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Abstract: Europium trivalent ion (Eu3+)-doped silica nanowires were prepared, and the positioning
of Eu3+ in the silicon dioxide nanowire matrix was researched. Scanning electron microscopy (SEM),
transmission electron microscopy (TEM), X-ray diffraction analysis (XRD) and energy-dispersive
X-ray spectroscope analysis (EDX) were used to characterize the product’s morphology and structure.
The representation of Fourier transform infrared spectra (FT-IR) and X-ray photoelectron spectroscopy
(XPS) were indicative of the presence of a covalent Eu-O-Si bond. The results suggest that Eu3+ was
successfully doped into amorphous silica. Furthermore, a sol-gel inorganic−organic co-assembly
mechanism model was proposed to illuminate the formation of the rare-earth ion-doped nanowires.
In addition, photoluminescent emission of europium ions in a silica matrix was further discussed.
It was demonstrated that a 10% content of Eu3+ resulted in a quenching effect and after annealing
at 650 ◦C, the europium ions in the nanowires had a high luminescence intensity due to the silica
network structure.
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1. Introduction

For the past few years, nanostructured materials like nanotubes [1], nanorods [2],
nanoparticles [3] and nanowires [4] have aroused unprecedented attention as a result of
their excellent properties, including optical [5], electrical [6], magnetic [7] and catalytic [8]
abilities. A fairly large number of nanostructures (i.e., nanowires (NWs)) have been synthe-
sized by various techniques over the past decade, such as carbothermal reduction [9], ther-
mal evaporation [10,11], vapor phase transport [12,13], bio-mimetic strategies [14], excimer
laser ablation [15], thermal chemical vapor deposition [16] and the solution method [17,18].

Particularly, amorphous silica nanostructures have drawn significant attention as a
broad, prospective optical material with well-known bulk properties [19]. Heretofore,
SiO2 NWs have been synthesized using several approaches. For instance, SiO2 NWs were
formed with the assistance of Mg [20] and Ni [21] as catalysts by thermal evaporation.
In addition, rare-earth-doped SiO2 NWs possess some distinct and beneficial properties
such as biocompatibility and photoelectricity [22], which made them become important
for numerous modern technologies (i.e., biosensors [23], cell-imaging [24], organic light-
emitting diodes (OLED) [25,26] etc.) Lin et al. [5] reported the preparation of terbium(III)-
doped SiO2 nanowires based on the vapor−liquid−solid principle. The novel green
emission from both doped Tb3+ ions and host SiO2 has been detected from these nanowires.
Liu et al. [27] found that the luminescence intensity of Tb3+ was enhanced by six times
when the ions were capped with SiO2 nanowires. Nevertheless, the research progress of
rare-earth ion-doped SiO2 NWs is still limited.

Hereby, we report a simple method to prepare Eu3+-doped amorphous SiO2 nanowires
using a sol-gel process. A growth model based on a co-assembly mechanism is discussed
in detail. Moreover, according to the characterization results, it is shown that the trivalent
europium ions are bound successfully in the host network in the shape of an Eu-O-Si bond.
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2. Experimental Procedure
2.1. Materials and Preparation
2.1.1. Materials

Absolute ethyl alcohol, distilled water, D, L-dihydroxybutane dioic acid (TTA), am-
monium hydroxide, aqua fortis (Sinopharm Chemical Reagent Beijing Co., Beijing, China,
analytical grade), tetraethyl orthosilicate (TEOS) (Aladdin reagent (Shanghai) Co., Shang-
hai, China, analytical grade) and europium sesquioxide (Goring High-Tech Material Inc.,
Ganzhou, China, 4N) were used in all cases.

2.1.2. Preparation of Eu3+-Doped Silica Nanowires

In a typical procedure, 0.2 mmol TTA was dissolved in 5 mL H2O/EtOH. Under a
static condition in a water bath kettle at 25 ◦C for 24 h, ready-prepared europium nitrate
aqueous solution (0.1 mol/L) was dropped into the former solution. After that, TEOS
(0.47 mL) was mixed with the solution system fleetly, whisking the whole time. An 80 µL
NH4OH (28 wt% NH3 solution) was added after stirring for 5 min. After stirring for 30 min
and standing for another 48 h, white precipitate was then obtained. The emulsion could
be separated by centrifuging and non-ion washing three times, whereafter the milk white
gel was found. Subsequently, the gelatum was shifted to a drying oven, staying at 55 ◦C
for 24 h. This was followed by a thermal treatment (calcination) at 650 ◦C for 4 h with a
heating rate of 1 ◦C/min. Finally, during spontaneous cooling to room temperature, a kind
of dry white powder was formed.

