Fabrication of Thermo-Responsive Controllable Shape-Changing Hydrogel
Abstract
:1. Introduction
2. Results and Discussion
2.1. Hydrogel Preparation and Structure
2.2. Mechanical Properties
2.3. Swelling Properties
2.4. Tailored Shape Fabrication
3. Conclusions
4. Materials and Methods
4.1. Materials
4.2. Synthesis of PVA-MA
4.3. Hydrogel Preparation
4.4. Characterization
4.4.1. FT-IR Characterization
4.4.2. Equilibrium Swelling
4.4.3. Length Normalized Swelling Degrees
4.4.4. Dynamic Mechanical Analysis (DMA)
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, T.; Peng, X.; Chen, Y.; Zhang, J.; Jiao, C.; Wang, H. Solid-phase esterification between poly(vinyl alcohol) and malonic acid and its function in toughening hydrogels. Polym. Chem. 2020, 11, 4787–4797. [Google Scholar] [CrossRef]
- Mondal, S.; Das, S.; Nandi, A.K. A review on recent advances in polymer and peptide hydrogels. Soft Matter 2020, 16, 1404–1454. [Google Scholar] [CrossRef]
- Sun, Z.; Song, C.; Wang, C.; Hu, Y.; Wu, J. Hydrogel-Based Controlled Drug Delivery for Cancer Treatment: A Review. Mol. Pharm. 2020, 17, 373–391. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, K.; Li, Y.; Lan, J.; Yan, B.; Shi, L.; Ran, R. High-Strength, Self-Healable, Temperature-Sensitive, MXene-Containing Composite Hydrogel as a Smart Compression Sensor. ACS Appl. Mater. Interfaces 2019, 11, 47350–47357. [Google Scholar] [CrossRef]
- Zong, S.; Wen, H.; Lv, H.; Li, T.; Tang, R.; Liu, L.; Jiang, J.; Wang, S.; Duan, J. Intelligent hydrogel with both redox and thermo-response based on cellulose nanofiber for controlled drug delivery. Carbohydr. Polym. 2022, 278, 118943. [Google Scholar] [CrossRef]
- Qin, X.-H.; Wang, X.; Rottmar, M.; Nelson, B.J.; Maniura-Weber, K. Near-Infrared Light-Sensitive Polyvinyl Alcohol Hydrogel Photoresist for Spatiotemporal Control of Cell-Instructive 3D Microenvironments. Adv. Mater. 2018, 30, 1705564. [Google Scholar] [CrossRef]
- Samai, S.; Sapsanis, C.; Patil, S.P.; Ezzeddine, A.; Moosa, B.A.; Omran, H.; Emwas, A.-H.; Salama, K.N.; Khashab, N.M. A light responsive two-component supramolecular hydrogel: A sensitive platform for the fabrication of humidity sensors. Soft Matter 2016, 12, 2842–2845. [Google Scholar] [CrossRef]
- Zhan, J.; Wu, Y.; Wang, H.; Liu, J.; Ma, Q.; Xiao, K.; Li, Z.; Li, J.; Luo, F.; Tan, H. An injectable hydrogel with pH-sensitive and self-healing properties based on 4armPEGDA and N-carboxyethyl chitosan for local treatment of hepatocellular carcinoma. Int. J. Biol. Macromol. 2020, 163, 1208–1222. [Google Scholar] [CrossRef]
- Ubaid, M.; Murtaza, G. Fabrication and characterization of genipin cross-linked chitosan/gelatin hydrogel for pH-sensitive, oral delivery of metformin with an application of response surface methodology. Int. J. Biol. Macromol. 2018, 114, 1174–1185. [Google Scholar] [CrossRef]
