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Abstract: The depletion of natural resources and greenhouse gas emissions related to the manufacture
and use of ordinary Portland cement (OPC) pose serious concerns to the environment and human
life. The present research focuses on using alternative binders to replace OPC. Geopolymer might
be the best option because it requires waste materials enriched in aluminosilicate for its production.
The research on geopolymer concrete (GPC) is growing rapidly. However, substantial effort and
expenses are required to cast specimens, cures, and tests. Applying novel techniques for the said
purpose is the key requirement for rapid and cost-effective research. In this research, supervised
machine learning (SML) techniques, including two individual (decision tree (DT) and gene expression
programming (GEP)) and two ensembled (bagging regressor (BR) and random forest (RF)) algorithms
were employed to estimate the compressive strength (CS) of GPC. The validity and comparison
of all the models were made using the coefficient of determination (R2), k-fold, and statistical
assessments. It was noticed that the ensembled SML techniques performed better than the individual
SML techniques in forecasting the CS of GPC. However, individual SML model results were also
in the reasonable range. The R2 value for BR, RF, GEP, and DT models was 0.96, 0.95, 0.93, and
0.88, respectively. The models’ lower error values such as mean absolute error (MAE) and root
mean square errors (RMSE) also verified the higher precision of ensemble SML methods. The RF
(MAE = 2.585 MPa, RMSE = 3.702 MPa) and BR (MAE = 2.044 MPa, RMSE = 3.180) results are better
than the DT (MAE = 4.136 MPa, RMSE = 6.256 MPa) and GEP (MAE = 3.102 MPa, RMSE = 4.049 MPa).
The application of SML techniques will benefit the construction sector with fast and cost-effective
methods for estimating the properties of materials.

Keywords: geopolymers; concrete; modeling; predictions; compressive strength

1. Introduction

Cement concrete is the most extensively used building material worldwide [1–4].
Cement concrete is composed primarily of different types of aggregates, water, and binding
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materials such as ordinary Portland cement (OPC) [5–7]. OPC is considered the third-
most extremely energy-demanding substance on the planet after aluminum and steel,
accounting for 7% of the total energy required by the industry [8–10]. Regrettably, the
production of OPC generates vast amounts of greenhouse gas discharges such as CO2,
which contribute substantially to climate change [11,12]. It is predicted that the manufacture
of OPC produces 1.35 billion tons of greenhouse gas discharges per annum [13]. Therefore,
researchers have centered their efforts on reducing OPC utilization due to the introduction
of alternative binders. Alkali-activated materials, such as geopolymers, may be preferable
to CBCC [14–17]. Alkali-activated materials are made when precursors and activators react.
These were split into two groups according to the calcium level of the objects created during
the chemical reaction: these are rich in calcium, having a Ca/(Si + Al) ratio of more than
one, and others that have low calcium levels are called geopolymers [18].

A geopolymer is actually a type of new binder that was created to be utilized in
the concrete manufacturing process in place of OPC [19–22]. The purpose is to create an
OPC-free, environmentally friendly, and sustainable building material. As industry and
population growth continue to expand, a substantial number of various types of waste
materials are created and disposed of in landfills. These waste materials include rice husk
ash, waste glass powder, ground granulated glass furnace slag, silica fume and fly ash,
etc. Because these waste materials are pollution sources, dumping them in landfills is
hazardous to the ecosystem [23–28]. As geopolymer concrete (GPC) demands raw elements
with more aluminosilicate levels and are available in the waste materials, recycling this
type of materials to manufacture GPC will decrease environmental pollution [29–31]. The
process of GPC production has been depicted in Figure 1, indicating the various types
of ingredients and curing regimes used to produce GPC. The utilization of these types
of waste materials will benefit both the environmental conditions and the economy, as
shown in Figure 2, because these wastes are plentiful, and the necessity for inexpensive
housing will grow as the population grows [32,33]. Globally, GPC is gaining popularity in
the field of research, and it may finally become the best green building material [34–36].
Nevertheless, GPC has the potential to significantly contribute to the long-term survival of
both CBCC technology and the building industry.
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Figure 1. Schematic representation of the geopolymer production process [10].
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Figure 2. Benefits of geopolymer concrete incorporating waste materials.