2.2. Characterization

The research used scanning electron microscopy (SEM) (Hitachi, S-4800, Chiyoda
City, Tokyo, Japan) as a means of analyzing the morphology and nanostructure of the
obtained nanowires with Eu3+ as the dopant. An energy-dispersive X-ray (EDX) detector
was operated using an H JEOL JXA-840 system (Akishima-shi city, Tokyo, Japan) installed
on the SEM microscope. A JEM-2000EX transmission electron microscope (acceleration
voltage of 200 kV, Akishima-shi city, Tokyo, Japan) provided accurate TEM images for
detailed structural analysis. The X-ray diffraction (XRD) pattern was obtained on a Rigaku
D/max-B II X-ray diffractometer (Akishima-shi city, Tokyo, Japan) using Cu Ka radiation,
which was used to examine the phase state of the samples. Fourier transform infrared (FT-
IR) analyses of the Eu3+-doped silica nanowires were carried out by a Perkin−Elmer 580B
infrared spectrophotometer (Waltham, MA, USA) through the potassium bromide pellet
technique. The chemical bonds in the obtained nanowires with Eu3+ as the dopant were
characterized through X-ray photoelectron spectroscopy (XPS) (Thermo Fisher Scientific,
ESCALAB250, Waltham, MA, USA). The photoluminescence (PL) spectra were obtained
using a Jobin Yvon FluoroMax-4 luminescence spectrophotometer (Paris, France) (excitation
source was a 150 W xenon lamp). All the tests were undertaken at 25 ◦C.

3. Results and Discussion
3.1. Characterization of Samples

In our previous studies, the nanofibers formed spontaneously in Eu3+-tartrate solution
at 25 ◦C had good uniformity and dispersibility with several micrometers length and
150–300 nm diameter [28]. In this procedure, TEOS is added in the europium salt of the
organic acid system at the initial stage of the nanostructure-forming process, which means
the process of organic nanowire growth and silicon dioxide condensation takes place
almost at the same time. After the hydrolyzation and polycondensation of TEOS in the
presence of ammonia, silica nanowires are prepared. SEM images before (Figure 1a) and
after calcination (Figure 1b) show a large mass of vast Eu3+-doped silica nanowires several
microns long. From TEM image (Figure 1c), it can be observed that nanowires with solid
construction can be maintained after calcination, and their diameters are in the range of
50~200 nm.
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nated sample; (d) EDX patterns of calcinated sample; (e) XRD patterns. 

Figure 1. Trivalent europium ion-doped silica nanowires obtained (Eu/Si molar ratio is 10%) at 25 ◦C:
(a) SEM image without calcination; (b) SEM image of calcinated sample; (c) TEM image of calcinated
sample; (d) EDX patterns of calcinated sample; (e) XRD patterns.

An EDX diagram of calcined Eu3+-doped silica nanowires (Figure 1d) demonstrates
that the nanowires are composed of three elements: Eu, O and Si. The atomic ratio of
Eu/Si is 9:91, nearing to an addition of 10% of Eu3+. In addition, the slight peak of carbon
observed in the pattern is probably derived from a small quantity of carbon-based material
(labeled in the lower left corner of Figure 1d).
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Figure 1e shows an XRD spectrogram of Eu3+-doped silica nanowires obtained with
and without thermal treatment at 650 ◦C. The wide peak at 2θ = 22.5◦ can be assigned to the
characteristic diffraction of the amorphous silicon dioxide according to JCPDs, and the peak
intensity of the calcined sample decays gradually and fluctuates slightly [29]. Moreover,
there is no europium-related phase observed, which indicates that Eu3+ has entered the
silica lattice.

3.2. Factors Influencing the Reaction

To get the optimal reaction conditions of silica nanowires with trivalent europium
ions as the dopant, much more involved research has been conducted. SEM was applied to
investigate the morphology of the nanowires.

