Nano Matrix Soft Confectionary for Oral Supplementation of Vitamin D: Stability and Sensory Analysis
Abstract
:1. Introduction
2. Materials
3. Experimental Design
3.1. Preparation and Optimization of Vitamin D Nanoemulsion
3.2. Characterization of Vitamin D Nanoemulsion
3.3. Stability Study of Vitamin D Nanoemulsion
3.4. Soft Confectionary (Nano Gummy) Preparation
3.5. Texture Profile Analysis of Nano Gummy
3.6. Sensory Evaluation of Nano Gummy
4. Results
4.1. Preparation and Optimization of Vitamin D Nanoemulsion
4.2. Characterization of Vitamin D Nanoemulsion
4.3. Stability Study of Vitamin D Nanoemulsion
4.4. Texture Analysis
4.5. Sensory Analysis
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Demer, L.L.; Hsu, J.J.; Tintut, Y. Steroid hormone vitamin D: Implications for cardiovascular disease. Circ. Res. 2018, 122, 1576–1585. [Google Scholar] [CrossRef] [PubMed]
- Holick, M.F. Vitamin D deficiency. N. Engl. J. Med. 2007, 357, 266–281. [Google Scholar] [CrossRef] [PubMed]
- Del Valle, H.B.; Yaktine, A.L.; Taylor, C.L.; Ross, A.C. Dietary Reference Intakes for Calcium and Vitamin D; National Academies Press: Washington, DC, USA, 2011. [Google Scholar]
- Holick, M.F.; Binkley, N.C.; Bischoff-Ferrari, H.A.; Gordon, C.M.; Hanley, D.A.; Heaney, R.P.; Murad, M.H.; Weaver, C.M. Evaluation, Treatment, and Prevention of Vitamin D Deficiency: An Endocrine Society Clinical Practice Guideline. J. Clin. Endocrinol. Metab. 2011, 96, 1911–1930. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- American Geriatrics Society Workgroup on Vitamin D Supplementation for Older Adults. Recommendations abstracted from the American Geriatrics Society consensus statement on vitamin D for prevention of falls and their consequences. J. Am. Geriatr. Soc. 2014, 62, 147–152. [Google Scholar] [CrossRef]
- Aparna, P.; Muthathal, S.; Nongkynrih, B.; Gupta, S.K. Vitamin D deficiency in India. J. Fam. Med. Prim. Care 2018, 7, 324–330. [Google Scholar] [CrossRef]
- Pilz, S.; Tomaschitz, A.; Drechsler, C.; Zittermann, A.; Dekker, J.M.; Marz, W. Vitamin D Supplementation: A Promising Approach for the Prevention and Treatment of Strokes. Curr. Drug Targets 2011, 12, 88–96. [Google Scholar] [CrossRef] [Green Version]
- Milaneschi, Y.; Hoogendijk, W.J.G.; Lips, P.; Heijboer, A.; Schoevers, R.; Van Hemert, A.M.; Beekman, A.T.F.; Smit, J.H.; Penninx, B.W.J.H. The association between low vitamin D and depressive disorders. Mol. Psychiatry 2014, 19, 444–451. [Google Scholar] [CrossRef]
- Sarris, J.; Murphy, J.; Mischoulon, D.; Papakostas, G.I.; Fava, M.; Berk, M.; Ng, C.H. Adjunctive Nutraceuticals for Depression: A Systematic Review and Meta-Analyses. Am. J. Psychiatry 2016, 173, 575–587. [Google Scholar] [CrossRef] [Green Version]
- Borkar, V.V.; Devidayal; Verma, S.; Bhalla, A.K. Low levels of vitamin D in North Indian children with newly diagnosed type 1 diabetes. Pediatr. Diabetes 2010, 11, 345–350. [Google Scholar] [CrossRef]
- Zipitis, C.S.; Akobeng, A.K. Vitamin D supplementation in early childhood and risk of type 1 diabetes: A systematic review and meta-analysis. Arch. Dis. Child. 2008, 93, 512–517. [Google Scholar] [CrossRef] [Green Version]
- Holick, M.F. A call to action: Pregnant women in-deed require vitamin D supplementation for better health outcomes. J. Clin. Endocrinol. Metab. 2019, 104, 13–15. [Google Scholar] [CrossRef] [PubMed]