Contemporary innovations in artificial intelligence (AI) have explained the wide appli-
cation of supervised machine learning (SML) approaches for forecasting the characteristics
of several materials [37–43]. Ahmad et al. [14] performed a comparative study on various
SML approaches, i.e., decisions tree (DT), AdaBoost, and bagging regressor (BR), to forecast
the compressive strength (CS) of GPC incorporating fly ash. It was noticed that the BR
model had the utmost precision compared to the other models studied. In another study
by Ahmad et al. [44], the CS of concrete incorporating recycled aggregates was anticipated
using ANN and GEP. It was described that the GEP technique was more precise in terms of
anticipating the required result as opposed to the ANN ML technique. Song et al.’s [45]
research employed an ANN technique to investigate the CS of concrete having waste
material and successfully forecasted the required outcome. The study also reported that
these ML approaches could be successfully employed to forecast any type of mechanical
property of concrete. Nguyen et al. [46] used a variety of SML techniques to anticipate
tensile strength along with the CS of high-performance concrete. They concluded that the
ensembled SML techniques were more precise than the individual SML techniques. This is
because the individual ML algorithms normally make use of weak learners such as DT and
MLP to generate a better model. Thus, various scholars reported distinct SML techniques
with higher accuracies for the estimation of material properties. Therefore, it is vital to
perform more in-depth studies to clarify this point.

This investigation focuses on the application of SML algorithms to forecast the CS of
GPC. Four types of SML approaches were used in this study: DT, GEP, BR, and RF. Their
predictive ability was evaluated and compared using statistical checks and R2 values, and
the results were published in JML. The selection of two individual ML techniques (DT and
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GEP) and two ensemble ML algorithms (BR and RF) was due to their popularity in giving a
high precision towards the prediction of required outcomes. Additionally, two types of ML
techniques (individual and ensemble) also show a better understanding to the readers for
comparing with one another. The validity of each technique was also determined using k-
fold cross-validation (KFCV) checks and error dispersions. DT and GEP are individual SML
techniques, while BR and RF are ensembled SML algorithms [14,44]. In this study, the novel
feature is that it investigates the CS of GPC by employing both single and ensemble SML
strategies to forecast the CS of geopolymer concrete, whereas experimentally based studies
necessitate a significant amount of human effort as well as expensive and time-consuming
experimental procedures. Employing modern techniques such as SML will benefit the
construction field by addressing the aforesaid issues. Because a variety of parameters,
such as precursor materials, activator solution, aggregate quantity, and so on, influence
the strength of GPC, it is difficult to examine their combined impact using experimental
techniques. ML techniques are capable of identifying the cumulative influence of their
components with minimal effort. ML methods require a data set, which may be gathered
from previous research since several investigations have been conducted to determine the
strength of GPC. The data collection can then be used to train ML models and anticipate
material properties. Some recent studies have been performed to estimate the strength
of GPC using ML methods with a limited number of input parameters and data points.
For example, Dao et al. [47] predicted the CS of GPC using ML techniques with 3 input
variables and 210 data points. Similarly, another study used 4 input variables and 210 data
points [48]. The present research employed 9 input variables and 371 data points to forecast
the CS of GPCs using different ML techniques to compare their performance. In addition,
the outcomes of this study are compared with past relevant studies. It is expected that using
a higher number of input variables and data points will result in the superior precision of
ML techniques. The goal of this study is to determine the most appropriate ML approach
for estimating the CS of GPC using forecasted outcomes and the influence of various factors
on GPC strength.

2. Research Methods
2.1. Data Retrieval and Analysis

SML algorithms need a diverse set of input variables to generate the desired out-
put [49]. The CS of GPC was projected by retrieving data from the published articles (see
Table S1 in Supplementary Materials). The number of articles published on the usage of
similar materials for the CS of GPC was analyzed. While most articles analyzed various
properties of GPC, this research required that just CS-based data points be obtained in a
sufficient quantity to run the models. The models took nine variables as inputs, including
fly ash, GGBS, Na2SiO3, NaOH, fine aggregate, two types of gravels gravel, i.e., 4/10 mm,
and 10/20 mm, NaOH molarity, and water/solids ratio. They took CS as a single output
variable for each selected model. The number of input variables and data sets significantly
affects the output of the model [50]. A total of 371 data points was incorporated for running
SML techniques in the current study. Table 1 presents a descriptive statistical assessment
of all input factors. Figure 3 illustrates the relative occurrence dispersion of all variables
utilized in the analysis. It illustrates the number of overall observations that correspond to
each value or set of values. It is inextricably linked to a probability distribution, a statistical
concept that is commonly utilized.
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Table 1. Explanatory statistics of the parameters employed to run the selected models.

Parameter Fly Ash
(kg/m3)

GGBS
(kg/m3)

Na2SiO3
(kg/m3)

NaOH
(kg/m3)

Fine
Aggregate

(kg/m3)

Gravel 4/10
mm (kg/m3)

Gravel 10/20
mm (kg/m3)

Water/Solids
Ratio

NaOH
Molarity

Mean 174.34 225.15 111.66 53.74 729.88 288.39 737.37 0.34 8.14
Mode 0 0 108 64 651 0 0 0.53 10

Median 120 300 108 56 728 208 789 0.34 9.2
Standard Deviation 167.95 162.27 48.16 31.91 130.97 372.31 358.55 0.11 4.56

Sum 63,286.04 81,728.05 40,532.68 19,508.75 264,947.79 104,684.28 267,664.93 124.78 2955.11
Range 523 450 324 143.5 901 1293.4 1298 0.63 19

Maximum 523 450 342 147 1360 1293.4 1298 0.63 20
Minimum 0 0 18 3.5 459 0 0 0 1

Standard Error 8.82 8.52 2.53 1.67 6.87 19.54 18.82 0.01 0.24

Figure 3. Cont.
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Figure 3. Comparable dispersal of the frequency for the variables: (a) fly ash; (b) GGBS; (c) 4/10 size
gravel mm; (d) 10/20 size gravel mm; (e) NaOH; (f) Na2SiO3; (g) NaOH molarity; (h) water/solids
ratio; and (i) fine aggregate.

2.2. Analysis of Techniques Employed

Individual SML techniques (DT and GEP) and ensemble SML techniques (BR and RF)
were employed to achieve the objectives of this study, employing Python coding via the
software named Anaconda Navigator and GEP. To execute the DT, BR, and RF models,
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Spyder (Version 4.3.5) was picked from the software. Typically, these types of algorithms are
employed to forecast needed results depending on input parameters. These methods can
predict the temperature impact, strength, and durability characteristics of materials [51,52].
The number of input variables was nine, and the output variable was one (i.e., CS) employed
throughout the modeling phase. All models’ R2 reading for the anticipated result indicated
their validity/precision. The R2, also called the coefficient of determination, estimates
the extent of variation in a response variable that is given by a model. In other terms, it
expresses the model’s fitness to the data quantitatively. A number close to 0 implies that
fitting the mean is equivalent to fitting the model, whereas a result near 1 indicates that the
model and data are virtually perfectly fitted [14]. The SML techniques employed in this
study are described in the below sub-sections. Furthermore, to validate models, statistical,
KFCV, and error investigation were employed on all techniques, i.e., RMSE and MAE.
Additionally, sensitivity analysis was carried out to assess the contribution of each input
variable toward the estimation of results. Figure 4 illustrates the research methodology in
the form of a flowchart.
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2.2.1. Decision Tree ML Technique

The DT method is a family member of the supervised learning algorithm. In addition
to solving regression-type problems, it can also solve classification problems. The aim is



Gels 2022, 8, 271 8 of 23

to build a model that accurately forecasts the value of a target variable by inferring basic
decision rules from the dataset. The purpose also includes generating a training model
capable of anticipating the class or value of a target variable by inferring basic decision
rules from prior data (training data). In decision trees, the process starts by forecasting a
class label for a record at the tree’s root. The result of the root attribute is compared to those
of the record’s attribute. It adopts the branch corresponding to that value and moves to the
next node based on the relevant comparison. The detailed process of modeling with DT
can be seen in Figure 5.
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2.2.2. Gene Expression Programming Technique

Ferreira [53] invented GEP as a subfield of genetic programming. It is composed
of five distinct elements, including fitness function, terminal set, function set, terminal
condition, and control parameters. The GEP approach uses a fixed-length role string to
acquire the solution, whereas the genetic programming technique utilizes a parse tree
structure that can change in length during the course of computer programming. The GEP
makes it exceedingly simple to create genetic variation because of the chromosomal level’s
genetic mechanism. Additionally, because GEP is multi-genic, it enables the building of
complicated and nonlinear programs comprising several subprograms. Figure 6 illustrates
the GEP algorithm schematically. The process begins by randomly generating a chromo-
some of stable length for each growing program. Consequently, the chromosomes are
confirmed, and each individual’s fitness is appraised. After that, individuals are picked for
reproduction on the basis of their fitness findings. The process is repeated with each new
individual until a solution is discovered. This method provides a transition in the popula-
tion by executing genetic processes on the specified program, such as rotation, mutation,
and crossover [54]. GEP is a transforming process for the creation of computer modules
and programs. As with chromosomes, these programs often have a tree formation that
can change dimensions (size/shape). Therefore, GEP can be significantly more effective
than adaptive techniques as a genotype–phenotypic system. Karva is GEP’s programming
language, and it is similar to the LISP languages. GEP provides a number of advantages
over other standard regression techniques, which generate functions first and then evaluate
them. However, GEP makes no provision for predefined functions.
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2.2.3. Bagging Regressor Approach

BR is a comparable SML technique that compensates for the prediction model’s
variance during the training stage by improving it with Supplementary Materials. This
result is established on an asymmetric selection strategy that makes use of data exchange
from the original set. Utilizing sampling with substitute, some observations may be
reiterated in each new testing dataset, allowing for greater accuracy. During the BR process,
each constituent has an equal probability of being included in the new dataset, regardless
of its importance. There is no influence on the forecasting force of a training set that is
larger in size than the training set. It is also possible to considerably reduce the variation by
fine-tuning the estimate to obtain the desired conclusion. For subsequent model training,
each of these data sets is commonly utilized to supplement the others. Using an ensemble
of numerous models, the mean of all predictions from each model is used to create this
ensemble. In regression, the prediction might be the average or mean of the estimates from
a number of different models [55]. Twenty sub-models are employed to optimize the DT
using BR to obtain an adamant output result. Figure 7 depicts the BR algorithm’s flow
chart, which details the procedure until the desired output is obtained.
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2.2.4. Random Forest (RF) Technique

RF is a type of strategy for supervised learning. It builds a “forest” out of an ensemble
of DTs, which are normally trained with the “bagging” method. The bagging technique’s
basic assumption is that merging several learning models enhances the result. RF combines
many DTs to generate a more precious and consistent prediction. One important advantage
of RF is that it can also be utilized to solve regression- and classification-type problems,
which constitute most ML tasks these days. The hyperparameters of an RF are very
comparable to those of a DT or a bagging classifier. There is no need to combine a DT
with a bagging classifier as the classifier class of RF may be employed directly. It may also
perform regression problems using RF by utilizing the algorithm’s regressor. The process
of RF is also explained via graphical representation, as shown in Figure 8.
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3. Analysis of Results
3.1. Model Result of the Decision Tree

The outcomes of the DT model for the CS of GPC have been displayed in Figure 9.
The relationship between the experimental and forecasted results is shown in Figure 9a.
The DT approach produced output with an acceptable degree of precision and a small
difference amongst the experimental and forecasted results. The R2 of 0.88 confirms that the
DT model has a reasonable degree of accuracy in anticipating the CS of selected concrete.
Figure 9b demonstrates the dispersion of the experimental, anticipated, and result of the
differences between the real and predictions for the DT model. By analyzing these values,
it was reported that lower, average, and maximum results (values) were 0.50, 4.14, and
29.68 MPa. In addition, the percentage distribution of the said results was evaluated, and it
was reported that 9.6% were less than 1 MPa, 43.8% between 1 and 3 MPa, 21.9% between 3
and 5 MPa, and 16.4% between 5 and 10 MPa, while only 8.2% data was found larger than
10 MPa. This dispersion of these values also indicates a satisfactory performance of the
DT model.
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Figure 9. Decision tree model: (a) relationship among experimental and forecasted outcomes and
(b) distribution of experimental and forecasted outcomes.
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3.2. Gene Expression Programming Model

Figure 10a,b compare the experimental and forecasted outputs of the GEP model.
Figure 10a shows the relationship amongst the result of the CS obtained from the experi-
mental approach and the result derived from the selected model, with an R2 value of 0.93,
implying the GEP model’s higher precision than the DT model in estimating the CS of the
selected concrete. The distribution of the experimental, anticipated, and different values of
real data and predictions for the GEP model are depicted in Figure 10b. It was noticed that
the lowest, average, and maximum error values were 0.28, 3.10, and 15.07 MPa, respectively.
This difference (errors) between the actual and predicted values was reported as 16.44%
less than 1 MPa, 45.21% between 1 and 3 MPa, and 19.18% between 3 and 5 MPa, while the
limited percentage (19.18%) was more than 5 MPa. This limited result of the errors also
manifests the GEP model’s superior exactness to the DT model.
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Figure 10. Gene expression programming model: (a) relationship among experimental and forecasted
outcomes and (b) distribution of experimental and forecasted outcomes.
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3.3. Bagging Regressor Model

