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Abstract: Rare earth elements (REEs) play indispensable roles in various advanced technologies,
from electronics to renewable energy. However, the heavy global REEs supply and the environmental
impact of traditional mining practices have spurred the search for sustainable REEs recovery meth-
ods. Polymeric materials have emerged as promising candidates due to their selective adsorption
capabilities, versatility, scalability, and regenerability. This paper provides an extensive overview of
polymeric materials for REEs recovery, including polymeric resins, polymer membranes, cross-linked
polymer networks, and nanocomposite polymers. Each category is examined for its advantages,
challenges, and notable developments. Furthermore, we highlight the potential of polymeric ma-
terials to contribute to eco-friendly and efficient REEs recovery, while acknowledging the need to
address challenges such as selectivity, stability, and scalability. The research in this field actively seeks
innovative solutions to reduce reliance on hazardous chemicals and minimize waste generation. As
the demand for REEs continues to rise, the development of sustainable REEs recovery technologies
remains a critical area of investigation, with the collaboration between researchers and industry
experts driving progress in this evolving field.

Keywords: rare earth elements (REEs); polymeric materials; polymeric resins; polymer membranes;
cross-linked polymer networks; nanocomposite polymers

1. Introduction

Rare earth elements (REEs) constitute a group of 17 chemically akin elements, located
in the middle of the periodic table (atomic numbers 21, 39, and 57–71), playing pivotal roles
in both established and cutting-edge industries like lighting [1], electronics [2], renewable
energy [3,4], and aerospace [5]. They are integral components in diverse technologies such
as fluorescent lamps, lasers, supermagnets, atomic batteries, and engine turbines. However,
global REEs supply has been heavily reliant on China, which has provided over 85% of the
world’s production since the late 20th century [4,6–8]. This dependency raises concerns, as
REEs are often byproducts of other mining operations, making their extraction and recovery
less efficient. Additionally, the accumulation of REEs in the environment are a potential
harm to living organisms and pose environmental and health risks [9]. Consequently, there
is a growing need for sustainable and eco-friendly REEs recovery methods. Numerous
technologies, including solvent extraction [10–12], ion exchange [13,14], precipitation [15],
crystallization [16], and adsorption [17–19], have been employed to recover REEs from
various sources, such as ores, industrial waste streams, and environmental samples. These
methods are designed to selectively extract and separate REEs, offering potential solutions
to the challenges associated with their supply and environmental impact.

Solvent extraction, a widely adopted approach, entails mixing an organic solvent, typi-
cally kerosene or a similar hydrophobic substance [10], with an aqueous solution containing
REEs. It is based on the principle that different elements or ions can be selectively extracted
from a liquid phase into an organic solvent phase owing to differences in their chemical
properties, such as solubility and affinity for certain extracting agents. Complexing agents
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or extractants are introduced into the solvent to preferentially bind to REEs. The selective
extraction and separation of REEs from other elements can be achieved by manipulating
factors like pH and various conditions [20,21]. Solvent extraction has the advantages of
achieving high selectivity for specific REEs, scalable for both laboratory and industrial ap-
plications, and extracting agents can be tailored for different REEs. However, the drawback
is the complex processes involved, and environmental and safety considerations [22].

Ion exchange is renowned for its remarkable selectivity and efficiency in REE recovery.
This method employs ion exchange resins that are impregnated with specific ions tailored to
capture REEs as the solution flows through them [23]. Both the pH of the aqueous solution
and the flow rate can affect the ion exchange reactions. Ion exchange can be highly selective
for specific REEs, depending on the choice of resin and operating conditions. However,
the regeneration of ion exchange resins and the impurities are still challenges. Subsequent
elution using an appropriate solution allows for the retrieval of these valuable elements.
Depending on the resin and elution method used, ion exchange can have operating costs
associated with chemicals and resin replacement.

Another technique involves the selective precipitation of REEs from a solution by
adjusting pH levels and introducing specific precipitating agents [24]. This method is
commonly employed to initially concentrate REEs from dilute solutions before subjecting
them to further purification processes. It involves the chemical conversion of dissolved
REE ions in a solution into solid, insoluble compounds or precipitates, which relies on
the differences in solubility between REE compounds at varying conditions, such as pH
and temperature. Precipitation can be tailored to selectively recover specific REEs based
on the chemical properties, and this method is relatively straightforward and suitable for
various REE-bearing materials. However, impurity co-precipitation, and regeneration are
still challenges for this method.