First, Figure 2 reveals a series of typical SEM photographs of the sample under different
amounts of solvent, confirming that the product obtained using 5 mL deionized water
(Figure 1b) has a more uniform morphology in length (several microns) and diameter
(50~200 nm) than the others. More aggregations emerged with fewer amounts of water
(Figure 2a,b), probably because the relatively high concentration of ammonia impels TEOS
to hydrolyze rapidly. TTA molecules disperse unevenly or have insufficient time to self-
assemble. On the contrary, excess solvent (Figure 2c,d) makes the interaction between the
trivalent europium ion and the TTA too weak to form nanowires.
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Secondly, the sol process before TEOS addition was investigated to confirm the optimal
standing time (Figure 3b). It is noted that a standing time above or below 24 h is not
beneficial for the formation of nanowires, which is mainly reflected in the morphology.
As shown in the corresponding SEM image (Figure 3a), the system did not have enough
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time to complete co-assembly after only standing for 10 h. In addition, Eu3+-TTA formed
spontaneously by self-assembly when the standing time increased to 48h. That means silica
oligomers may not be a part of the nanowire structure (Figure 3c).
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3.3. Formation Mechanism

At first, EDX elemental mapping of Eu3+-doped silica nanowires was used to iden-
tify the distribution of O, Si and Eu (Figure 4a–d) after the calcination treatment. As
seen in Figure 4b,c, Si and O were distributed equally in accordance with the nanowire
morphology. Figure 4d revealed that europium was distributed in the structure of silica
nanowires uniformly. In summary, it is preliminarily indicated that Eu3+ embedded in the
silica network.
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Secondly, an infrared spectrogram was recorded to provide evidence of the formation
of Eu3+-doped silica networks after calcination. The symmetrical stretching and bending
vibrational modes of the Si-O bond can be identified at 805 and 467 cm−1. The peak located
at 945 cm−1 due to Si–OH vibration was clear in silica gel but showed some intensity in
silica nanowires before calcinations, and almost disappeared after thermal treatment in
both (Figure 5a). This may mean that Si–OCH2CH3 in TEOS doesn’t hydrolyze to Si–OH
when switching to Si–O–Si networks completely, but likely combines with the hydroxy
from TTA in the silica NW reaction system. Likewise, it was observed that the peak at
1100 cm−1 on account of the asymmetric Si-O-Si vibrational stretching mode is broader
and stronger in calcinated samples. The broad peak (3415 cm−1) is mainly attributed to
the hydroxyls in the free water molecules in the sample without calcination, except for the
terminal hydroxyl groups, which turn weak after calcination [30,31].
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Additionally, the band at 1743 cm−1 corresponds to the stretching vibrations of the
C=O bonds of carboxylate ions in pure TTA. The red shift of this band to 1616 cm−1

in the Eu3+-tartrate complex’s spectrum is ascribed to the coordination between Eu3+

and C=O bonds in TTA [32,33], which also appear in the Eu3+-doped silica nanowires
before calcination. It is indicated that Eu ions get into the NW’s reaction system before
calcination in the same way as the Eu3+-tartrate complex. Interestingly, the carboxylate
bands disappear after thermal treatment, and a new spiculate and prominent band appears
at 1486 cm−1 in the spectrum of Eu3+-doped silica nanowires after calcination, which is
found nowhere else in Figure 5a and is assigned to the Eu-O-Si bond [34,35]. With the
rise of rare-earth trivalent ion-doping content, the significant increase in the characteristic
band near 1486 cm−1 (Figure 5b) is indicative of the fact that high-temperature calcination
induces the formation of Si–O–Eu, which shows that europium ions are doped in the
silica matrix.

Thirdly, XPS was carried out to characterize the doped silica nanowires. The spectra
of europium 3d and oxygen 1s levels of nanowires are shown in Figure 6. In the europium
3d (5/2) spectrum (Figure 6a), the main peak at 1135.2 eV (binding energy) matches Eu3+,
while the peak located at about 1164.8 eV originates from europium 3d (3/2) of trivalent
europium ions as well.
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content after calcination.

The oxygen 1s spectra, with their appropriate peak curve-fitting lines for the pure
and doped silica nanowires after calcinations, are shown in Figure 6b. Each fitting peak
followed the general shape of the Gaussian function. The low energy state at 531.9 eV
is attributed to the O atoms in Si–O–Eu. The high energy state at 533.1 eV is assigned
to the O in SiO2 [36]. Furthermore, the intensity of the O 1s peak in accordance with
silicate gradually enhances with increasing Eu3+, while the O 1s peak intensity weakens
slightly in accordance with SiO2. Compared to the pure amorphous silica nanowire’s
reference position, the O 1s peak of 10% Eu/Si silica nanowires is shifted to a lower binding
energy by about 0.3 eV, indicating more Eu–O–Si structures are formed in the higher
Eu concentration samples [37]. This result further indicates that trivalent rare-earth ions
penetrate the amorphous silicon dioxide.

