Intravaginal Gel for Sustained Delivery of Occidiofungin and Long-Lasting Antifungal Effects
Abstract
:1. Introduction
2. Results and Discussions
2.1. Drug Substance (OCF)
2.2. Intravaginal Gel Drug Product (OCF001)
2.3. OCF Diffusion Rates Determined Using a Franz Cell Apparatus
2.4. Ex Vivo Efficacy Study Using Excised Mouse Skin
2.5. In Vivo Pathology of Repeat-Dosed Rabbits
3. Conclusions
4. Materials and Methods
4.1. Chemicals and Reagents
4.2. OCF001 Drug Product Gel Preparation
4.3. Franz Cell Diffusion Assays
4.4. LC-MS Parameters
4.5. Ex Vivo Efficacy Study Using Excised Mouse Skin
4.6. In Vivo Pathology of Repeat-Dosed Rabbits
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Blostein, F.; Levin-Sparenberg, E.; Wagner, J.; Foxman, B. Recurrent vulvovaginal candidiasis. Ann. Epidemiol. 2017, 27, 575. [Google Scholar] [CrossRef]
- Donders, G.; Sziller, I.O.; Paavonen, J.; Hay, P.; de Seta, F.; Bohbot, J.M.; Kotarski, J.; Vives, J.A.; Szabo, B.; Cepuliené, R.; et al. Management of recurrent vulvovaginal candidosis: Narrative review of the literature and European expert panel opinion. Front. Cell. Infect. Microbiol. 2022, 12, 934353. [Google Scholar] [CrossRef] [PubMed]
- Yano, J.; Fidel, J.P.L.; Fidel, P.L., Jr. Protocols for vaginal inoculation and sample collection in the experimental mouse model of candida vaginitis. J. Vis. Exp. 2011, 58, e3382. [Google Scholar] [CrossRef]
- Zhu, Y.-X.; Li, T.; Fan, S.-R.; Liu, X.-P.; Liang, Y.-H.; Liu, P. Health-related quality of life as measured with the Short-Form 36 (SF-36) questionnaire in patients with recurrent vulvovaginal candidiasis. Health Qual. Life Outcomes 2016, 14, 65. [Google Scholar] [CrossRef]
- Mathema, B.; Cross, E.; Dun, E.; Park, S.; Bedell, J.; Slade, B.; Williams, M.; Riley, L.; Chaturvedi, V.; Perlin, D.S.; et al. Prevalence of vaginal colonization by drug-resistant Candida species in college-age women with previous exposure to over-the-counter azole antifungals. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2001, 33, E23–E27. [Google Scholar] [CrossRef]
- Brion, L.P.; Uko, S.E.; Goldman, D.L. Risk of resistance associated with fluconazole prophylaxis: Systematic review. J. Infect. 2007, 54, 521–529. [Google Scholar] [CrossRef]
- Vuichard, D.; Weisser, M.; Orasch, C.; Frei, R.; Heim, D.; Passweg, J.R.; Widmer, A.F. Weekly use of fluconazole as prophylaxis in haematological patients at risk for invasive candidiasis. BMC Infect. Dis. 2014, 14, 573. [Google Scholar] [CrossRef]
- Chen, K.-C.; Ravichandran, A.; Guerrero, A.; Deng, P.; Baird, S.M.; Smith, L.; Lu, S.-E. The Burkholderia contaminans MS14 ocfC Gene Encodes a Xylosyltransferase for Production of the Anti-fungal Occidiofungin. Appl. Environ. Microbiol. 2013, 79, 2899–2905. [Google Scholar] [CrossRef]
- Ellis, D.; Gosai, J.; Emrick, C.; Heintz, R.; Romans, L.; Gordon, D.; Lu, S.-E.; Austin, F.; Smith, L. Occidiofungin’s Chemical Stability and In Vitro Potency against Candida Species. Antimicrob. