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Abstract: The development of biocompatible nanocomposite hydrogels with effective wound heal-
ing/microbicidal properties is needed to bring out their distinguished characteristics in clinical
applications. The positive interaction between graphene oxide/reduced graphene oxide (GO/rGO)
and hydrogels and aloe vera gel represents a strong strategy for the advancement of therapeutic ap-
proaches for wound healing. In this study, the synthesis, characterization, and angiogenic properties
of graphene-based nanocomposite gels have been corroborated and substantiated through several
in vitro and in vivo assays. In this respect, graphene oxide was synthesized by incorporating a modi-
fied Hummer’s method and ascertained by Raman spectroscopy. The obtained GO and rGO were
uniformly dispersed into the aloe vera gel and hydrogel, respectively, as wound healing materials.
These formulations were characterized via in vitro bio-chemical techniques and were found suitable
for the appropriate cell viability, attachment, and proliferation. In addition, in vivo experiments were
conducted using male Wistar rats. This revealed that the GO/rGO-based gels stimulated wound
contraction and re-epithelialization compared to that of the non-treatment group. From the study, it
is suggested that GO/rGO-based aloe vera gel can be recommended as a promising candidate for
wound healing applications.

Keywords: microbial infection; aloe vera; hydrogel; graphene oxide (GO); reduced graphene oxide
(rGO); wound healing

1. Introduction

Wound healing is a convoluted progression that integrates a variety of tissue and cell
types and majorly includes hemostasis, proliferation, inflammation, and remodeling [1,2].
One of the numerous threats associated with wound healing is the prevalence of contam-
ination of wound surfaces by antibiotic-resistant bacteria [3,4]. The emanation is quite
drastic, which could lead to a protracted bacterial infection that seriously obstructs the
healing process [5]. Such bacterial defilement is typically examined by engaging surgical
techniques and/or the application of antibiotic medications [6]. Nonetheless, the com-
plication of tissue resection, along with the ascent in antimicrobial resistance, hinders
the overall therapeutic outcome. This situation highlights the significance of recognizing
state-of-the-art substituting antimicrobial agents that can resolve the clinical challenge
posed by infectious wounds.
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Researchers and the clinical market are interested in hydrogel-based wound dressing
among various wound dressing techniques [7]. In general, polymeric substances called
hydrogels are hydrophilic and adapt to absorbing water [8]. Infected wound dressings
made of hydrogel keep the environment moist and give the wound’s surface sufficient air
conditioning. In the meantime, they do not immediately adhere to the wound’s surface and
reduce pain, particularly when the dressing is removed. In swollen conditions, hydrogels
mimic live tissues, showing their rubbery and squishy nature. Additionally, it might
accelerate autolytic debridement and advance re-epithelialization, making hydrogel-based
wound dressings the best dressing material [9].

In addition, hydrogel preparations in the pharmaceutical industry include a significant
amount of water and serve to reduce pain when applied, especially to mucous membranes
and burned or wounded skin which makes them preferable to creams [10]. When used for
dermatological purposes, hydrogels have a number of advantages over ointments, such as
being emollient, greaseless, and thixotropic. Hydrogels spread more readily are simple to
remove, do not leave stains, work well with a variety of excipients, and are water-soluble
or miscible [11]. As a result, creating hydrogel-based wound dressings employing a variety
of biocompatible matrices and physiologically active materials such as alginate, polyacrylic
acid (PAA) (carbopol), chitin, and chitosan became of great interest. As a smart gel or
environmentally friendly polymer, carbopol 934 is also well known [12]. Different carbopol
polymers are essential in the creation of stimuli-responsive hydrogels because they alter
their swelling behavior in response to environmental factors including pH, light, an electric
field, or temperature [13].

Later, researchers used natural substances like therapeutic plant components, which
were integrated into the wound formulations to boost bioactivity, in addition to hydro-
gels [7,8]. Among the various plant therapeutic agents, aloe vera plants exhibit unique
characteristics that include enzymes, carbohydrates, minerals, and vitamins and have
excellent antioxidant, anti-bacterial, and antiviral properties [14]. The glucomannan com-
pound found in aloe vera plants promotes the growth of several cell types, improve
anti-inflammatory property, influence fibroblast growth factor release, cell proliferation,
and collagen synthesis [15,16]. Additionally, it promotes the healing process by trigger-
ing fibroblast proliferation, angiogenesis, and the synthesis of the extracellular matrix
(ECM) [16].

The development of chemical and biological sensors, catalysts, cancer medication
delivery [17], nanomedicine, imaging systems, and antibacterial agents all make use of
the unique fundamental features of 2D structures of GO and rGO [18]. With hydroxyl,
epoxide, and carboxyl groups on its exterior, GO/rGO is an oxidized carbon layer that
improves biological interactions and scaffold hydrophilicity. The mechanistic physico–
chemical properties of hydrogels can be enhanced by the robust structure of GO/rGO
nanoparticles, which also evolve antibacterial activity [19]. Additionally, GO/rGO have
outstanding photothermal characteristics in the near-infrared (NIR) range, allowing them to
absorb light radiation and transform their energy into heat that can be used to kill bacterial
infections [20]. From this point forward, the various publications on the biomedical uses of
GO and rGO motivate us to carefully examine their unusual biological features in order to
create new therapeutic treatment approaches for wound healing.