Crystallization processes can also be utilized for REEs recovery [25]. In this approach,
a suitable compound is crystallized, and this compound is subsequently decomposed
to isolate the individual REEs. This method takes advantage of differences in solubility
between REE compounds under varying conditions. It has the advantages of high purity,
selectivity, and scalability. Thus, crystallization has been used in primary mining operation
and recycling processes to recover REEs from various sources. However, this method sees
less frequent use due to its intricate and complex nature.

To selectively adsorb REEs from a solution, a variety of adsorbents, including both
polymeric materials [26] and inorganic compounds [27], can be employed. Functionalized
polymers or ligands are often incorporated into these adsorbents to enhance selectivity.
The recovery of rare earth elements encompasses a diverse range of techniques, each
characterized by its own unique advantages and complexities. These methods continue to
evolve as researchers endeavor to develop more efficient, selective, and environmentally
friendly approaches to extract and utilize REEs.

Each of these methods has its advantages and disadvantages, depending on factors
such as the composition of the source material, the desired purity of the recovered REEs,
and environmental considerations. Often, a combination of methods is used in a multistep
process to achieve high-purity REEs recovery. The choice of methods depends on the
specific circumstances and goals of the REEs recovery process [28–30]. Over the past few
decades, there has been a noteworthy surge in interest regarding the use of polymeric
materials for the recovery of REEs. In this review, we will classify polymeric materials into
several distinct categories, encompassing polymeric resins, polymer membranes, cross-
linked polymer networks, and nanocomposite polymers. We will include illustrative
examples within each category, highlighting their exceptional performance in recovering
Rare Earth Elements (REEs). The provided case studies vividly showcase the remarkable
adsorption capacities and the regenerable characteristics exhibited by these materials.
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2. Polymeric Materials for REEs Recovery

Polymeric materials have recently gained considerable attention due to their potential
applications in the retrieval of REEs [31–35]. These materials offer a suite of advantages, in-
cluding their capacity for selective adsorption, adaptability for functionalization, scalability,
regenerability, minimized environmental footprint, and waste reduction.

One notable advantage lies in their ability to be fine-tuned for high selectivity toward
specific REEs. By embedding functional groups within the polymer matrix [36], these
materials can be precisely engineered to preferentially adsorb particular REEs, streamlining
the separation processes. Furthermore, polymeric materials can be easily customized
through functionalization, permitting the incorporation of specific ligands or groups that
enhance their affinity for rare earth elements [37]. This augmentation significantly improves
the efficiency of both adsorption and recovery processes. Versatility is another hallmark, as
polymeric materials can be crafted into diverse forms such as beads, fibers, membranes,
and films [38–40]. This adaptability renders them suitable for various processing scales,
spanning from laboratory experimentation to large-scale industrial implementation.

In terms of sustainability, many polymeric materials employed for REEs recovery
exhibit regenerable properties, allowing for multiple cycles of use. This not only conserves
valuable resources but also curtails waste generation. When juxtaposed with traditional
solvent-based extraction methods, polymeric materials proffer a more environmentally
conscientious approach to REEs recovery. They typically operate under gentler conditions
and produce fewer deleterious byproducts. Moreover, these materials facilitate the concen-
tration of REEs from dilute sources, thereby diminishing the volume of waste necessitating
management.

Numerous categories of polymeric materials have undergone rigorous investigation
to assess their viability for REEs recovery [33,35,41–43]. These materials hold substantial
potential as a pivotal component in forthcoming REEs extraction procedures, contributing
to sustainable practices and a decreased environmental footprint. In the following sections,
we will introduce various types of polymeric materials that have been employed in studies
related to the recovery of REEs.

2.1. Polymeric Resins

Polymeric resins possess remarkable adaptability, as they can be precisely customized
through functionalization to exhibit a strong preference for specific REEs [44–46]. Their
utility extends beyond selectivity to include advantages like ease of regeneration, scalability
for various operational scales, and a reduced environmental impact when compared to the
more traditional solvent-based extraction methods. Extensive research endeavors in this
field have yielded substantial advancements and enriched insights into the application of
polymeric resins for the efficient recovery of REEs [46–48].