Figure 11 describes the results obtained from the BR ML model for the CS estimation
of the concrete. Figure 11a gives a reflection of the link among the results obtained from
the experiments in the laboratory and the outcomes generated from the selected ML model.
The BR algorithm produced the output with the highest degree of precision and a minimal
divergence amongst the experimental and projected results. The R2 of 0.96 indicates that
the BR model is highly precise at forecasting the CS of the selected concrete. The spreading
of the experimental, anticipated, and the difference between them for the BR model is
illustrated in Figure 11b. The minimum, average, and highest error values for the data
set were noted to be 0.03, 2.04, and 20.45 MPa, respectively. This distribution of the error
values was noted as 21.9% less than 1 MPa and 65.8% between 1 and 3 MPa, while the
limited percentage (12.3%) exceeded 3 MPa. The distribution of error values also implies
the best precision of the BR model in predicting outcomes.
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Figure 11. Bagging regressor model: (a) relationship among experimental and forecasted outcomes
and (b) distribution of experimental and forecasted outcomes.
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3.4. Random Forest Model

A comparable depiction of the outcomes of the RF model has been presented in
Figure 12. An R2 value of 0.95 in Figure 12a shows a comparable performance of the RF
model to the BR model. The dispersion of experimental CS results, forecasted results, and
differences of those for the RF model are shown in Figure 12b. The minimum, average, and
higher error values were found to be 0.40, 2.59, and 13.42 MPa, respectively. Error-values
dispersal was found as 23.29% less than 1 MPa and 50.68% between 1 and 3 MPa, and only
26.03% surpassed 3 MPa. This distribution shows the RF model’s better predictive accuracy.
Hence, it can be concluded that the ensembled SML techniques had greater accuracy than
the individual SML techniques.
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4. Validation

The employed models were validated using statistical checks and the KFCV technique.
Mostly, the KFCV procedure is used to generate the validity of the model [44], during which
related data is randomly disseminated and separated into 10 groups. Nine from all will be
employed for training the selected model, and the remaining single one will be allocated
to validate the said model, as shown in Figure 13. Eighty percent of the database was
selected for training these models, while twenty percent was used to evaluate these models.
The model is normally considered more precious in terms of predictions when the result
of the errors (MAE and RMSE) becomes minimal and shows the R2 high. Additionally,
the procedure must be performed ten times until a suitable outcome is obtained. This
thorough process contributes toward the higher precision level of the model for forecasting
the required outcomes. Moreover, as listed in Table 2, all employed ML models were
subjected to statistical evaluation through errors such as MSE and RMSE. These checks also
validated the increased accuracy of the BR model because of its reduced error of readings
as opposed to the other techniques. The models’ predictive performance was evaluated
through statistical evaluation in line with Equations (1) and (2), obtained from the past
studies [57,58].

MAE =
1
n

n

∑
i=1
|xi − x| (1)

RMSE =

√√√√
∑

(
ypred − yre f

)2

n
(2)

where n = total dataset, x yre f = reference values in the dataset, and xi, ypred = projected
values from ML methods.

Table 2. Statistical outcomes for the employed models.

SML Technique MAE RMSE

Decision tree 4.136 6.256
Gene expression programming 3.102 4.049

Bagging regressor 2.044 3.180
Random forest 2.585 3.702

In order to assess the KFCV, R2, MAE, and RMSE calculated, and their results for
the DT, GEP, BR, and RF models are depicted in Figure 14. As shown in Figure 14a,
the minimum, average, and maximum MAE values for the DT model were 4.14, 11.59,
and 23.11, respectively. By comparison, the minimum, average, and maximum MAE
values for the GEP model were 3.10, 9.86, and 15.95, respectively (Figure 14b), whereas
the minimum, average, and maximum MAE values for the BR model were 2.04, 8.63, and
15.61, respectively (Figure 14c). Moreover, the lowest, average, and highest MAE values for
the RF model were 2.59, 9.08, and 13.28, respectively (Figure 14d). When the RMSE values
were compared, the DT, GEP, BR, and RF model’s average RMSE values were 14.66 and
10.83, 9.32, and 9.63, respectively. However, the average R2 results for DT, GEP, BR, and RF
were found to be 0.52, 0.57, 0.63, and 0.62, respectively. The BR model with the lowermost
error values and a superior R2 value is the most accurate model compared to the others in
predicting the compressive strength of the said concrete. Table 3 contains the results of the
k-fold analysis for each of the models used, along with their MAE, RMSE, and R2 values.
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Figure 13. K-fold cross-validation procedure.