- Milani, G.M.; Coutinho, I.T.; Ambrosio, F.N.; Monteiro do Nascimento, M.H.; Lombello, C.B.; Venancio, E.C.; Champeau, M. Poly(acrylic acid)/polypyrrole interpenetrated network as electro-responsive hydrogel for biomedical applications. J. Appl. Polym. Sci. 2022, 139, 52091. [Google Scholar] [CrossRef]
- Jiang, H.; Fan, L.; Yan, S.; Li, F.; Li, H.; Tang, J. Tough and electro-responsive hydrogel actuators with bidirectional bending behavior. Nanoscale 2019, 11, 2231–2237. [Google Scholar] [CrossRef]
- Bonanno, L.M.; DeLouise, L.A. Integration of a Chemical-Responsive Hydrogel into a Porous Silicon Photonic Sensor for Visual Colorimetric Readout. Adv. Funct. Mater. 2010, 20, 573–578. [Google Scholar] [CrossRef]
- Mao, Z.; Kuroki, M.; Otsuka, Y.; Maeda, S. Contraction waves in self-oscillating polymer gels. Extrem. Mech. Lett. 2020, 39, 100830. [Google Scholar] [CrossRef]
- Tang, L.; Huang, J.; Zhang, H.; Yang, T.; Mo, Z.; Qu, J. Multi-stimuli responsive hydrogels with shape memory and self-healing properties for information encryption. Eur. Polym. J. 2020, 140, 110061. [Google Scholar] [CrossRef]
- Lee, Y.-W.; Ceylan, H.; Yasa, I.C.; Kilic, U.; Sitti, M. 3D-Printed Multi-Stimuli-Responsive Mobile Micromachines. ACS Appl. Mater. Interfaces 2021, 13, 12759–12766. [Google Scholar] [CrossRef]
- Chen, Y.; Wu, W.; Yu, J.; Wang, Y.; Zhu, J.; Hu, Z. Mechanical strong stretchable conductive multi-stimuli-responsive nanocomposite double network hydrogel as biosensor and actuator. J. Biomater. Sci. Polym. Ed. 2020, 31, 1770–1792. [Google Scholar] [CrossRef]
- Gayathri, V.; Jaisankar, S.N.; Samanta, D. Temperature and pH responsive polymers: Sensing applications. J. Macromol. Sci. Part A 2022, 59, 98–126. [Google Scholar] [CrossRef]
- Tang, L.; Wang, L.; Yang, X.; Feng, Y.; Li, Y.; Feng, W. Poly(N-isopropylacrylamide)-based smart hydrogels: Design, properties and applications. Prog. Mater. Sci. 2021, 115, 100702. [Google Scholar] [CrossRef]
- Huffman, A.S.; Afrassiabi, A.; Dong, L.C. Thermally reversible hydrogels: II. Delivery and selective removal of substances from aqueous solutions. J. Control. Release 1986, 4, 213–222. [Google Scholar] [CrossRef]
- Chaterji, S.; Kwon, I.K.; Park, K. Smart polymeric gels: Redefining the limits of biomedical devices. Prog. Polym. Sci. 2007, 32, 1083–1122. [Google Scholar] [CrossRef] [Green Version]
- Lorenzo, R.A.; Carro, A.M.; Concheiro, A.; Alvarez-Lorenzo, C. Stimuli-responsive materials in analytical separation. Anal. Bioanal. Chem. 2015, 407, 4927–4948. [Google Scholar] [CrossRef] [PubMed]
- Callewaert, M.; Rouxhet, P.G.; Boulangé-Petermann, L. Modifying stainless steel surfaces with responsive polymers: Effect of PS-PAA and PNIPAAM on cell adhesion and oil removal. J. Adhes. Sci. Technol. 2005, 19, 765–781. [Google Scholar] [CrossRef]
- Lo, C.-Y.; Zhao, Y.; Kim, C.; Alsaid, Y.; Khodambashi, R.; Peet, M.; Fisher, R.; Marvi, H.; Berman, S.; Aukes, D.; et al. Highly stretchable self-sensing actuator based on conductive photothermally-responsive hydrogel. Mater. Today 2021, 50, 35–43. [Google Scholar] [CrossRef]