Polymeric resins can be modified with various functional groups to selectively ad-
sorb specific REEs from complex mixtures [49,50]. The choice of resin and functional
groups is crucial in achieving high selectivity. A system based on the N,N-di(2-ethylhexyl)-
diglycolamide (DEHDGA) grafted polymer resin, used for the efficient separation of RE(III),
is proposed by Wang et al. [49] Upon grafting of DEHDGA ligand, the resulting polymer
resin was evaluated for its RE(III) adsorption performance. Utilizing a multifaceted ap-
proach involving pH-dependent adsorption, kinetics, and equilibrium adsorption isotherm
experiments, the study findings illuminate the paramount role of pH in shaping the ad-
sorption characteristics of the resin for RE(III). Consequently, a comprehensive competitive
adsorption model is proposed, which effectively accounts for the concurrent adsorption of
RE(III) and protons. One of the pivotal outcomes of this investigation is the revelation of
the resin’s heightened selectivity towards RE(III) when subjected to a pH environment of
3.0, particularly in the presence of Al(III) and Fe(III). This remarkable selectivity contrasted
favorably with the performance of the conventional diglycolamides(DGA)-normal resin,
as vividly depicted in Figure 1. Moreover, the outcomes of batch adsorption experiments
unequivocally underscore the substantial enhancement in adsorption capacities for RE(III)
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achieved through the application of this resin. This enhancement stands in stark contrast
to the performance of the DGA-normal resin, reaffirming the exceptional potential of the
prepared resin in bolstering the capture of RE(III) species.
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Figure 1. (a) Illustration of polymer resin used for REEs recovery. (b) A schematic of the preparation
of N,N-di(2-ethylhexyl)-diglycolamide grafted polymer resin. Relationship among element, pH, and
adsorption capacities for (c) [R4N][DEHDGA] resin and (d) the DGA−normal resin. Reprinted with
the permission from Ref. [49].

Polymeric resins offer a cost-effective and sustainable solution for REEs recovery due
to their capability for multiple eco-friendly regeneration cycles. Su and collaborators [42]
have introduced an innovative strategy for recovering REEs employing a redox-copolymer
named poly(ferrocenylpropyl methacrylamide-co-methacrylic acid) (P(FPMAm-co-MAA)).
This remarkable copolymer combines ion-exchange carboxyl groups for REEs adsorption
with a redox-active ferrocene component for regeneration, all under precise electrochemical
control. By molecularly tuning the copolymer composition, efficient adsorption uptake
could be achieved alongside electrochemically regenerated adsorbent reuse without the
use of additional chemicals, as shown in Figure 2. Redox-copolymers containing carboxylic
acid and ferrocene moieties were synthesized and studied for their effectiveness in recovery
of REEs (Y, Nd, Eu, Gd, Dy, and Ce) from aqueous solutions. The copolymer showed
increasing REE adsorption capacities with increasing content of MAA (the REEs binding
group), with a 50/50 ratio of ferrocenyl groups to carboxylic acid groups providing an
optimal balance between uptake and electrochemical regeneration. Adsorption of Y(iii) on
P1-CNT showed an equilibrium capacity of 69.4 mg Y(iii) per g polymer at an optimal pH of
6. Electrochemical desorption of the adsorbed REE from the electrodes was achieved using
a positive potential vs. Ag/AgCl, to release the bound cation by electrostatic repulsion
without the need for additional stripping reagents, achieving close to full regeneration
under electrochemical conditions. The adsorption capacity of the electrodes remained
relatively constant during four consecutive cycles, confirming the structural stability of the
redox-active copolymer.
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Figure 2. Overview of the reversible capture and release of REEs by P(FPMAm−co−MAA) through
electrochemically regenerated ion exchange. During adsorption, REE ions are captured by chemical
ion exchange. During desorption, ferrocene (Fc) is oxidized to ferrocenium (Fc+) electrochemically,
allowing for desorption of the REE ions through electrostatic repulsion. Reduction of ferrocenium
(Fc+) back to ferrocene (Fc) is required for electrode cycling. Reprinted with the permission from
Ref. [42].

Polymeric resins bring numerous advantages to the table when it comes to recovering
REEs. Researchers have diligently explored the intricacies of REEs adsorption kinetics
and thermodynamics on polymeric resins, offering invaluable insights into the factors that
shape adsorption efficiency [45]. Furthermore, extensive experimentation with continuous
column setups has illuminated the practicality of deploying polymeric resins at an industrial
scale, emphasizing their real-world potential. Concurrently, a concerted drive towards
more environmentally conscientious REEs recovery processes using polymeric resins has
emerged [51,52]. The focus here is on reducing the reliance on hazardous chemicals and
curbing the generation of waste.

In essence, the utilization of polymeric resins for REEs recovery holds great promise.
Ongoing research is geared towards refining these methods for heightened efficiency and
sustainability. As the demand for REEs continues its upward trajectory, the development
of innovative, eco-friendly REEs recovery technologies remains a critical domain of inves-
tigation. Collaboration between researchers and industry experts actively addresses the
challenges and opportunities within this evolving field.

2.2. Polymer Membranes

Membranes showcase a distinctive ability to selectively transport specific ions while
excluding others, rendering them a strategic choice for the separation of REEs from com-
plex mixtures [7,13,53–55]. Tailoring membranes for precise selectivity enables the exact
separation of REEs. In contrast to conventional methods, membrane processes provide
superior REEs selectivity and decreased energy consumption, aligning with environmen-
tally sustainable practices [56–58]. Furthermore, these processes hold the potential for
achieving zero liquid discharge. Nevertheless, a critical aspect revolves around evaluating
the economic viability of employing membrane techniques in REEs recovery, demanding
meticulous consideration. Membrane separation processes offer a promising pathway
for extracting REEs from waste effluents, offering numerous benefits. These encompass
elevated recovery rates, exceptional selectivity, minimal space requirements, and reduced
sludge generation. Various types of membranes, such as nanofiltration (NF) [59–61], ul-
trafiltration (UF) [62–64], and reverse osmosis membranes [65], find application in these
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processes. In evaluating composite polymeric membranes with various functionalities,
we conducted a comparative analysis of commonly utilized polymeric membranes in the
context of REE recovery, as summarized in Table 1.

Table 1. Comparison of different polymeric membranes commonly employed in REE recovery.

Polymeric Membranes Composition Advantages Applilcation

Polymeric Resin Membranes Cross-linked polymeric resins
with functional groups

High REE selectivity,
regenerate ability

Solution,
hydrometallurgical processes

Polymer Inclusion
Membranes (PIMs) 3D-polymer network Highly versatile, high stability Continuous membrane-based

extraction and separation

Phosphate-Functionalized
Polymeric Membranes

membranes incorporate
phosphate groups

Strong affinity,
Excellent selectivity

Complex solutions, such as
acid mine drainage

Amino-Functionalized
Polymeric Membranes

membranes contain
amino groups High selectivity Recovery of specific REEs,

wastewater treatment

Magnetic Polymer
Membranes

Magnetic nanoparticles
embedded within
polymer matrices

Easy separation Selective extraction of specific
magnetic REEs

Composite Polymeric
Membranes

Combinations of various
polymers, fillers,

and additives
Customization

Versatile for use in various
extraction and

separation processes

To gain a deeper insight into the functionality of polymer membranes in REEs recov-
ery, we will use the study conducted by Pan and colleagues as an illustrative example.
A two-step composite modification and imprinting technique was devised and executed,
employing rare-earth Nd(III) as the template ions [66]. Illustrated in Figure 3, this pro-
cess began with a bioinspired self-assembly nanocomposite approach that introduced the
polydopamine(PDA)-based membrane reaction platform. Subsequently, an innovation-
driven development phase was implemented before the Nd(III)-imprinted polymerization,
involving the immobilization of polymerizable double bonds on PDA@basswood. To
enhance the selectivity and separation performance of our synthesis method, a two-step-
temperature imprinting method was refined, utilizing MAA and AM as the dual functional
monomers. Following a straightforward removal procedure of Nd(III) from the prepared
membrane, specific recognition sites for Nd(III) ions were ultimately attained.
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sion from Ref. [66].

Yan and his team engineered ion-imprinted electrospun membranes (Y-IIEMs) meticu-
lously designed for the selective separation of the closely-related heavy rare earth ion Y(III)
from Ho(III) and Er(III) by applying high efficient ligand-inducing and aqueous phase
ion-imprinting [67]. Cyanex272 served a dual purpose as both a carrier in the membrane
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matrix and a highly efficient ionic ligand within the imprinted layer. Through PDA bionic
adhesion and sol-gel aqueous phase imprinting, Cyanex272’s thermal stability saw substan-
tial improvement. The impressive water contact angle of Y-IIEMs, measuring only 23.2◦,
was likely the result of a synergistic combination of polar groups, including P=O and P-OH
from the Cyanex272 ligand, imino groups from the pDA layer, and silicon hydroxyls from
the sol-gel imprinting process.

Furthermore, the calculated static adsorption imprinting factor for Y(III) exceeded 7,
affirming the successful formation of valid recognition sites. During dynamic permeation,
the separation factors β(Y/Ho) and β(Y/Er) exhibited significant enhancements, increasing
from 1.24 and 0.85 for non-imprinted membranes to 2.01 and 1.77 for imprinted ones.
Impressively, after undergoing 8 cycles of dynamic permeation, Y-IIEMs only experienced
a minor 13.8% reduction in flux, highlighting their remarkable stability and reusability, as
shown in Figure 4.
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the permission from Ref. [67].

Polymer inclusion membranes (PIMs) represent a vital category within membrane
separation technologies [13,53,68,69]. These membranes are characterized by a 3D-polymer
framework, utilizing materials like polyvinylidene difluoride (PVDF), polytetrafluorethy-
lene (PTFE), or cellulose triacetate (CTA), to embed ion-complexing carriers. What sets
PIMs apart is their capacity to maintain flexibility during operational conditions, achieved
simply by introducing a plasticizer or carefully selecting the appropriate polymer material.
This selection accounts for factors like molecular weight, morphology, as well as bulk
and surface chemistry. PIMs offer numerous advantages over non-polymer alternatives, a
field still relatively underexplored in the scientific literature. These advantages encompass
their straightforward composition, exceptional versatility (tailored for various types of
REEs solutes with a single membrane), ease of synthesis scalable for tunable porosity,
effective carrier immobilization during manufacturing, robust mechanical properties, en-
during operational stability, rapid and convenient installation in facilities, and, importantly,
cost-efficiency.

Although there are many benefits for using polymer membranes in REEs recovery,
they also come with challenges related to several issues that require careful consideration
and ongoing research to overcome. For example, setting up membrane-based systems
can have higher initial capital cost compared to some conventional methods. Fouling,
caused by the accumulation of impurities on the membrane surface, can reduce membrane
efficiency over time, necessitating cleaning and maintenance.

2.3. Cross-Linked Polymer Network

A cross-linked polymer network, often referred to simply as a cross-linked polymer, is a
three-dimensional structure formed by chemically linking polymer chains together [70–72].
This type of polymer network is characterized by strong covalent bonds between individual
polymer chains, creating a mesh-like structure. Cross-linked polymer networks are essential
materials in many industries due to their exceptional strength, durability, and resistance
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to chemical and thermal influences. They play a crucial role in the development of high-
performance materials for diverse applications.

Inorganic adsorbents, once widely used, fell out of favor due to their limitations,
including poor selectivity and environmental instability. Consequently, there has been
a shift towards the adoption of more specialized functional polymeric adsorbents [73].
Following extensive research, polymeric adsorbents featuring amidoxime, phosphate,
amide, and carboxyl groups have emerged as promising candidates, exhibiting impressive
adsorption capacities for uranium and REEs [74].

Among these, amidoxime-based adsorbents [75] have demonstrated exceptional ura-
nium adsorption capabilities, owing to their strong attraction to uranyl ions. However,
a notable challenge in their use stems from the complex preparation processes. These
processes typically involve the utilization of highly toxic, explosive, and volatile acry-
lonitrile monomers. Moreover, the need for labor-intensive amidoximation and alkali
treatments prior to adsorption can present obstacles to scalability and hinder sustainable
development efforts.

Hydrogels, recognized as porous cross-linked polymer networks, have emerged as
highly effective sorbents for REEs [76–79]. These hydrophilic copolymers, although typ-
ically not soluble in water, feature expansive and flexible chelating groups thoughtfully
positioned within their three-dimensional structures [80–82]. Significantly, the incorpora-
tion of inorganic fillers has shown immense promise in augmenting the performance of
hydrogel networks [83]. The amalgamation of organic and inorganic elements in hybrid
gels has been a game-changer, mitigating the limitations often associated with traditional
hydrogels. These enhancements facilitate the efficient recovery of REEs [84].

Gray and his research team meticulously crafted organic-inorganic hybrid gels com-
posed of polyethylenimine(PEI)-polyacrylamide(pAAm)-SiO2. They conducted a com-
prehensive study, probing the adsorption characteristics of these gels concerning REEs
metals under various solution conditions [77]. The researchers conducted an in-depth
exploration into the influence of multiple reaction conditions, comprising cross-link degree,
grafting degree, and SiO2 concentration, along with the examination of testing conditions
like contact time and pH, on the efficiency of adsorption. They meticulously developed
a comprehensive adsorptive mechanism to explain these phenomena. Furthermore, the
reusability of the sorbent for recycling REEs was thoroughly investigated through five
adsorption-desorption cycles, simulating the recovery process from a synthetic acid mine
drainage solution, as shown in Figure 5. PEI-pAAm-SiO2 hydrogel was prepared via
thermopolymerization by grafting AAm monomer onto PEI25000 as a template polymer in
the presence of N,N-methylene-bis-acrylamide(MBAA) as a cross-linker at 70 ◦C.

