from coal fly ash using a dry separation process: Separation estimation and potential application. Int. J. Min. Proc. 2010, 95, 18–24. [Google Scholar] [CrossRef]
- Palomo, A.; Grutzeck, M.W.; Blanco, M.T. Alkali-activated fly ashes: A cement for the future. Cem. Concr. Res. 1999, 29, 1323–1329. [Google Scholar] [CrossRef]
- Heah, C.Y.; Kamarudin, H.; Mustafa Al Bakri, A.M.; Bnhussain, M.; Luqman, M.; Khairul Nizar, I.; Ruzaidi, C.M.; Liew, Y.M. Study on solids-to-liquid and alkaline activator ratios on kaolin-based geopolymers. Construct. Build. Mater. 2012, 35, 912–922. [Google Scholar] [CrossRef]
- Xu, H.; Van Deventer, J.S.J. Geopolymerisation of multiple minerals. Miner. Eng. 2002, 15, 1131–1139. [Google Scholar] [CrossRef]
- Duxson, P.; Provis, J.L.; Lukey, G.C.; Mallicoat, S.W.; Kriven, W.M.; van Deventer, J.S.J. Understanding the relationship between geopolymer composition, microstructure and mechanical properties. Colloids Surf. A Physicochem. Eng. 2005, 269, 47–58. [Google Scholar] [CrossRef]
- Stevenson, M.; Sagoe-Crenstil, K. Relationship between Composition, Structure, and Strength of Inorganic Polymers: Part 1—Metakaolin derived Inorganic Polymers. J. Mater. Sci. 2005, 40, 2023–2036. [Google Scholar] [CrossRef]
- De Silva, P.; Sagoe-Crenstil, K.; Sirivivatnanon, V. Kinetics of geopolymerization: Role of Al2O3 and SiO2. Cem. Concr. Res. 2007, 37, 512–518. [Google Scholar] [CrossRef]
- Petrus, H.T.B.M.; Fairuz, I.F.; Sa’adan, N.; Olvianas, M.; Astuti, W.; Jenie, S.N.A.; Setiawan, F.A.; Anggara, F.; Ekaputri, J.J. Green geopolymer cement with dry activator from geothermal sludge and sodium hydroxide. J. Clean. Prod. 2021, 293, 126143. [Google Scholar] [CrossRef]
- Luukkonen, T.; Abdollahnejad, Z.; Yliniemi, J.; Kinnunen, P.; Illikainen, M. One-Part Alkali-Activated Materials: A Review. Cem. Concr. Res. 2018, 103, 21–34. [Google Scholar] [CrossRef]
- Wang, K.-T.; Du, L.-Q.; Lv, X.-S.; He, Y.; Cui, X.-M. Preparation of Drying Powder Inorganic Polymer Cement Based on Alkali-Activated Slag Technology. Powder Technol. 2017, 312, 204–209. [Google Scholar] [CrossRef]
- Telschow, S. Clinker Burning Kinetics and Mechanism. Ph.D. Thesis, Technical University of Denmark, Lyngby, Denmark, 2012. [Google Scholar]
- US EPA. Sector Strategies Performance Report; US Environmental Protection Agency: Washington, DC, USA, 2006; pp. 17–22. [Google Scholar]
- Turner, L.K.; Collins, F.G. Carbon dioxide equivalent (CO2-e) emissions: A comparison between geopolymer and OPC cement concrete. Construct. Build. Mater. 2013, 43, 125–130. [Google Scholar] [CrossRef]
- Ukritnukun, S.; Koshy, P.; Rawal, A.; Castel, A.; Sorrell, C.C. Predictive Model of Setting Times and Compressive Strengths for Low-Alkali, Ambient-Cured, Fly Ash/Slag-Based Geopolymers. Minerals 2020, 10, 920. [Google Scholar] [CrossRef]
- Occidental Chemical Corporation: Liquid Sodium Silicate—Alkaline, Safety Data Sheet. 2015. Available online: https://sds.oxy.com/ (accessed on 19 March 2022).