- Lin, H.; Ma, S.; Yu, B.; Pei, X.; Cai, M.; Zheng, Z.; Zhou, F.; Liu, W. Simultaneous Surface Covalent Bonding and Radical Polymerization for Constructing Robust Soft Actuators with Fast Underwater Response. Chem. Mater. 2019, 31, 9504–9512. [Google Scholar] [CrossRef]
- Obst, F.; Beck, A.; Bishayee, C.; Mehner, P.J.; Richter, A.; Voit, B.; Appelhans, D. Hydrogel Microvalves as Control Elements for Parallelized Enzymatic Cascade Reactions in Microfluidics. Micromachines 2020, 11, 167. [Google Scholar] [CrossRef]
- Delaney, C.; McCluskey, P.; Coleman, S.; Whyte, J.; Kent, N.; Diamond, D. Precision control of flow rate in microfluidic channels using photoresponsive soft polymer actuators. Lab Chip 2017, 17, 2013–2021. [Google Scholar] [CrossRef]
- Hu, X.; Spille, C.; Schlüter, M.; Smirnova, I. Smart Structures—Additive Manufacturing of Stimuli-Responsive Hydrogels for Adaptive Packings. Ind. Eng. Chem. Res. 2020, 59, 19458–19464. [Google Scholar] [CrossRef]
- Hu, X.; Karnetzke, J.; Fassbender, M.; Drücker, S.; Bettermann, S.; Schroeter, B.; Pauer, W.; Moritz, H.U.; Fiedler, B.; Luinstra, G.; et al. Smart reactors—Combining stimuli-responsive hydrogels and 3D printing. Chem. Eng. J. 2020, 387, 123413. [Google Scholar] [CrossRef]
- Hu, X.; Fassbender, M.; Drücker, S.; Fiedler, B.; Luinstra, G.A.; Smirnova, I. Intelligente Reaktoren: Kombination von Stimuli-responsiven Hydrogelen und 3D-Druck. Chem. Ing. Tech. 2018, 90, 1211–1212. [Google Scholar] [CrossRef]
- Zhang, X.-Z.; Xu, X.-D.; Cheng, S.-X.; Zhuo, R.-X. Strategies to improve the response rate of thermosensitive PNIPAAm hydrogels. Soft Matter 2008, 4, 385–391. [Google Scholar] [CrossRef]
- Pan, Y.; Li, B.; Liu, Z.; Yang, Z.; Yang, X.; Shi, K.; Li, W.; Peng, C.; Wang, W.; Ji, X. Superfast and Reversible Thermoresponse of Poly(N-isopropylacrylamide) Hydrogels Grafted on Macroporous Poly(vinyl alcohol) Formaldehyde Sponges. ACS Appl. Mater. Interfaces 2018, 10, 32747–32759. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.; Ye, L.; Zhang, A.-Y.; Feng, Z.-G. Self-Assembly of Polyrotaxanes Synthesized via Click Chemistry of Azido-Endcapped PNIPAAm-b-Pluronic F68-b-PNIPAAm/γ-CD with Propargylamine-Substituted β-CDs. Macromol. Chem. Phys. 2014, 215, 1022–1029. [Google Scholar] [CrossRef]
- Ma, J.; Zhang, L.; Fan, B.; Xu, Y.; Liang, B. A novel sodium carboxymethylcellulose/poly(N-isopropylacrylamide)/Clay semi-IPN nanocomposite hydrogel with improved response rate and mechanical properties. J. Polym. Sci. Part B Polym. Phys. 2008, 46, 1546–1555. [Google Scholar] [CrossRef]
- Wei, Y.; Zeng, Q.; Wang, M.; Huang, J.; Guo, X.; Wang, L. Near-infrared light-responsive electrochemical protein imprinting biosensor based on a shape memory conducting hydrogel. Biosens. Bioelectron. 2019, 131, 156–162. [Google Scholar] [CrossRef] [PubMed]