- Van Schoor, N.; Lips, P. Global overview of vitamin D status. Endocrinol. Metab. Clin. 2017, 46, 845–870. [Google Scholar] [CrossRef] [PubMed]
- Lips, P.; Hosking, D.; Lippuner, K.; Norquist, J.; Wehren, L.; Maalouf, G.; Ragi-Eis, S.; Chandler, J. The prevalence of vitamin D inadequacy amongst women with osteoporosis: An international epidemiological investigation. J. Intern. Med. 2006, 260, 245–254. [Google Scholar] [CrossRef] [PubMed]
- Manson, J.E.; Brannon, P.M.; Rosen, C.J.; Taylor, C.L. Vitamin D deficiency-is there really a pandemic. N. Engl. J. Med. 2016, 375, 1817–1820. [Google Scholar] [CrossRef] [PubMed]
- Pereira-Santos, M.; Costa, P.D.F.; Assis, A.D.; Santos, C.D.S.; Santos, D.D. Obesity and vitamin D deficiency: A systematic review and meta-analysis. Obes. Rev. 2015, 16, 341–349. [Google Scholar] [CrossRef]
- Holick, M.F. The vitamin D deficiency pandemic: Approaches for diagnosis, treatment and prevention. Rev. Endocr. Metab. Disord. 2017, 18, 153–165. [Google Scholar] [CrossRef]
- Pludowski, P.; Holick, M.F.; Grant, W.B.; Konstantynowicz, J.; Mascarenhas, M.R.; Haq, A.; Povoroznyuk, V.; Balatska, N.; Barbosa, A.P.; Karonova, T.; et al. Vitamin D supplementation guidelines. J. Steroid Biochem. Mol. Biol. 2018, 175, 125–135. [Google Scholar] [CrossRef] [Green Version]
- Chung, M.; Lee, J.; Terasawa, T.; Lau, J.; Trikalinos, T.A. Vitamin D With or Without Calcium Supplementation for Prevention of Cancer and Fractures: An Updated Meta-analysis for the U.S. Preventive Services Task Force. Ann. Intern. Med. 2011, 155, 827–838. [Google Scholar] [CrossRef] [Green Version]
- Schiele, J.T.; Quinzler, R.; Klimm, H.-D.; Pruszydlo, M.G.; Haefeli, W.E. Difficulties swallowing solid oral dosage forms in a general practice population: Prevalence, causes, and relationship to dosage forms. Eur. J. Clin. Pharmacol. 2013, 69, 937–948. [Google Scholar] [CrossRef]
- Fields, J.; Go, J.T.; Schulze, K.S. Pill Properties that Cause Dysphagia and Treatment Failure. Curr. Ther. Res. 2015, 77, 79–82. [Google Scholar] [CrossRef] [Green Version]
- Andersen, O.; Zweidorff, O.K.; Hjelde, T.; Rødland, E.A. Problems when swallowing tablets. A questionnaire study from general practice. Tidsskr. Nor. Laegeforening Tidsskr. Prakt. Med. Raekke 1995, 115, 947–949. [Google Scholar]
- Jiang, S.; Yildiz, G.; Ding, J.; Andrade, J.; Rababahb, T.M.; Almajwalc, A.; Feng, H. Pea protein nano-emulsion and nanocomplex as carriers for protection of cholecalciferol (vitamin D3). Food Bioprocess Technol. 2019, 12, 1031–1040. [Google Scholar] [CrossRef]
- Zareie, M.; Abbasi, A.; Faghih, S. Thermal Stability and Kinetic Study on Thermal Degradation of Vitamin D3 in Fortified Canola Oil. J. Food Sci. 2019, 84, 2475–2481. [Google Scholar] [CrossRef] [PubMed]
- Donsì, F.; Annunziata, M.; Vincensi, M.; Ferrari, G. Design of nano-emulsion-based delivery systems of natural antimicrobials: Effect of the emulsifier. J. Biotechnol. 2012, 159, 342–350. [Google Scholar] [CrossRef] [PubMed]
- Bothiraja, C.; Pawar, A.; Deshpande, G. Ex-Vivo absorption study of a nanoparticle based novel drug delivery system of vitamin D3 (Arachitol Nano™) using everted intestinal sac technique. J. Pharm. Investig. 2016, 46, 425–432. [Google Scholar] [CrossRef]
- Salvia-Trujillo, L.; Fumiaki, B.; Park, Y.; McClements, D.J. The influence of lipid droplet size on the oral bioavailability of vitamin D2 encapsulated in emulsions: An in vitro and in vivo study. Food Funct. 2017, 8, 767–777. [Google Scholar] [CrossRef]
- McClements, D.J.; Rao, J. Food-grade nano-emulsions: Formulation, fabrication, properties, performance, biolog-ical fate, and potential toxicity. Crit. Rev. Food Sci. Nutr. 2011, 51, 285–330. [Google Scholar] [CrossRef]
- Golfomitsou, I.; Mitsou, E.; Xenakis, A.; Papadimitriou, V. Development of food grade O/W nano-emulsions as carriers of vitamin D for the fortification of emulsion based food matrices: A structural and activity study. J. Mol. Liq. 2018, 268, 734–742. [Google Scholar] [CrossRef]
- McClements, D.J. Nanoemulsions versus microemulsions: Terminology, differences, and similarities. Soft Matter 2012, 8, 1719–1729. [Google Scholar] [CrossRef]
- Silva, H.D.; Cerqueira, M.Â.; Vicente, A.A. Nanoemulsions for food applications: Development and characteriza-tion. Food Bioprocess Technol. 2012, 5, 854–867. [Google Scholar] [CrossRef] [Green Version]
- Kleiman-Weiner, M.; Luo, R.; Zhang, L.; Shi, Y.; Medina, A.; Rozelle, S. Eggs versus chewable vitamins: Which intervention can increase nutrition and test scores in rural China? China Econ. Rev. 2013, 24, 165–176. [Google Scholar] [CrossRef]
- Stewart, R.; Askew, E.; Mcdonald, C.; Metos, J.; Jackson, W.; Balon, T.; Prior, R. Antioxidant Status of Young Children: Response to an Antioxidant Supplement. J. Am. Diet. Assoc. 2002, 102, 1652–1657. [Google Scholar] [CrossRef]
- Ozturk, B.; Argin, S.; Ozilgen, M.; McDonald, D.J. Nanoemulsion delivery systems for oil-soluble vitamins: Influence of carrier oil type on lipid digestion and vitamin D3 bioaccessibility. Food Chem. 2015, 187, 499–506. [Google Scholar] [CrossRef]
- Schoener, A.L.; Zhang, R.; Lv, S.; Weiss, J.; McClements, D.J. Fabrication of plant-based vitamin D 3-fortified nano-emulsions: Influence of carrier oil type on vitamin bioaccessibility. Food Funct. 2019, 10, 1826–1835. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; McClements, D.J. Vitamin E bioaccessibility: Influence of carrier oil type on digestion and release of emulsified α-tocopherol acetate. Food Chem. 2013, 141, 473–481. [Google Scholar] [CrossRef] [PubMed]
- Qian, C.; Decker, E.A.; Xiao, H.; McClements, D.J. Nanoemulsion delivery systems: Influence of carrier oil on β-carotene bio-accessibility. Food Chem. 2012, 135, 1440–1447. [Google Scholar] [CrossRef] [PubMed]
- Rao, J.; Decker, E.A.; Xiao, H.; McClements, D.J. Nutraceutical nano-emulsions: Influence of carrier oil compo-sition (digestible versus indigestible oil) on β-carotene bioavailability. J. Sci. Food Agric. 2013, 93, 3175–3183. [Google Scholar] [CrossRef]
- Hsu, C.-Y.; Wang, P.-W.; Alalaiwe, A.; Lin, Z.-C.; Fang, J.-Y. Use of Lipid Nanocarriers to Improve Oral Delivery of Vitamins. Nutrients 2019, 11, 68. [Google Scholar] [CrossRef] [Green Version]
- Imran, M.; Iqubal, M.K.; Imtiyaz, K.; Saleem, S.; Mittal, S.; Rizvi, M.M.A.; Ali, J.; Baboota, S. Topical nanostructured lipid carrier gel of quercetin and resveratrol: Formulation, optimization, in vitro and ex vivo study for the treatment of skin cancer. Int. J. Pharm. 2020, 587, 119705. [Google Scholar] [CrossRef]