In the investigation, the organic-inorganic hybrid gel showcased remarkable ad-
sorption capabilities. This achievement stemmed from meticulous optimization of the
three-dimensional network by controlling the degree of cross-linking, grafting, and SiO2
concentration. A noteworthy discovery was the favorable influence of nearly neutral pH
conditions on the enhanced adsorption of REEs. This observation suggests that elevating
the solution pH to higher levels could serve as a practical approach to enhance REEs uptake
from real-world solutions.

Lowry and co-workers developed a phosphate polymer nanogel (PPN) to selectively
recover REEs from low REEs content waste streams [32]. As illustrated in Figure 6, the
removal efficiency for most lanthanide REEs stands near or above 80%, with Ce, Pr, and
Nd displaying removal rates exceeding 95% at a PPN concentration of only 100 mg L–1.
While the removal of Sc and Y (~35%) is somewhat lower than that of the lanthanides,
it still surpasses the removal rates of most competing ions such as Mg, Co, Ni, Cu, Zn,
Pb, Cd, and Ba. Notably, Al remains the most formidable competing cation, exhibiting
removal rates akin to some of the lanthanides. Apart from the REEs, the PPN exhibits the
capability to remove approximately 80% of uranium (U) and about 30% of thorium (Th)
from the leachate. This phenomenon arises from phosphate’s high affinity for radionuclides,
suggesting potential applications of PPN in the realm of radioactive waste management.
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The PPN exhibited notable sorption capacities, registering values of 311 ± 28 mg g–1,
316 ± 38 mg g–1, and 249 ± 29 mg g–1 for Nd, Gd, and Ho, respectively (as depicted in
Figure 7a–c). This equates to a REE uptake of 1.6–2.2 mmol g–1. Remarkably, this sorption
capacity exceeded that of several other materials. Specifically, it was nearly twice that of a
layered A2Sn3S7·1.25H2O ion exchange material [85], over three times greater that of the Cr-
MIL-101 MOF and TiP@GO material [86], over five times higher than a functionalized chitosan-
silica hybrid material [87,88], and over ten times greater than that of ligand-functionalized
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silica particles and ion exchange resin (Figure 7d) [89–91]. Based on its chemical composition,
the PPN has the potential to capture approximately 3 mmol g–1 of trivalent REEs if all the
phosphate groups are fully deprotonated. This implies that REEs utilize up to roughly 70%
of the phosphate groups within the PPN material at its maximum capacity. Despite this
incomplete phosphate utilization, the REE sorption capacity of PPN remains notably high
when compared to other available sorbents. Detailed comparisons for Ln3+ are provided in
Figure 7d, where the PPN exhibited the highest maximum uptake capacity and Kd among
twelve other SPE materials reported in the literature. The findings suggest that PPN has the
potential to capture a substantial amount of trivalent REEs, and it outperforms numerous
other reported sorbents in terms of maximum uptake capacity and Kd values.
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the solution. (d) Comparison of lanthanide (Ln3+) saturation uptake capacity (qm) and distribution
coefficient (Kd) for PPN and other benchmark REE sorbent materials at pH ≤ 7.5. Reprinted with the
permission from Ref. [32].

This situation potentially opens the door to utilizing alternative sources of REEs,
thereby diminishing reliance on energy-intensive and environmentally harmful REEs
mining practices. The impressive capacity of PPN offers a more efficient REEs recovery
process by minimizing the required number of REEs sorption/elution cycles. This reduction
leads to decreased operational expenses and a smaller water footprint. While PPN exhibits
good selectivity against numerous competing cations, it still removes Al3+ and Fe3+. Future
research endeavors should aim to enhance selectivity, particularly concerning these crucial
competing ions, particularly at low pH levels.

2.4. Nanocomposite Polymers

These strategies involve the integration of nanoparticles that exhibit specific affinities
for rare earth elements into polymer matrices, thereby bolstering the overall adsorption
capacity [74,92,93]. Leveraging nanomaterials (NMs) as adsorbents presents a promising
avenue due to their potential for high adsorption efficiency [94,95]. Laboratory testing
conducted with specially formulated aqueous solutions (not actual wastewater) has yielded
encouraging results, suggesting the viability and interest of this approach. In recent
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years, researchers have delved into the investigation of synthesized, functionalized, and
characterized NMs for the efficient adsorption of rare earth ions (RE3+) from aqueous
solutions. This exploration extends beyond resource retrieval considerations to encompass
the broader context of environmental and human health impacts associated with REEs and
wastewater. For example, Iftekhar and co-workers investigated the mechanism of synthesis
of graphite(GA)-g-PAM from free radicals using the EPR spin trapping technique and a
possible reaction pathway was proposed [96]. The synthesized nanocomposite was utilized
for the removal of REEs, Eu, La, Nd, and Sc from aqueous solutions.