From the literature review, no study has been carried out on GO/rGO-based aloe
vera nanocomposite gels used as wound healing formulations. Hence, the present study
illustrates the synthesis and characterization of GO and rGO, followed by in vitro and
in vivo analysis to determine angiogenesis and wound healing ability of GO/rGO based
hydrogel/aloe vera nanocomposite gels.

2. Results and Discussion
2.1. Fourier–Transform Infra–Red Spectroscopy (FT–IR) Study

The presence of characteristic functional groups of the synthesized GO and rGO and
the composite gels were investigated from the vibrational FT–IR spectrum within the
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wavelength range of 4000 cm−1 to 400 cm−1 (Figure 1). GO, which is formed as an oxidized
product of graphite, contains abundant oxygen containing functional groups, which can be
inferred from the strong intensity bands at 3324.6 cm−1 corresponding to the O–H bond
stretching; 2946.5 cm−1 and 2834.7 cm−1 indicating the presence of CH2 and CH3 bond
stretching, respectively. The peak at 1638.2 cm−1 presents the C=O bond stretching, and
1449.9 cm−1, 1412 cm−1, and 1114.5 cm−1 all correspond to the carboxylic, epoxy, and
alkoxy C–O–C bond stretching, respectively [21,22]. This strongly confirms the presence of
abundant oxygen-containing functional groups, which in turn corresponds to the presence
of an oxidized form of graphite. However, the characteristic peaks of rGO peaked at
3885.6 cm−1 corresponding to the hydroxyl group (O–H) group; CH2 bond stretching was
presented at 2184.2 cm−1; 2104.1 cm−1 corresponded to CH3 bond stretching; and C=O
bond stretching at 1638.2 cm−1. It can be inferred from the low intensity of the O–H bond
and C=O bond stretching peaks that there is a significant decrease in the oxygen containing
groups in the graphene planar sheets, confirming the reduction of GO into rGO.
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Figure 1. The FT–IR peaks of GO and rGO-based composite gels are shown. GO, which is formed
as an oxidized product of graphite, contains an abundance of oxygen containing functional groups,
which can be inferred from the strong intensity bands corresponding to the O–H, CH2, CH3, car-
boxylic, epoxy, and alkoxy C–O–C bond stretching. After the GO reduction process, the decrease in
intensities or absence of oxygen-derived functional groups indicates the absence of oxygen-based
functional groups.

Multiple peaks connected to oxygen-derived species can be seen in the GO spectrum.
Additionally, the sudden decrease in intensities or absence of them in the oxygen-derived
functional groups represents the precise reduction reaction of rGO from its precursor
material of GO. However, the characteristic peaks for the aloe vera are seen near the
wave-length range of 3400 cm−1 and 1641 cm−1, which corresponds to the hydroxyl group
stretching which is observed in uronic acid and mannose and the carboxylate group (–COO
group) stretching which is present in the functional compounds of the aloe vera [23,24].
Similarly, carbopol–934-based hydrogels correspond to the peaks at a wavelength range
of 1527 cm−1 and 1452 cm−1, presenting the C=O bond stretching and carboxylic bond,
respectively [25].
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2.2. Raman Spectroscopy Analysis

Raman spectroscopy has been widely used to characterize crystal structure and dis-
order in graphene-based materials. Figure 2 displays the Raman spectra of graphene
oxide (GO) and reduced graphene oxide (rGO) in the synthesized samples. The GO and
reduction of GO can be identified in Raman spectra by the changes in relative intensity
of the two major peaks, which is the D and G band, respectively. The characteristic peak
positions of the D and G bands were denoted as 1348.6 cm−1 and 1591.7 cm−1, respectively.
This corresponds to the sp2/sp3 carbon hybridizations, and the shift in the G peak to
1591.7 cm−1 corresponds to the graphitic oxygenation, thus confirming the presence and
synthesis of GO. Raman spectra also showed characteristic peaks of rGO at 1347.5 cm−1 and
1588.4 cm−1 belonging to the D and G band, respectively [26,27]. However, the appeared
Raman peaks of rGO do not show a significant change from those of GO, except that the
intensity ratio around ID/IG has declined with the reduction. The ID/IG intensity ratio for
rGO is larger than that for GO. The slightly larger ID/IG value of rGO (0.848) compared to
that of GO (0.847) corresponds to the larger defects and disorder in the carbon materials.
This increase in the sp2 domain and the higher intensity in the D band in the rGO peak
confirm the reduction process, thus validating the removal of oxygen moieties from the
GO. The results observed here agree with the previous findings on the GO and rGO [28].
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2.3. Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) Analysis

The morphological characteristics of GO and rGO were confirmed using scanning
electron microscopy (Figure 3a,b) and transmission electron microscopy (Figure 4a–d). A
thin and transparent layered sheet structure was observed from the rGO image [29,30].
However, a compact packing of layered and wrinkled flake like structures implied the
presence of fully oxidized graphene oxide and the successful delamination of graphite
powder during the oxidation process by a modified Hummers method.