- Feng, S.; Wang, S.; Lv, Y.; He, L.; Li, Q.; Zhang, T. Dual pH- and thermal-responsive nanocomposite hydrogels for controllable delivery of hydrophobic drug baicalein. Polym. Int. 2019, 68, 494–502. [Google Scholar] [CrossRef]
- Han, X.; Yang, R.; Wan, X.; Dou, J.; Yuan, J.; Chi, B.; Shen, J. Antioxidant and multi-sensitive PNIPAAm/keratin double network gels for self-stripping wound dressing application. J. Mater. Chem. B 2021, 9, 6212–6225. [Google Scholar] [CrossRef]
- Krakovský, I.; Kouřilová, H.; Hrubovský, M.; Labuta, J.; Hanyková, L. Thermoresponsive double network hydrogels composed of poly(N-isopropylacrylamide) and polyacrylamide. Eur. Polym. J. 2019, 116, 415–424. [Google Scholar] [CrossRef]
- Fei, R.; Means, A.K.; Abraham, A.A.; Locke, A.K.; Coté, G.L.; Grunlan, M.A. Self-Cleaning, Thermoresponsive P(NIPAAm-co-AMPS) Double Network Membranes for Implanted Glucose Biosensors. Macromol. Mater. Eng. 2016, 301, 935–943. [Google Scholar] [CrossRef]
- Gupta, N.; Liang, Y.N.; Lim, J.S.K.; Hu, X. Design Rationale for Stimuli-Responsive, Semi-interpenetrating Polymer Network Hydrogels—A Quantitative Approach. Macromol. Rapid Commun. 2020, 41, 2000199. [Google Scholar] [CrossRef]
- Gong Jian, P. Materials both Tough and Soft. Science 2014, 344, 161–162. [Google Scholar] [CrossRef]
- Lin, S.; Liu, X.; Liu, J.; Yuk, H.; Loh, H.-C.; Parada German, A.; Settens, C.; Song, J.; Masic, A.; McKinley Gareth, H.; et al. Anti-fatigue-fracture hydrogels. Sci. Adv. 2019, 5, eaau8528. [Google Scholar] [CrossRef] [PubMed]
- Jing, X.; Li, H.; Mi, H.-Y.; Liu, Y.-J.; Feng, P.-Y.; Tan, Y.-M.; Turng, L.-S. Highly transparent, stretchable, and rapid self-healing polyvinyl alcohol/cellulose nanofibril hydrogel sensors for sensitive pressure sensing and human motion detection. Sens. Actuators B Chem. 2019, 295, 159–167. [Google Scholar] [CrossRef]
- Haq, M.A.; Su, Y.; Wang, D. Mechanical properties of PNIPAM based hydrogels: A review. Mater. Sci. Eng. C 2017, 70, 842–855. [Google Scholar] [CrossRef] [PubMed]
- Samal, S.K.; Fernandes, E.G.; Chiellini, F.; Chiellini, E. Thermal analysis of PVA/CNTs 2D membrane. J. Therm. Anal. Calorim. 2009, 97, 859. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, Y.; Pauer, W.; Luinstra, G.A. Fabrication of Thermo-Responsive Controllable Shape-Changing Hydrogel. Gels 2022, 8, 531. https://doi.org/10.3390/gels8090531
Luo Y, Pauer W, Luinstra GA. Fabrication of Thermo-Responsive Controllable Shape-Changing Hydrogel. Gels. 2022; 8(9):531. https://doi.org/10.3390/gels8090531
Chicago/Turabian StyleLuo, Yi, Werner Pauer, and Gerrit A. Luinstra. 2022. "Fabrication of Thermo-Responsive Controllable Shape-Changing Hydrogel" Gels 8, no. 9: 531. https://doi.org/10.3390/gels8090531
APA StyleLuo, Y., Pauer, W., & Luinstra, G. A. (2022). Fabrication of Thermo-Responsive Controllable Shape-Changing Hydrogel. Gels, 8(9), 531. https://doi.org/10.3390/gels8090531