- Abdullah, M.M.A.B.; Razak, R.A.; Yahya, Z.; Hussin, K.; Ming, L.Y.; Ying, H.C.; Ahmad, M.I. Asas Geopolimer (Teori & Amali), 1st ed.; Unit Penerbitan Universiti Malaysia: Kuala Lumpur, Malaysia, 2013; pp. 25–36. [Google Scholar]
- Jenie, S.N.A.; Ghaisani, A.; Ningrum, Y.P.; Kristiani, A.; Aulia, F.; Petrus, H.T.B.M. Preparation of silica nanoparticles from geothermal sludge via sol-gel method. AIP Conf. Proc. 2018, 2026, 1–6. [Google Scholar]
- Nazari, A.; Sanjayan, J.G. Johnson-Mehl-Avrami-Kolmogorov equation for prediction of compressive strength evolution of geopolymer. Ceram. Int. 2015, 41, 3301–3304. [Google Scholar] [CrossRef]
- Khawam, A.; Flanagan, D. Solid-State Kinetic Models: Basics and Mathematical Fundamentals. J. Phys. Chem. B. 2006, 110, 17315–17328. [Google Scholar] [CrossRef]
- Vinai, R.; Soutsos, M. Production of sodium silicate powder from waste glass cullet for alkali activation of alternative binders. Cem. Concr. Res. 2019, 116, 45–56. [Google Scholar] [CrossRef] [Green Version]
- Gollakota, A.R.K.; Volli, V.; Shu, C.M. Progressive utilisation prospects of coal fly ash: A review. Sci. Total Environ. 2019, 672, 951–989. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Pour-ghaz, M. What Is the Role of Water in the Geopolymerization of Metakaolin? Construct. Build. Mater. 2018, 182, 360–370. [Google Scholar] [CrossRef]
- Dimas, D.D.; Giannopoulou, I.P.; Panias, D. Utilization of Alumina Red Mud for Synthesis of Inorganic Polymeric Materials. Miner. Process. Extr. Metall. Rev. 2009, 30, 211–239. [Google Scholar] [CrossRef]
- Adelizar, A.S.; Olvianas, M.; Adythia, D.M.; Shafiyurrahman, M.F.; Pratama, I.G.A.A.N.; Astuti, W.; Petrus, H.T.B.M. Fly Ash and Bottom Ash Utilization as Geopolymer: Correlation on Compressive Strength and Degree of Polymerization Observed using FTIR. IOP Conf. Ser. Mater. Sci. Eng. 2020, 742, 012042. [Google Scholar] [CrossRef]
- Isneini, M. Kerusakan dan Perkuatan Struktur Beton Bertulang. J. Rekayasa 2009, 13, 259–270. [Google Scholar]
- Ke, X.; Bernal, S.A.; Ye, N.; Provis, J.L.; Yang, J. One-part geopolymers based on thermally treated red Mud/NaOH blends. J. Am. Ceram. Soc. 2015, 98, 5–11. [Google Scholar] [CrossRef]
- Mozgawa, W.; Deja, J. Spectroscopic studies of alkaline activated slag geopolymers. J. Mol. Struct. 2009, 924–926, 434–441. [Google Scholar] [CrossRef]
- Rożek, P.; Król, M.; Mozgawa, W. Spectroscopic studies of fly ash-based geopolymers. Spectrochim. Acta Part. A Mol. Biomol. Spectrosc. 2018, 198, 283–289. [Google Scholar] [CrossRef]
- Fernández-Jiménez, A.; Palomo, A. Mid-infrared spectroscopic studies of alkali-activated fly ash structure. Microporous Mesoporous Mater. 2005, 86, 207–214. [Google Scholar] [CrossRef]
- Perez-cortes, P.; Cabrera-luna, K.; Escalante-garcia, J.I. Alkali-activated limestone / metakaolin cements exposed to high temperatures: Structural changes. Cem. Concr. Compos. 2021, 122, 104147. [Google Scholar] [CrossRef]
- Zhang, Z.; Provis, J.L.; Wang, H.; Bullen, F.; Reid, A. Quantitative kinetic and structural analysis of geopolymers. Part 2. Thermodynamics of sodium silicate activation of metakaolin. Thermochim. Acta 2013, 565, 163–171. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, H.; Provis, J.L.; Bullen, F.; Reid, A.; Zhu, Y. Quantitative kinetic and structural analysis of geopolymers. Part 1. the activation of metakaolin with sodium hydroxide. Thermochim. Acta 2012, 539, 23–33. [Google Scholar] [CrossRef]
- Villar-Cocina, E.; Frias Rojas, M.; Valencia Morales, E.; Savastano, H. Study of the Pozzolanic Reaction Kinetics in Sugar Cane Bagasse–clay Ash/Calcium Hydroxide System: Kinetic Parameters and Pozzolanic Activity. Adv. Cem. Res. 2009, 21, 23–30. [Google Scholar] [CrossRef]
- Khawam, A.; Flanagan, D.S. Basics and Applications of Solid-State Kinetics: A Pharmaceutical Perspective. J. Pharm. Sci. 2006, 95, 472–498. [Google Scholar] [CrossRef] [PubMed]
- Verdolotti, L.; Iannace, S.; Lavorgna, M.; Lamanna, R. Geopolymerization reaction to consolidate incoherent pozzolanic soil. J. Mater. Sci. 2008, 43, 865–873. [Google Scholar] [CrossRef]