- Hasan, N.; Imran, M.; Kesharwani, P.; Khanna, K.; Karwasra, R.; Sharma, N.; Rawat, S.; Sharma, D.; Ahmad, F.J.; Jain, G.K.; et al. Intranasal delivery of Naloxone-loaded solid lipid nanoparticles as a promising simple and non-invasive approach for the management of opioid overdose. Int. J. Pharm. 2021, 599, 120428. [Google Scholar] [CrossRef]
- McClements, D.J. Edible nano-emulsions: Fabrication, properties, and functional performance. Soft Matter 2011, 7, 2297–2316. [Google Scholar] [CrossRef] [Green Version]
- Vandamme, T.F.; Anton, N. Low-energy nanoemulsification to design veterinary controlled drug delivery devices. Int. J. Nanomed. 2010, 5, 867. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zakkula, A.; Gabani, B.B.; Jairam, R.K.; Kiran, V.; Todmal, U.; Mullangi, R.; Babulal, B.G. Preparation and optimization of nilotinib self-micro-emulsifying drug delivery systems to enhance oral bioavailability. Drug Dev. Ind. Pharm. 2020, 46, 498–504. [Google Scholar] [CrossRef] [PubMed]
- Phillips, G.O.; Williams, P.A. Handbook of Hydrocolloids; Elsevier: Amsterdam, The Netherlands, 2009. [Google Scholar]
- Teixeira-Lemos, E.; Almeida, A.R.; Vouga, B.; Morais, C.; Correia, I.; Pereira, P.; Guiné, R.P.F. Development and characterization of healthy gummy jellies containing natural fruits. Open Agric. 2021, 6, 466–478. [Google Scholar] [CrossRef]
- Marfil, P.H.; Anhê, A.C.; Telis, V.R. Texture and Microstructure of Gelatin/Corn Starch-Based Gummy Confections. Food Biophys. 2012, 7, 236–243. [Google Scholar] [CrossRef]
- Sari, T.P.; Mann, B.; Kumar, R.; Singh, R.R.; Sharma, R.; Bhardwaj, M.; Athira, S. Preparation and characterization of nanoemulsion encapsulating curcumin. Food Hydrocoll. 2015, 43, 540–546. [Google Scholar] [CrossRef]
- Gurpret, K.; Singh, S.K. Review of Nanoemulsion Formulation and Characterization Techniques. Indian J. Pharm. Sci. 2018, 80, 781–789. [Google Scholar] [CrossRef]
- Grossmann, R.E.; Tangpricha, V. Evaluation of vehicle substances on vitamin D bioavailability: A systematic review. Mol. Nutr. Food Res. 2010, 54, 1055–1061. [Google Scholar] [CrossRef]
- Kotta, S.; Khan, A.W.; Pramod, K.; Ansari, S.H.; Sharma, R.K.; Ali, J. Exploring oral nanoemulsions for bioavailability enhancement of poorly water-soluble drugs. Expert Opin. Drug Deliv. 2012, 9, 585–598. [Google Scholar] [CrossRef]
- Ergun, R.; Lietha, R.; Hartel, R.W. Moisture and Shelf Life in Sugar Confections. Crit. Rev. Food Sci. Nutr. 2010, 50, 162–192. [Google Scholar] [CrossRef]
- Rahman, M.S.; Al-Attabi, Z.H.; Al-Habsi, N.; Al-Khusaibi, M. Measurement of Instrumental Texture Profile Analysis (TPA) of Foods. In Techniques to Measure Food Safety and Quality; Springer: Cham, Switzerland, 2021; pp. 427–465. [Google Scholar] [CrossRef]
- Kemp, S.E. IFST PFSG committee Application of sensory evaluation in food research. Int. J. Food Sci. Technol. 2008, 43, 1507–1511. [Google Scholar] [CrossRef]
A. Grade | Parameter | Self-Emulsion Time (min) | |||
---|---|---|---|---|---|
1. | Rapid, clear nanoemulsion | <1 | |||
2. | Rapid, slight hazy nanoemulsion | <2 | |||
3. | Slow, turbid emulsion | >3 | |||
4. | No emulsification | >4 | |||
B. Grading based on appearance | |||||
Ratio of Smix: Oil | Co-surfactant to surfactant ratio | ||||
1:1 | 2:1 | 1:2 | 1:3 | 3:1 | |
10:3 | 1 | 1 | 1 | 1 | 1 |
09:3 | 1 | 1 | 1 | 1 | 1 |
08:3 | 2 | 1 | 1 | 1 | 1 |
07:3 | 2 | 1 | 1 | 2 | 1 |
06:3 | 2 | 1 | 2 | 2 | 1 |
05:3 | 3 | 1 | 2 | 2 | 2 |
04:3 | 3 | 1 | 2 | 3 | 2 |
03:3 | 4 | 1 | 2 | 4 | 2 |
02:3 | 4 | 2 | 3 | 4 | 3 |
01:3 | 4 | 4 | 4 | 4 | 4 |
Ingredients | Amount (wt. %) |
---|---|
O/W nanoemulsion | 34.29 |
Gelatin | 10.29 |
Sorbitol | 13.20 |
Xylitol | 30.79 |
Sucralose | 0.38 |
Citric acid | 0.38 |
Lime flavor | 0.66 |
Corn Oil | 10.00 |
Concentration (µg/mL) | Average Area | Retention Time | Height | Area % |
---|---|---|---|---|
1 | 4,132,567 | 7.643 | 284,993 | 100 |
1 | 4,134,052 | 7.620 | 285,379 | 100 |
1 | 4,142,904 | 7.660 | 286,712 | 100 |
1 | 4,130,736 | 7.663 | 284,132 | 100 |
1 | 4,140,783 | 7.677 | 285,363 | 100 |
Mean | 4,136,208.4 | 7.652 | 285,315.8 | 100 |
Std. Dev. | 5329.52 | 0.022 | 930.21 | NA |
Test Day | Sample A (IU/mL) | % Reduction | Sample B (IU/mL) | % Reduction |
---|---|---|---|---|
Day 0 | 289,302.01 | 0 | 38,282.13 | 0 |
Day 15 | 273,420.01 | 5.49 | 37,155.68 | 2.94 |
Day 30 | 263,360.20 | 8.97 | 35,360.46 | 7.63 |
A. Mean Hardness Value (Peak Force (g) Mean ± STDV) of Each Gummy | ||||
---|---|---|---|---|
Oil Content in Gummy | Day 1 | Day 15 | Day 30 | Day 45 |
No corn oil | 1540 ± 125 | 1620 ± 100 | 2030 ± 150 | 1820 ± 155 |
10% corn oil | 3100 ± 200 | 3260 ± 155 | 3330 ± 165 | 3600 ± 210 |
20% corn oil | 3410 ± 265 | 3630 ± 230 | 3930 ± 195 | 3970 ± 265 |
40% corn oil | 4260 ± 165 | 4600 ± 185 | 5000 ± 205 | 4650 ± 195 |
B. Mean Stickiness Value (Negative Force (g) Mean ± STDV) of Each Gummy | ||||
No corn oil | 325 ± 45 | 400 ± 35 | 425 ± 60 | 550 ± 60 |
10% corn oil | 160 ± 20 | 180 ± 30 | 125 ± 25 | 145 ± 33 |
20% corn oil | 100 ± 15 | 85 ± 15 | 80 ± 7 | 85 ± 12 |
40% corn oil | 90 ± 14 | 80 ± 14 | 75 ± 9 | 76 ± 8 |
Day 1 | Placebo Gummy | Nano Gummy | Marketed Gummy |
---|---|---|---|
Taste | 7.1 ± 1.7 | 6.7 ± 1.6 | 7.3 ± 1.4 |
Aroma | 7.4 ± 1.3 | 7.0 ± 0.8 | 5.4 ± 0.7 |
Appearance/texture | 7.0 ± 0.6 | 6.8 ± 0.9 | 7.6 ± 1.2 |
Overall liking | 6.9 ± 0.9 | 6.6 ± 0.8 | 7.2 ± 1.0 |
Day 45 | |||
Taste | 7.2 ± 1.4 | 6.6 ± 1.0 | 7.4 ± 0.7 |
Aroma | 6.7 ± 0.7 | 6.4 ± 1.1 | 4.5 ± 0.6 |
Appearance/texture | 7.1 ± 0.8 | 6.9 ± 1.2 | 7.4 ± 0.9 |
Overall liking | 6.7 ± 0.6 | 6.5 ± 0.6 | 7.3 ± 1.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmed, M.Z.; Gupta, A.; Warsi, M.H.; Ali, A.M.A.; Hasan, N.; Ahmad, F.J.; Zafar, A.; Jain, G.K. Nano Matrix Soft Confectionary for Oral Supplementation of Vitamin D: Stability and Sensory Analysis. Gels 2022, 8, 250. https://doi.org/10.3390/gels8050250
Ahmed MZ, Gupta A, Warsi MH, Ali AMA, Hasan N, Ahmad FJ, Zafar A, Jain GK. Nano Matrix Soft Confectionary for Oral Supplementation of Vitamin D: Stability and Sensory Analysis. Gels. 2022; 8(5):250. https://doi.org/10.3390/gels8050250
Chicago/Turabian StyleAhmed, Mohammad Zubair, Anshul Gupta, Musarrat Husain Warsi, Ahmed M. Abdelhaleem Ali, Nazeer Hasan, Farhan J. Ahmad, Ameeduzzafar Zafar, and Gaurav K. Jain. 2022. "Nano Matrix Soft Confectionary for Oral Supplementation of Vitamin D: Stability and Sensory Analysis" Gels 8, no. 5: 250. https://doi.org/10.3390/gels8050250
APA StyleAhmed, M. Z., Gupta, A., Warsi, M. H., Ali, A. M. A., Hasan, N., Ahmad, F. J., Zafar, A., & Jain, G. K. (2022). Nano Matrix Soft Confectionary for Oral Supplementation of Vitamin D: Stability and Sensory Analysis. Gels, 8(5), 250. https://doi.org/10.3390/gels8050250