Yang and collaborators synthesized amino-grafted magnetic graphene oxide compos-
ites through a straightforward one-step cross-linking reaction involving graphene oxide
and magnetic Fe3O4/C nanoparticles, as shown in Figure 8a [97]. The magnetic graphene
oxide composites, as synthesized, exhibit remarkable long-term stability when subjected to
both acidic and alkaline solutions. These composites display outstanding efficacy in the
removal of Ho(III), a prototypical REE, from water. Impressively, their observed adsorption
capacity, measured at 72.1 mg of Ho(III) per gram of material, surpasses the capabilities
of most previously reported magnetic materials. Even after undergoing 18 adsorption-
desorption cycles in acid and alkali solutions, these composites maintain their structural
integrity and retain their physicochemical properties. Furthermore, this adsorbent exhibits
exceptional adsorption performance, not only for Ho(III) but also for other heavy REEs,
including Er(III), Eu(III), Lu(III), Tm(III), Y(III), and Yb(III).
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factor of coexistent cations in the mixture solution (Experimental conditions: the initial concentration
of each cations was about 100 mg/L; adsorbent dosage, 1 g/L; pH, 6.0); (b) adsorption capacities
of various heavy rare earth elements by GO-APTS and Fe3O4/C/GO-APTS. Reprinted with the
permission from Ref. [97].

Figure 8b illustrates the impact of single coexistent ions on Ho(III) adsorption, re-
vealing that the interference of K+, Na+, Ca2+, Mg2+, and Ba2+ on the removal of Ho(III)
can be disregarded. In addition to Ho(III), they also evaluated the adsorption capabilities
of graphene oxide-3-aminopropyltriethoxysilane(GO-APTS) and Fe3O4/C/GO-APTS for
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other heavy rare earth elements, namely Er(III), Eu(III), Lu(III), Tm(III), Y(III), and Yb(III).
It highlights that Ho(III) adsorption remains unaffected by the presence of coexistent ions.
The adsorption capacities of GO-APTS for these rare earth elements are provided, ranging
from 48.3 mg/g to 103.2 mg/g. In comparison, Fe3O4/C/GO-APTS exhibits slightly lower
adsorption capacities due to its lower APTS content within the composite, as presented in
Figure 8c. However, both materials demonstrate significant potential for the extraction of a
wide range of rare earth elements.

In another study, researchers investigated the utilization of ultra-small cerium oxide
nanoparticles within a matrix of woven-non-woven polyvinyl alcohol (PVA) nanofibers
to create a nanocomposite designed for adsorbing REE ions [98]. Bae and colleagues
developed two innovative phosphate-functionalized porous organic polymers, namely
BPOP-1 and BPOP-2, as illustrated in Figure 9a. Both of these BPOP materials exhibit
exceptional chemical stability across a broad spectrum of pH conditions [99]. The research
team assessed the potential of BPOP materials for selectively removing REEs (Eu3+, Gd3+,
Tb3+, and Dy3+) from aqueous solutions. As illustrated in Figure 9b, BPOP-2 exhibited a
remarkable capacity to selectively capture Dy3+ ions over other tetravalent, divalent, and
monovalent cations. Impressively, nearly all of the adsorbed Dy3+ ions were successfully
recovered during the initial 10 consecutive adsorption and desorption cycles, as depicted
in Figure 9c. This highlights the enduring and robust performance of BPOP-2 over at least
10 cycles.
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Polymeric materials have risen as highly promising contenders in the quest for REE
recovery, effectively addressing the pressing demand for sustainable and environmentally-
friendly techniques. These materials boast a range of advantages, including exceptional
selectivity, adaptability in various forms, and the remarkable capacity for regeneration and
repeated use. An array of polymeric resins, membranes, and composite materials has been
ingeniously developed, showcasing remarkable adsorption capabilities and robust stability in
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the context of REEs recovery. Furthermore, innovative strategies like redox-copolymers and
phosphate-functionalized polymers have emerged, offering exciting prospects for efficient
REEs capture and release. Although certain challenges persist, such as enhancing selectivity
and optimizing large-scale processes, it is undeniable that polymeric materials play a pivotal
role in mitigating environmental hazards and fortifying the security of REEs supplies.