According to the previous characterization results, a probable co-assembly mechanism
model could be proposed for the synthesis of Eu3+-doped SiO2 nanowires (as shown in
Scheme 1), which contains three steps: (1) Eu ions coordinate with the TTA carboxyl by
self-assembly in an aqueous solution to form nanofibers. The morphology, bound together
by hydrogen bonding and metal coordination, should be stably maintained during the sol-
gel reaction [38]; (2) Meanwhile, TEOS subsequently hydrolyzed into anionic oligomeric
silica species. These oligomeric groups are easily attracted to relatively acidic HC-OH
groups in TTA due to electron withdrawing of the two carboxylates. These groups can
act as “acids” to exchange an ethoxy group in TEOS, with the formation of triethoxysilyl
groups on the Eu-TTA complex chain. These triethoxysilyl groups may be condensed upon
increasing the pH, with NH4OH adding and making a three-dimensional silica nanowire
network with homogeneous Eu distribution. The growth of nanowires and the process of
silica polycondensation proceed simultaneously. Hence, europium ions, D, L-TTA, and
anionic oligomeric silica species co-assemble into inorganic−organic hybrid nanowires [39];
(3) Finally, the products are obtained after the organic template is removed by washing and
calcination. When Eu3+-tartrate nanofibers are destroyed, europium ions are successfully
doped in the amorphous silica in the shape of Eu-O-Si.
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3.4. Photoluminescence Properties

The photoluminescence emission spectra of Eu3+-doped SiO2 nanowires in different
dosage concentrations (molar ratio Eu3+: SiO2) by ultraviolet light excitation (393 nm) are
shown in Figure 7a. All phanic peaks match with the transitions from the metastable orbital
singlet state 5D0 to the spin–orbital states of 7FJ (J = 0, 1, 2, 4) of the europium trivalent
ion [40], which suggests the characteristic transitions from 5D0 to 7F0 (578 nm), 7F1 (587 nm,
592 nm and 597 nm), 7F2 (613 nm), 7F3 (650 nm) and 7F4 (700 nm). The intensity of the
emission peak at 613 nm enhances gradually with increasing Eu3+ concentration. The peak
reaches its strongest point at 10% doping content of Eu3+ and gradually reduces when
the dopant is added sequentially. This could probably be attributed to the concentration-
quenching effect of Eu3+.
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Figure 7. PL emission spectra of Eu3+-doped SiO2 samples (excitation wavelength is 393 nm) prepared
at 25 ◦C with (a) different doping contents of Eu3+ and (b) different calcination temperatures.

The Eu3+ emission spectra recorded for the synthesized 10% Eu3+-doped SiO2 nanowires
obtained by calcination at 450 ◦C and 650 ◦C are displayed in Figure 7b. The annealed spectral
shapes were obviously different from the Eu3+ in the synthesized nanowires, indicating the
relaxation process from dissimilar electron levels of the Eu3+ because of the matrix. The site envi-
ronment of Eu3+ results in the significant luminescence enhancement of the Eu3+ 5D0→7F2 [41].
The presence of -OH groups before calcination could reduce the luminous efficiency of Eu3+

due to a non-radiative phonon quenching [42]. Therefore, the luminescence intensity of Eu3+-
doped SiO2 nanowires annealed at 650 ◦C, with the luminescence intensity of the entire SiO2
framework being higher than the synthesized samples after annealing at 450 ◦C.
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4. Conclusions

Europium trivalent ion-doped SiO2 nanowires were synthesized, and a sol-gel inorganic-
organic co-assembly mechanism was proposed. During the formation process, Eu3+-tartrate is
likely to cooperate with silicate groups and enters the silica nanowires. The situation of the
rare-earth ions in the silica network structures was investigated. With the doping, significant
changes in the characteristic FTIR peaks of Eu-O-Si and XPS spectra were observed. In addition,
photoluminescent emission of Eu3+ in a silica matrix was researched by adjusting the doping
contents and calcination temperatures. It was found that the quenching concentration of Eu3+

is at 10% and Eu3+-doped SiO2 nanowire annealed at 650 ◦C, with the entire SiO2 framework
having a high luminescence intensity on account of the site environment of Eu3+.
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