The TEM image of GO shows a highly corrugated structure. It is clearly observed
from the dark shaded regions, which indicate the layered fashion of the graphene oxide
layers [31]. Additionally, it can be observed from the TEM image of GO (Figure 4a,b), the
slightly folded and curly edges that correspond to the attachment of the oxygen containing
functional groups in the edges of the stacked graphene oxide layers. However, the TEM
image showed a clean and disordered, single, multilayered structure [32]. Due to the
reduction process, there is a disintegration in the orderly stacked layers of graphene oxide,
resulting in a flat morphology [33]. Additionally, the reduction caused the absence of many
oxygen-containing functional groups that can be observed from the TEM image of rGO
(Figure 4c,d) which has almost smooth edged lattice fringes and decreased wrinkles [34].



Gels 2023, 9, 22 5 of 25

Gels 2023, 8, x FOR PEER REVIEW 5 of 25 

TEM image showed a clean and disordered, single, multilayered structure [32]. Due to the 

reduction process, there is a disintegration in the orderly stacked layers of graphene oxide, 

resulting in a flat morphology [33]. Additionally, the reduction caused the absence of 

many oxygen-containing functional groups that can be observed from the TEM image of 

rGO (Figure 4c,d) which has almost smooth edged lattice fringes and decreased wrinkles 

[34]. 

Figure 3. SEM images of (a) GO and (b) rGO. The contrast difference in the layered and thin trans-

parent layer is observed for GO and rGO in the SEM micrograph, confirming the process of reduc-

tion of rGO from GO. 

Figure 4: TEM images of GO (a,b) and rGO (c,d). The TEM images of GO and rGO show a layered 

structure and flat multilayer morphology.  

2.4. Physico−Chemical Parameters of Composite Gels 

All the gel formulations (aloe vera, hydrogel, aloe vera + GO, aloe vera + rGO, hydro-

gel + GO and hydrogel + rGO) achieved a homogeneous and almost transparent nature 

which helped in monitoring the wound area upon their application [35–37]. The simple 

Figure 3. SEM images of (a) GO and (b) rGO. The contrast difference in the layered and thin
transparent layer is observed for GO and rGO in the SEM micrograph, confirming the process of
reduction of rGO from GO.

Gels 2023, 8, x FOR PEER REVIEW 5 of 25 
 

 

TEM image showed a clean and disordered, single, multilayered structure [32]. Due to the 

reduction process, there is a disintegration in the orderly stacked layers of graphene oxide, 

resulting in a flat morphology [33]. Additionally, the reduction caused the absence of 

many oxygen-containing functional groups that can be observed from the TEM image of 

rGO (Figure 4c,d) which has almost smooth edged lattice fringes and decreased wrinkles 

[34]. 

. 

Figure 3. SEM images of (a) GO and (b) rGO. The contrast difference in the layered and thin trans-

parent layer is observed for GO and rGO in the SEM micrograph, confirming the process of reduc-

tion of rGO from GO. 

 

Figure 4: TEM images of GO (a,b) and rGO (c,d). The TEM images of GO and rGO show a layered 

structure and flat multilayer morphology.  

2.4. Physico−Chemical Parameters of Composite Gels 

All the gel formulations (aloe vera, hydrogel, aloe vera + GO, aloe vera + rGO, hydro-

gel + GO and hydrogel + rGO) achieved a homogeneous and almost transparent nature 

which helped in monitoring the wound area upon their application [35–37]. The simple 
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structure and flat multilayer morphology.

2.4. Physico–Chemical Parameters of Composite Gels

All the gel formulations (aloe vera, hydrogel, aloe vera + GO, aloe vera + rGO,
hydrogel + GO and hydrogel + rGO) achieved a homogeneous and almost transparent
nature which helped in monitoring the wound area upon their application [35–37]. The
simple mixing of the GO and rGO in the hydrogel and aloe vera gel imparted the added
advantage of processing the formulation at room temperature without using any additional
cross-linking agents, which might hinder the purity of the formulation. Henceforth, the
formulations reported here are safe for clinical applications.
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2.5. Spreadability

The spreadable nature of the synthesized gels was studied, and the gels reported
here showed a high spreadability nature. The spreadability of the gels is an important
factor in determining their application to the wound surface. Poor spreadability indicates
that the drug compound, GO and rGO, is applied to the wound surface unevenly. The
hydrogel-based composite formulation showed a spreadability percentage of around 51.62%
(Figure 5), whereas the aloe vera-based formulations showed a spreadability of around
78% to 80% [38,39]. The results showed that the aloe vera gels are more spreadable when
compared to the hydrogel, resulting in a uniform application over the wound surface [39,40].
The high spreadability of aloe vera gel is due to its high-water content and its naturally
homogeneous character. Additionally, as a derivative of graphene, GO and rGO possess
mechanical and tribological properties, thus enhancing the spreadability of the composite
gels to some extent. This property is due to the presence of sp2 hybridized carbon atoms,
and the various functional groups present between and around the graphene layers [41,42].
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than hydrogels.

2.6. Solubility

The solubility of the formulations was carried out by immersing the composite gels in
de-ionized water. The carbopol hydrogel showed a lower solubility of 54% compared to
that of the aloe vera gel, which showed an insoluble gel fraction of about 60% (Figure 6).
Hence, it is clear that the aloe vera-based composite gels are more readily soluble than the
hydrogels [40]. Additionally, from the previous literature, it is proven that the GO and rGO
are readily soluble in polar and non-polar solvents, which depend upon the presence and
type of functional groups in the graphene layers [43]. Henceforth, it is one of the major
reasons for the enhancement in the solubility range of the composite gels used here to a
greater extent.