Table 3. Outcomes of KFCV for all the models employed.

K-Fold
DT GEP BR RF

MAE RMSE R2 MAE RMSE R2 MAE RMSE R2 MAE RMSE R2

1 11.67 14.28 0.11 12.48 12.90 0.44 11.99 9.40 0.68 9.26 11.43 0.95
2 23.11 26.44 0.87 15.95 17.98 0.56 15.61 14.10 0.64 13.28 14.38 0.70
3 13.44 20.82 0.75 10.44 12.78 0.31 9.52 8.65 0.84 9.37 3.70 0.62
4 12.61 15.43 0.21 13.79 10.77 0.73 5.75 11.14 0.31 12.75 15.74 0.77
5 6.00 6.26 0.79 8.99 9.37 0.54 6.63 8.85 0.61 6.40 11.38 0.34
6 4.14 7.10 0.88 6.29 7.73 0.93 6.25 8.74 0.96 5.27 8.19 0.78
7 6.92 9.62 0.33 7.45 8.08 0.66 7.90 8.93 0.32 9.84 8.60 0.55
8 12.10 13.81 0.47 3.10 4.05 0.44 2.04 3.18 0.41 2.59 6.94 0.45
9 15.68 22.15 0.17 12.32 14.74 0.62 11.33 9.45 0.73 13.28 7.55 0.39

10 10.25 10.69 0.64 7.75 9.90 0.45 9.28 10.81 0.77 8.75 8.38 0.66
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Figure 14. K-fold cross-validation statistical representation: (a) decision tree; (b) gene expression
programming; (c) bagging regressor; and (d) random forest.

5. Sensitivity Analysis

This assessment intends to ascertain the impact of input variables on the CS forecasting
of GPC. The input variables significantly affect the expected outcome [59]. The impact of
each input on the CS estimate of GPC is seen in Figure 15. The investigation found that
fly ash was the most important element with a contribution of 26.4%, followed by GGBS
with a contribution of 14.7% and NaOH molarity with a contribution of 13.1%. The other
parameters contributed the least to the prediction of concrete’s strength, with NaOH having
11.6%, water/solids ratio 9.5%, fine aggregate 7.5%, gravel 4/10 mm 6.5%, gravel 10/20 mm
5.8%, and Na2SiO3 4.8% contribution. Equations (2) and (3) were used to determine the
effect of each input variable on the model’s output.

Ni = fmax(xi)− fmin(xi), (3)

Si =
Ni

∑n
j − i Nj

, (4)

where fmax(xi) and fmin(xi) are the higher and lower of the result over the ith outcome,
respectively, and others are constant. The Si is the contribution proportion (achieved) for
the selected variable.
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6. Discussions

This study was performed to expand the knowledge on the application of modern
techniques to estimate the strength of GPC. This study will benefit the construction sector
with rapid and cost-effective techniques for the prediction of material properties. In
addition, the selection and application of this type of concrete (GPC) in construction will be
achieved earlier using these techniques to promote eco-friendly construction. This research
validates how SML techniques can be effectively employed to forecast the strength of the
said concrete. Four different types of SML approaches were introduced in the study such
as DT, GEP, BR, and RF. The GEP and DT belong to the individual ML algorithms, while
BR and RF are the types of ensemble ML approaches. The precision level of each technique
towards the anticipating was evaluated to determine which approach is the most effective
predictor. The BR model gave a more precise result, with an R2 of 0.96, than the RF, GEP, and
DT models, which yielded R2 values of 0.95, 0.93, and 0.88, respectively. The high precision
of the ensemble ML approaches is due to the execution process of these models. These
models normally split themselves into the 20 sub-models. The model with a high R2 value
was then selected and incorporated for further findings. In addition, statistical analysis
and the KFCV approach were used to validate the performance of all models. The more
reduced the error levels, the more precise the model. However, measuring and suggesting
the ideal SML model for predicting the required outputs through a number of subjects is
challenging, as each model’s success is largely dependent on the input parameters and
data points employed to execute the algorithm. Ensembled SML approaches, on the other
hand, frequently take advantage of the weak learner by constructing sub-models that can
be trained on data and adjusting to optimize the R2 value.