- Dakhane, A.; Madavarapu, S.B.; Marzke, R.; Neithalath, N. Time, Temperature, and Cationic Dependence of Alkali Activation of Slag: Insights from Fourier Transform Infrared Spectroscopy and Spectral Deconvolution. Appl. Spectrosc. 2017, 71, 1795–1807. [Google Scholar] [CrossRef]
- Petrus, H.T.B.M.; Adelizar, A.S.; Widiyatmoko, A.; Olvianas, M.; Suprapta, W.; Perdana, I.; Prasetya, A.; Astuti, W. Kinetics of Fly Ash Geopolymerization using Semi-Quantitative Fourier-Transform Infrared Spectroscopy (FTIR); Corr Data. In Proceedings of the 4th International Conference on Science, Technology and Interdisciplinary Research (IC-STAR 2018), Bangka-Belitung, Indonesia, 29–30 August 2018; Volume 532. [Google Scholar]
- Monteiro, P.J.M.; Miller, S.A.; Horvath, A. Towards sustainable concrete. Nat. Mater. 2017, 16, 698–699. [Google Scholar] [CrossRef]
Aspect | Wet Activator | Dry Activator | References |
---|---|---|---|
Temperature | Using room temperature to synthesize activator | Using room temperature to synthesize activator. | [23] |
Carbon Emission | Higher emission for providing sodium silicate | No sodium silicate is needed, thus lower emission. | [28] |
Reaction rate | Faster, direct ionization of pozzolan material with wet activator. | The slower needs to dissolve the solid activator first to react with pozzolan material fully. | - |
Transport | Requires special and more expensive material to transport liquid activator. | Could be transported with regular OPC transporter facilities. | [23] |
Setting time | Faster, only 5–58 min. | The initial setting time range from 60 to 120 min. | [29] |
Safety | Contains high alkali (11.4–12.9) and high density (up to 1570 kg/m3 liquid) more hazardous for the worker. | It contains irritant solid, like OPC. Less hazardous for the worker. | [30] |
Casting | Need to calculate the ratio of alkali activator solution and the pozzolan material. | Only need a ratio of water: cement. | [31] |
Chemical Composition | Fe | Ca | Si | Al | K | Ti | S | Others |
---|---|---|---|---|---|---|---|---|
Concentration (%wt) | 40.67 | 29.02 | 18.32 | 6.12 | 2.02 | 1.40 | 1.06 | 1.40 |
Oxide Composition | SiO2 | Fe2O3 | PbO | Sb2O3 | CuO | Others |
---|---|---|---|---|---|---|
Concentration (%wt) | 99.52 | 0.35 | 0.02 | 0.02 | 0.02 | 0.06 |
Phase | Amorphous Phase | Sodium Metasilicate (Na2SiO3) |
---|---|---|
Concentration (%wt.) | 78.86 | 21.14 |
Kinetics Model | R-Square | Reaction Constant (k) (Day−1) | ||||
---|---|---|---|---|---|---|
30 °C | 60 °C | 90 °C | 30 °C | 60 °C | 90 °C | |
Avrami | 0.9565 | 0.9565 | 0.8895 | 0.0288 | 0.0392 | 0.0467 |
Geometric Contraction | 0.9557 | 0.9557 | 0.8872 | 0.0096 | 0.0130 | 0.0155 |
Diffusion | 0.9557 | 0.9557 | 0.8872 | 0.0001 | 0.0002 | 0.0002 |
Third order | 0.9024 | 0.9714 | 0.9605 | 0.2423 | 0.2839 | 0.3112 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petrus, H.T.B.M.; Olvianas, M.; Shafiyurrahman, M.F.; Pratama, I.G.A.A.N.; Jenie, S.N.A.; Astuti, W.; Nurpratama, M.I.; Ekaputri, J.J.; Anggara, F. Circular Economy of Coal Fly Ash and Silica Geothermal for Green Geopolymer: Characteristic and Kinetic Study. Gels 2022, 8, 233. https://doi.org/10.3390/gels8040233
Petrus HTBM, Olvianas M, Shafiyurrahman MF, Pratama IGAAN, Jenie SNA, Astuti W, Nurpratama MI, Ekaputri JJ, Anggara F. Circular Economy of Coal Fly Ash and Silica Geothermal for Green Geopolymer: Characteristic and Kinetic Study. Gels. 2022; 8(4):233. https://doi.org/10.3390/gels8040233
Chicago/Turabian StylePetrus, Himawan Tri Bayu Murti, Muhammad Olvianas, Muhammad Faiz Shafiyurrahman, I Gusti Agung Arvin Nanda Pratama, Siti Nurul Aisyiyah Jenie, Widi Astuti, Muhammad Istiawan Nurpratama, Januarti Jaya Ekaputri, and Ferian Anggara. 2022. "Circular Economy of Coal Fly Ash and Silica Geothermal for Green Geopolymer: Characteristic and Kinetic Study" Gels 8, no. 4: 233. https://doi.org/10.3390/gels8040233
APA StylePetrus, H. T. B. M., Olvianas, M., Shafiyurrahman, M. F., Pratama, I. G. A. A. N., Jenie, S. N. A., Astuti, W., Nurpratama, M. I., Ekaputri, J. J., & Anggara, F. (2022). Circular Economy of Coal Fly Ash and Silica Geothermal for Green Geopolymer: Characteristic and Kinetic Study. Gels, 8(4), 233. https://doi.org/10.3390/gels8040233