One thing we want to mention here but not discuss in detail for this review paper is the
artificial intelligence (AI) used for recovery of REEs. AI offers significant advantages in REE
recovery, such as it can analyze vast datasets related to REE resources, mining operations,
and processing techniques [100–103]. By predicting optimal mining sites or suggesting
efficient extraction methods to optimize the REE recovery process, AI-powered robots
and sorting systems can enhance the recovery of REEs from electronic waste and other
recyclables. There are also challenges to overcome. These include the need for high-quality
data, the development of specialized AI algorithms, and addressing ethical concerns related
to automation and job displacement. However, with ongoing advancements in AI and a
growing understanding of its applications, it holds great promise for making REEs recovery
more efficient, sustainable, and economically viable.

3. Summary

In 2021, China achieved a significant milestone by recovering 27,000 tons of rare
earths from production-side waste. This remarkable accomplishment accounted for 16%
of the total rare earth oxide production, which amounted to 170,000 tons during that year.
Furthermore, both the United States and the European Union have demonstrated a strong
commitment to advancing research and development in the field of rare earth recycling
technology. Their efforts are accompanied by substantial industrial support. For instance,
the European Union’s commitment is exemplified through its substantial investment in the
related project. This extensive initiative comprises 19 sub-projects spanning across nine
different countries and boasts a total funding amount of EUR 140 million.

In this paper, we explore the utilization of polymeric materials in the recovery of REEs,
which are crucial in various industries. It addresses the challenges arising from the heavy
reliance on China for REEs supply and the associated environmental hazards of REEs
accumulation in ecosystems. We primarily focus on polymeric materials and their merits in
REEs recovery. These materials can be finely tuned for high selectivity, enabling the precise
adsorption of specific REEs. The functionalization of polymers enhances their affinity for
REEs, thereby enhancing both adsorption and recovery efficiency. Additionally, polymeric
materials exhibit versatility, with the ability to be molded into various forms, from beads
to membranes, making them adaptable for different scales of operation. Sustainability
is a key theme, with an emphasis on the regenerable properties of many polymeric ma-
terials used in REEs recovery. This regenerability not only conserves valuable resources
but also reduces waste generation. Furthermore, compared to traditional solvent-based
extraction methods, polymeric materials operate under milder conditions and generate
fewer harmful byproducts.

This review categorizes polymeric materials into distinct groups, including polymeric
resins, polymer membranes, cross-linked polymer networks, and nanocomposite polymers.
It provides illustrative examples within each category, underscoring their effectiveness
in REEs recovery. Case studies demonstrate the impressive adsorption capacities and
regenerable nature of these materials. The future direction of polymer materials-based
rare earth elements recovery will likely involve a combination of tailored material design,
sustainability, economic feasibility, and interdisciplinary collaboration. These efforts aim
to address the growing demand for REEs while mitigating environmental impacts and
ensuring a stable supply chain for critical industries.

In conclusion, we acknowledge the existing challenges, such as the quest for high
selectivity and stability, and the optimization of recovery processes for large-scale applica-
tions. Nevertheless, it underscores the promising role of polymeric materials in addressing
the urgent need for sustainable and eco-friendly REEs recovery methods. Collaboration be-
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tween researchers and industry experts continues to drive advancements in these methods,
thereby mitigating the environmental and supply chain risks associated with REEs.
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Abbreviations

REEs Rare earth elements
DEHDGA N,N-di(2-ethylhexyl)-diglycolamide
RE(III) Rhenium(III)
Al(III) Aluminum(III)
Fe(III) Iron(III)
DGA Diglycolamides
P(FPMAm-co-MAA) Poly(ferrocenylpropyl methacrylamide-co-methacrylic acid)
Y Yttrium
Nd Neodymium
Eu Europium
Gd Gadolinium
Dy Dysprosium
Ce Cerium
CNT Carbon nanotube
Fc Ferrocene
NF Nanofiltration
UF Ultrafiltration
PDA Polydopamine
PVDF Polyvinylidene difluoride
PTFE Polytetrafluorethylene
CTA Cellulose triacetate
PEI Polyethylenimine
pAAm Polyacrylamide
PIM Polymer inclusion membranes
MBAA N,N-methylene-bis-acrylamide
PPN Phosphate polymer nanogel
Kd Distribution coefficients
NMs Nanomaterials
GA Graphite
GO-APTS Graphene oxide-3-aminopropyltriethoxysilane
PVA Polyvinyl alcohol
BPOP Phosphate-functionalized porous organic polymers
AI Artificial intelligence
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