Figure 16 depicts the dispersion of R2 values for BR and RF sub-models. For BR
sub-models, the lower, average, and maximum R2 values were 0.860, 0.911, and 0.962,
respectively (Figure 16a), whereas for RF sub-models, the minimum, average, and maxi-
mum R2 were 0.876, 0.918, and 0.955, respectively (Figure 16b). These numbers give the
reflection that the BR and RF sub-models have almost similar values and a good level of
exactness in estimating the required results. According to the recent literature, as reported
by Ahmad et al. [59], the maximum precision towards the prediction of concrete strength
from the various employed ML approaches was shown by the BR model. The employed
techniques such as DT and ANN’s R2 values were reported as 0.83 and 0.82, respectively,



Gels 2022, 8, 271 19 of 23

and the precision level of the models presented in this study was noted to be higher, giving
R2 values equal to 0.95 and 0.96, respectively. Additionally, Song et al. [60] also com-
pared the accuracy level of different ML algorithms for predicting the strength of concrete.
The GEP (0.86), ANN (0.81), and DT (0.75) accuracy levels for predicting the required
outcome were also less than the ML approaches used in this study. Dao et al. [47] used
particle swarm optimization (PSO)-based, adaptive network-based, fuzzy inference system
(PSOANFIS) and a genetic algorithm (GA)-based, adaptive network-based, fuzzy inference
system (GAANFIS) for the prediction of geopolymer concrete. It was also reported that
the algorithms used in this study show better performance than PSOANFIS, which gives
an R2 value equal to 0.93, and GAANFIS gives this value equal to 0.92. Similarly, it was
also reported [48] that the adaptive neuro-fuzzy inference (ANFIS) and artificial neural
network (ANN) shows better performance in term of forecasting the strength of concrete
but lesser than the employed ML techniques in the study. Moreover, a sensitivity analysis
was carried out to discover the influence of each input variable on GPC’s anticipated CS.
It is also noted that the model’s accuracy can be influenced by the variables used in the
dataset and the size of the dataset. The sensitivity analysis reported the contribution of
each of the nine inputs to the predicted output. The top three contributing input variables
were determined to be fly ash, GGBS, and NaOH molarity.
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7. Conclusions

The intent of the research was to apply individual and ensembled supervised machine
learning (SML) methods to investigate the compressive strength (CS) of geopolymer con-
crete (GPC). To predict outcomes, two individual techniques, decision tree (DT) and gene
expression programming (GEP), and two ensembled techniques, bagging regressor (BR)
and random forest (RF), were used. This research has yielded the following conclusions:

• Ensembled SML approaches were more accurate than individual SML techniques at
predicting the CS of GPC, with the BR model having the best accuracy. The coefficients
of determination (R2) were 0.96, 0.95, 0.93, and 0.88 for BR, RF, GEP, and DT models,
respectively. All models produced findings within a satisfactory range and had little
deviation from the real data.

• Checks from the statistics and K-fold cross-validation confirmed the model’s perfor-
mance as well. In addition, these checks proved that the BR model outperformed the
other models evaluated.

• Sensitivity analysis revealed that fly ash, GGBS, NaOH molarity, water–to–solids ratio,
sand, gravel with 10/20 mm in size, NaOH, gravel with 4/10 mm in size, and Na2SiO3
contributed 26.4%, 14.7%, 13.1%, 11.6%, 9.5%, 7.5%, 6.5%, 5.8%, and 4.8%, respectively,
for the anticipation of output.

• This study will benefit the construction industry by producing quick and cost-effective
approaches for predicting the strengths of materials. Additionally, utilizing these
ways to promote more eco-friendly construction will expedite the adoption of GPC in
construction projects.

It is further recommended that the number of data points can be increased with the
help of experimental approaches in the laboratory. Moreover, the experimental tests can
also be performed on the material used, such as geopolymer, concrete, aggregate, and
admixtures, to investigate their effects during the execution process of employed models.
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Abbreviations

BR Bagging regressor
CS Compressive strength
DT Decision tree
OPC ordinary Portland cement
GPC geopolymer concrete
GEP Gene expression programming
KFCV K-fold cross-validation
MAE mean absolute error
MSE Mean square error
ML Machine learning
RF Random forest
RMSE Root mean square error
SML Supervised machine learning
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