Gels 2023, 9, 22 7 of 25Gels 2023, 8, x FOR PEER REVIEW 7 of 25 

 

Figure 6. Solubility of GO and rGO-based composite gels. 

2.7. Swellability 

The swelling ability of the hydrogel formulations was high when compared to the 

aloe vera gel formulations. The hydrogel showed a swelling index of around 150% 

whereas the aloe vera gel showed a very low swelling index of about 18% (Figure 7). This 

is attributed to the highly porous nature of the hydrogel, which in turn possessing high 

surface area for absorbing the wound exudates [44]. It also showed the inter-relationship 

between the type of polymer present, water content, and the ionic strength [45]. The high 

swelling nature of the hydrogel clearly exhibits the benefit of absorbing exudate from the 

wound surface and its water holding capacity. In comparison, aloe vera gel demonstrated 

poor absorbing capacity, resulting in a moist environment throughout the wound healing 

process. 

. 

Figure 7. Swellability of GO and rGO-based composite gels. The hydrogel showed a swelling index 

of around 150%, whereas the aloe vera gel showed a very low swelling index of about 18%. 

2.8. Antioxidant Activity 

The antioxidant activity of the formulations was carried out using a DPPH assay. In 

this assay, the rGO-based hydrogel and aloe vera gel (hydrogel + rGO and aloe vera + 

Figure 6. Solubility of GO and rGO-based composite gels.

2.7. Swellability

The swelling ability of the hydrogel formulations was high when compared to the aloe
vera gel formulations. The hydrogel showed a swelling index of around 150% whereas the
aloe vera gel showed a very low swelling index of about 18% (Figure 7). This is attributed
to the highly porous nature of the hydrogel, which in turn possessing high surface area for
absorbing the wound exudates [44]. It also showed the inter-relationship between the type
of polymer present, water content, and the ionic strength [45]. The high swelling nature
of the hydrogel clearly exhibits the benefit of absorbing exudate from the wound surface
and its water holding capacity. In comparison, aloe vera gel demonstrated poor absorbing
capacity, resulting in a moist environment throughout the wound healing process.
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2.8. Antioxidant Activity

The antioxidant activity of the formulations was carried out using a DPPH assay. In
this assay, the rGO-based hydrogel and aloe vera gel (hydrogel + rGO and aloe vera + rGO)
showed a high percentage of antioxidant activity of about 68.9% and 73.2%, respectively
(Figure 8). It is due to the reduced activity of rGO. However, GO-based gels (hydrogel + GO
and aloe vera + GO) showed a lesser percent of antioxidant activity when compared to that
of rGO-based gels, at about 52% and 60%, respectively [46,47]. The pure hydrogel showed
the least antioxidant activity of about 25% and the pure aloe vera gel showed an antioxidant
activity of about 48%. It is well known from previous literature that the aloe vera gel has
natural antioxidant properties, which help in the faster healing of infectious wounds [44,48].
Hence, from the results, it is clear that the rGO-based aloe vera formulation showed a better
result for antioxidant activity in wound healing. It is a well-known fact from the previous
literature that graphene oxide and reduced graphene oxide show exceptional free radical
scavenging activity. This is due to the structure of the layered GO/rGO and the presence
of sp2 carbon centers within them, which form an adduct with the free radicals, electron
transfer, and the donation of hydrogen from their many functional groups, thus effectively
inhibiting free radical generation [49].
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Figure 8. Antioxidant activity of GO and rGO-based Composite Gels. The antioxidant activity
of the formulations was carried out using a DPPH assay. rGO-based hydrogel and aloe vera gel
(hydrogel + rGO and aloe vera + rGO) showed a high percentage of antioxidant activity.

2.9. Hemocompatibility Assay

The hemolytic activity of the GO and rGO-based formulations showed an accepted
hemolytic value of less than 2%. The hydrogel-based formulations showed the following
hemolytic activity: Hydrogel–0.41%; hydrogel + GO–0.37%; and hydrogel + rGO–0.46%,
respectively. Similarly, the aloe vera-based formulations showed a hemolytic activities
of: aloe vera–0.25%; aloe vera + GO–0.29%; and aloe vera + rGO–0.33%, respectively [50]
(Figure 9). From these results, it is clear that the GO and rGO are non-hemolytic, and their
conjugation with hydrogel and aloe vera gel has good blood compatibility. It also shows
that aloe vera is much more compatible when compared to hydrogel.
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Figure 9. Hemolytic activity of GO and rGO-based composite gels. The hemolytic activity of the GO
and rGO-based formulations showed an accepted hemolytic value of less than 2%.

2.10. Antibacterial Assay

After one day of incubation, the plates were observed to measure the inhibition
zones produced by the respective organisms, as shown in Figure 10. It was clear that
the activity produced by rGO-based formulations was higher compared to GO-based
formulations. The combined effects of rGO and hydrogel/aloe vera gel were enhanced
when compared to GO [20,51]. Also, aloe vera-based formulations had better antibacterial
activity compared to hydrogel-based formulations. Hence, it is clear that rGO conjugated
in aloe vera gel showed a greater activity followed by rGO in hydrogel which aids in
the wound healing activity. Table 1 shows the zone of inhibition assay using a diffusion
antibiotic sensitive assay. The previous literature shows that the graphene family is a potent
anti-bacterial compound that inhibits the growth of bacterial species by reactive oxygen
species dependent oxidative stress mechanisms and by suppressing the bacterial film by
graphene layers [52]. Thus, the obvious results of our study show that the incorporation of
GO and rGO to the gel considerably inhibited the formation of bacterial infection, hastening
the wound healing process.

Table 1. Zone of Inhibition (in mm) for the Agar Well diffusion antibiotic sensitivity assay.

Composite Gels Pseudomonas
aeruginosa (A) Bacillus subtilis (B) Staphylococcus aureus (C) E. coli (D)

Hydrogel − 10.01 12.56 12.43

Hydrogel + GO 3.77 8.46 6.32 11.82

Hydrogel + rGO 4.27 7.92 6.47 12.19

Aloe vera Gel − 9.81 6.92 10.89

Aloe vera Gel + GO 3.06 9.76 5.93 11.10

Aloe vera Gel + rGO 15.75 8.13 3.82 13.27
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Figure 10. Agar Well diffusion antibiotic sensitivity assay with (a) hydrogel; (b) hydrogel + GO; (c) hy-
drogel + rGO; (d) aloe vera gel; (e) aloe vera gel + GO; (f) aloe vera gel + rGO against (A) Pseudomonas
aeruginosa, (B) Bacillus subtilis, (C) Staphylococcus aureus and (D) E. coli.

2.11. In Vitro Cytotoxicity Assay

Cell viability of the GO and rGO-based gel formulations on NIH 3T3 fibroblast cells
was investigated by MTT assay, and its results are presented in Figure 11. The cytotoxicity
of the GO and rGO-based formulations showed no toxic effect on the fibroblast cell line. In
particular, the aloe vera-based formulations showed the least cytotoxicity when compared
to that of hydrogel-based formulations [53]. This characteristic result is due to the natural
origin of aloe vera, which impacts the wound healing process in a positive manner. Cell
proliferation and morphology of the cells were DAPI stained, which showed the living and
fixed cells qualitatively (Figure 12). Based on these cytotoxicity assays, it is shown that
the best GO and rGO-based hydrogel and aloe vera gel formulations are biocompatible
and suitable for clinical applications, particularly wound healing [54]. On average, 80%
of the fibroblast cells were metabolically active at higher concentrations, whereas at lower
concentrations, 90% of the cells were actively present, which indicated the modest cytotoxic
effects of the GO and rGO [55].
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Figure 12. Cytotoxicity Assay of GO and rGO-based composite gels on NIH 3T3 cell line. (a) control;
(b) hydrogel; (c) hydrogel + GO; (d) hydrogel + rGO; (e) aloe vera gel; (f) aloe vera gel + GO; (g) aloe
vera gel + rGO.

2.12. Wound Scratch Assay

The wound scratch assay performed on the NIH 3T3 fibroblast cell reveals the wound
healing capacity of the rGO-based formulations, which were better when compared to the
GO-based formulations and the pure hydrogel/aloe vera gel (Figures 13 and 14) [56]. In
comparison, aloe vera gel-based formulations also showed a better wound closure rate
when compared to hydrogel-based formulations. Hence, the combination of rGO and aloe
vera gel had the greatest wound healing capacity.
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Figure 14. Wound scratch assay of GO and rGO-based composite gels on NIH 3T3 cell line. The
wound scratch assay performed on the NIH 3T3 fibroblast cell reveals the wound healing capacity of
the rGO-based formulations, which were better when compared to the GO-based formulations and
the pure hydrogel/aloe vera gel.
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2.13. In Vivo Studies: Wound Contraction Rate

Infections were induced in the open wounds of male Wistar rats by inoculating them
with Staphylococcus aureus. The formulations were daily applied over the wound surface
for the treatment groups for 14 days (Figure 15). The measurement of wound contraction
is a major standard for the indication of radical wound healing [57], which is expressed
as the decrement in the wound diameter from the surgery date. All wound contraction
was calculated by tracing out the wound surface every 0th, 3rd, 7th, 11th, and 14th days
(Figure 16). The wound treated with the composite gels showed a significant decrease
in the wound area during the course of treatment. At the end of the treatment period of
14 days, the rGO-based aloe vera gel showed the best wound contraction rate, followed
by rGO-based hydrogel formulation. This shows that the rGO best imparts the wound
healing property compared to that of GO. Henceforth, its conjugation with hydrogel and
aloe vera gel showed almost the same results of wound contraction and hastened the
healing property.
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Figure 15. Wound contraction rate of GO and rGO-based composite gels. The measurement of wound
contraction is a major standard for the indication of radical wound healing which is expressed as the
decrement in the wound diameter from the surgery date (0th, 3rd, 7th, 11th, and 14th days).
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Figure 16. In vivo wound contraction of GO and rGO-based composite gels.

2.14. Histopathology

The granulation tissues collected from the treatment groups on the 16th day were fixed
in paraffin wax and used for histology analysis. The sectioned tissues were stained with
hematoxylin and eosin (H&E) (Abbey Color, Philadelphia, PA, USA) and Masons trichome
stains (San Francisco, CA, USA). Day 15 tissue samples stained with H&E stain from the
treatment groups showed the formation of the epithelial tissue layer, the presence of dense
polymorphonuclear cells, and blood vessel formation (Figure 17). The treatment groups
based on the aloe vera gel especially the rGO + aloe vera group showed a high amount of
epithelium regeneration, inflammatory cell infiltration, and the formation of new blood
capillaries, which showed an indication of wound the healing process. Similarly, increased
collagen deposition can be seen from the masons trichome stained tissues, indicating that
treatment incorporation significantly improved collagen synthesis (Figure 18). In particular,
the treatment groups containing rGO-based hydrogel and aloe vera gel showed more
dense and organized deposition of collagen on the wound beds compared to the control
groups and GO-based composite gels. Henceforth, these results demonstrate that aloe
vera + rGO and hydrogel + rGO resulted in the best infectious wound healing results,
which are induced by epidermis formation and collagen deposition.

2.15. Statistical Analysis

All the reported results were analyzed for their statistical significance, which was
studied using one-way ANOVA (p < 0.5 and p < 0.1). There was a significant healing of
wounds as a function of time in all groups, and there (Figure 19) was a significant difference
between the groups (p < 0.5). From the study, it was evidently proven that wound healing
capability was significantly improved in the presence of GO and rGO.
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Figure 17. H&E stained granulation tissues of GO and rGO-based composite gels on the 7th and 15th
days. Day 7 and 15 tissue samples stained with H&E stain from the treatment groups showed the
formation of the epithelial tissue layer, the presence of dense polymorphonuclear cells, and blood
vessel formation. Day 15 tissue samples stained with H&E stain from the treatment groups showed
the formation of the epithelial tissue layer, the presence of dense polymorphonuclear cells, and blood
vessel formation.
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and 15th days. The increased collagen deposition can be seen in the Masons trichome stained tissues
of 14th day when compared to the 7th day.
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3. Conclusions

The current study proposed and validated the application of GO/rGO-based hydrogel
and aloe vera gel combination for infectious wound healing. The in vitro cytotoxicity and
scratch assay studies using NIH 3T3 fibroblast cells suggest that GO and rGO play an
important role in inducing rapid infectious wound healing when conjugated with aloe vera
gel. Histological examination depicted a reduction in necrosis, an increase in the production
of granulation tissue, and re-epithelialization in the treated Wistar rats using GO/rGO-
based hydrogel products. Furthermore, the addition of aloe vera along with GO/rGO,
triggered higher levels of collagen formation and maturation, which helps treat infectious
wounds. Furthermore, our novel formulation did not only cover the wound surface and
absorb the exudate but also promote tissue regeneration and wound recovery. Hence, the
proposed rGO-incorporated aloe vera gel delivery system proves to be a safe, cost-effective,
natural, biocompatible wound healing therapeutic agent that can be promising in clinical
wound care.

4. Materials and Methods
4.1. Materials

Carbopol–934, hydrazine hydrate, 1,1-diphenyl-2-picrylhydrazyl free radicals (DPPH),
Dulbeccos Modified Eagle Media (DMEM), 3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide (MTT), fetal bovine serum (FBS), penicillin, streptomycin—
Sigma Aldrich, (St. Louis, MO, USA). Ethanol, glycerol, sulphuric acid (H2SO4), ortho–
phosphoric acid 85% (H3PO4), Hydrogen Peroxide 30% (H2O2)—Merck Millipore, (Mum-
bai, India). Potassium permanganate (KMnO4), hydrochloric acid (HCl), glycerol, methyl
paraben, D–Sorbitol—SRL Chemical, (Mumbai, India).

4.2. Extraction of Aloe Vera Gel

The aloe vera leaves were washed with water to eliminate dirt from the pulp. The
aloe vera is cut right at the basal end and is left immersed in water to remove the exudates
from the leaves. Following this, the green epidermis was carefully peeled off from the
fleshy parenchyma using a knife. The parenchymal flesh is repeatedly washed with water
to remove the residual exudates from their surfaces. The flesh is then homogenized in a
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blender and filtered using polyester cloth material. After that, the aloe vera gel was stored
at 4 ◦C for further use [16,56].

4.3. Hydrogel Preparation

0.5 g of Carbopol 934 polymer was dispersed gently into 50 mL of deionized water
with constant stirring using a magnetic stirrer at 37 ◦C to avoid any visible lumps in the
dispersion [15]. To the stirring dispersion, an alcoholic solution of glycerol (1:9 ratio of
ethanol:glycerol) was added with constant stirring, and a homogeneous dispersion was
maintained. To the mixture, a known quantity of permeability enhancers like D–Sorbitol
and an anti-microbial peptide (methyl paraben) was added [12,13].

4.4. Synthesis of Graphene Oxide (GO)

GO was created by employing a modified version of Hummers’ technique using
graphite powder [57]. H3PO4 and H2SO4 were combined in a mixture with a volume ratio
of 1:9 (20:180 mL). After stirring the mixture for 15 min, 1.5 g of graphite powder is added.
9.0 g of KMnO4 was then continuously stirred with the mixture for about 72 h [58]. To break
the reaction, 4 mL of 30% hydrogen peroxide (H2O2) is combined after 72 h. By adding
hydrochloric acid (HCl) and deionized water and subsequent centrifugation (5000 rpm for
15 min) for each washing phase, the mixture was split and cleaned in a centrifuge. After
two iterations, the ultimate result was obtained.

4.5. Synthesis of Reduced Graphene Oxide (rGO)

A GO dispersion was made by dissolving 1.5 g of GO powder in 500 mL of DI water
and stirred continuously for around 30 min. In addition, 0.5 mL of hydrazine hydrate is
gently mixed with the dispersion. The mixture was then continuously stirred while being
heated to 80 ◦C in an oil bath. After that, HCl and DI water will be added, and subsequent
centrifugation was done to split the mixture phase and cleaned it in a centrifuge. The
process was performed twice, and the final product was dried for 24 h at 80 ◦C in the
oven [59].

4.6. Characterization

GO and rGO were analyzed for their physico–chemical parameters. Raman spec-
troscopy (Renishaw, UK) was used to inspect the quality of GO and rGO at a wavelength of
1000–4000 cm−1 [60]. Scanning electron microscopy (SEM, Carl Zeiss, Wetzlar, Germany)
and transmission electron microscopy (TEM, Thermo Scientific TALOS F200S G2, Waltham,
MA, USA) were employed to determine the surface morphology of the samples. Further,
Fourier Transform Infra–Red (FT–IR, PerkinElmer-1600, Waltham, MA, USA) was used
to determine the functional groups present in GO and rGO in the wavelength range of
4000–400 cm−1 [51,61,62].

4.7. Preparation of Composite Wound Healing Gels

0.05% of powdered GO and rGO were blended with the freshly prepared hydrogel
and aloe vera gel extracts, respectively [18].

4.8. Visual Examination

The prepared GO and rGO conjugated hydrogels and aloe vera gels were examined
for their colour, homogeneity, and presence of any lumps by visualization. After the visual
observation, the formulations were stored in a transparent plastic container [19].

4.9. Spreadability

The spreadability of the hydrogel and aloe vera gel formulations was tested by sand-
wiching 1 g of the mixture between two horizontal glass slides, followed by the addition
of 100 g of standardized weight to the upper slide, where, no further spreading was an-
ticipated, for roughly 5 min [63]. Spread circle diameters were measured in centimeters
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and used as benchmarks for spreadability [64]. The spreadability of the composite gels was
calculated using the following formula.

Spreadability =

[
weight on the upper slide × diameter of gel spread

time taken in sec onds

]
× 100

4.10. Solubility

The hydrogel content of the given hydrogel/aloe vera gel is estimated by measuring
the insoluble portion in dried sample after immersing the formulations in de-ionized
water for a time period of 16 h at room temperature [65]. The gel fraction of the hydrogel
formulation is calculated using the following formula:

Gel Fraction of hydrogel =

[
Initial weight of the gel
Dried weight of the gel

]
× 100

4.11. Swellability

Swellability is an important factor in exuding wounds [66]. To determine the swellabil-
ity of the hydrogel/aloe vera gel, one gram of each gel was immersed in 5 mL of phosphate
buffer (pH—5.5) and left for 30 min, after which the excess buffers were removed. The
weights of the hydrogel and aloe vera gel before and after immersion were noted, and the
swelling ratio was calculated using the following formula:

Swelling Ratio =

[
Weight of the swollen gel − Initial weight of the gel

Initial weight of the gel

]
× 100

4.12. Antibacterial Analysis

The antimicrobial activities of GO and rGO-based composite gels were determined
by agar well diffusion assay [22,67]. Streptomycin for bacteria (20 µL), such as Bacillus
subtilis, Pseudomonas aeruginosa, E. coli and Staphylococcus aureus, were used as positive
controls. Wells were made in the agar plate and the bacterial inoculums were spread by
T-rod and 60 µL of each sample was loaded onto the well. Finally, the Petri plates were left
undisturbed for 24 h at 37 ◦C. The zone of inhibition was measured.

4.13. Antioxidant Analysis

The antioxidant activity of GO/rGO hydrogels and aloe vera gels was determined
by the competence of aloe vera/hydrogels to scavenge 1,1-diphenyl-2-picrylhydrazyl free
radicals (DPPH) [68]. Various concentrations of hydrogel samples (3, 9, 15, and 21 mg)
were homogenized using a tissue grinder and mixed with DPPH (100 µM) in a 3 mL
ethanol solution, which was stirred in a dark environment for 30 min. The resultant
solution was centrifuged, and the wavelength of DPPH in the supernatant was scanned
by a UV-vis spectrophotometer. The scavenging ratio of DPPH was calculated using the
following formula:

DPPH scavenging % = (AB − AS)/AB × 100%

where AB is the DPPH absorption of blank (DPPH + ethanol); AS refers the DPPH absorp-
tion of hydrogel group (DPPH + ethanol + hydrogel).

4.14. In Vitro Cell Culture Studies

The National Centre for Cell Sciences (NCCS), located in Pune, India, is where the
NIH 3T3 cell line was acquired. Dulbeccos Modified Eagle Media supplemented with 10%
(v/v) heat inactivated FBS, 100 g/mL penicillin, and 100 g/mL streptomycin were used in
in vitro analysis. Cells were kept in the logarithmic phase of growth. The cells were kept at
37 ◦C in an incubator with 5% CO2 and 95% humidified air [69].
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4.14.1. Cytotoxicity Assay

GO and rGO were used to determine cytotoxic behavior using the MTT (3-(4,5-
dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay) against the NIH 3T3 cell line.
Briefly, each cell line was seeded in a 96-well microplate individually (1 × 106 cells/mL),
then the plates were incubated at 37 ◦C for 24 h with 5% CO2, and the cells were allowed
to develop until 90% confluence [26,70,71]. After the incubation period, the media was
changed, and the cells received treatments of GO and rGO at concentrations ranging from
20, 40, 60, 80, and 100 g/mL. After that, the samples were cultured for 24 h. Following a
PBS wash (pH = 7.4), 20 L of MTT solution (5 mg/mL) was added to each well of the cells.
The cells were then left to stand at 37 ◦C in the dark.

Cell Viability =

[
Absorbance of treated cells
Absorbance of control cells

]
× 100

4.14.2. In Vitro Wound Scratch Assay

The previously reported and established protocol was followed for conducting this
experiment [26,27]. In 6-well plates (8 × 105 cells/well), NIH 3T3 cells were plated and
cultured under ideal growth conditions until 90% confluence was obtained. To simulate a
wound, a scratch was produced in the center of the cell monolayer using a P10 pipette tip,
and cell debris was removed by washing with new media. For 48 h at 37 ◦C in cells that were
kept untreated, the wound was exposed to 100 g/mL of aloe vera, hydrogel, aloe vera + GO,
aloe vera + rGO, hydrogel + GO, and 50 g/mL of commercial medication (Cipladine;
positive control). Four digital photos were collected at various points throughout the
analysis of the scratch wound closure using an inverted microscope.

4.15. In Vivo Wound–Healing Studies
4.15.1. Animals and Experimental Protocol

Male Wistar rats were used to test the efficacy of GO/rGO conjugated aloe vera/hydrogel
on wound healing. All the animal experiments were performed with absolute care and
following the ethical guidelines laid out by the Biomedical Research Unit and Laboratory
Animal Centre of Saveetha Dental College and Hospitals, India, after obtaining ethical
clearance (BRULAC/SDCH/SIMATS/IAEC/3−2021/058). Male Wistar rats of about 3–
4 months old, weighing about 150–300 g were sheltered in stainless steel lids covered
polypropylene cages and acclimatized for 7 days. The animals were maintained in an air
circulated environment with the arrangement of standard 12:12 h light:dark cycles [69].
They were fed with commercial rodent pelleted foods and drinking water in standard inter-
vals and wound healing was monitored during 2–16 days. The male rats were randomized
into 7 groups, with 2 animals in every group. The experimental groups of animals were
treated as follows:

1. Control;
2. Aloe vera gel;
3. Aloe vera gel + Graphene Oxide (GO);
4. Aloe vera gel + Reduced Graphene Oxide (rGO);
5. Hydrogel;
6. Hydrogel + Graphene Oxide (GO);
7. Hydrogel + reduced Graphene Oxide (rGO).

4.15.2. Anesthesia and Wound Creation in Rats

The pre-operative analgesia was induced by the intra-peritoneal injection of 10 mg/kg
of Xylazene and 25 mg/kg of Ketamine. The dorsal area of the rats was placed facing the
dissecting pad, and the backs of the anesthetized rats were shaved, cleaned, and disinfected
using 70% ethanol. A full thickness circular excisional wound of 20 mm was created on the
dorsal interscapular part. Subsequently, the wound was inoculated with Staphylococcus
aureus. Two days post wound infection, the wounds were treated daily with aloe vera
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gel, hydrogel, 0.05% GO + aloe vera gel, 0.05% GO + hydrogel, 0.05% rGO + aloe vera
gel, and 0.05% rGO + hydrogel, respectively. The results were compared to the untreated
control group. The open wound was traced along the wound margin using transparent
OHB sheets to determine the percentage wound contraction rate on every 0 (surgery day),
4, 8, 12, and 16 days post-surgery. On the 16th day, all the animals were sacrificed, and
the respective wounds were excised. The wound tissue was fixed and further subjected to
hematoxylin and eosin (H&E) and Masons trichome staining for histological analysis of
wound healing [72].

4.15.3. Macroscopic Biophysical Analysis

The measurement of wound surface area was used for the macroscopic assessment of
the reduction in original wound size by calculating the percentage wound contraction [73].
The formula used for the calculation of percentage wound contraction is as follows:

% Wound contraction rate =

[
Wound surface area on day 0 − Wound Surface area on Day x

Wound surface area on day 0

]
× 100

4.15.4. Histopathological Analysis

The granulation tissues removed on the 16th day were used for the histology analysis.
The collected wound tissue from each group was fixed in 10% neutral buffered formalin
and dehydrated using graded ethanol [57]. These samples were cleaned in xylene and
processed routinely into paraffin wax. Further, 4 µm thick embedded tissues were sectioned
using a microtome. These sections were then stained using hematoxylin and eosin (H&E)
and Masons trichome staining [63]. The sections were imaged using Olympus IX81 light
microscope (Tokyo, Japan) to microscopically assess the extent of angiogenesis, amount of
granulation tissue, re-epithelialization, inflammation, and the total collagen content.

4.16. Statistical Analysis

All the results are presented as mean ± standard deviation. The test data were
analyzed by one-way ANOVA. All the statistical analyses (p < 0.5) were considered statisti-
cally significant.
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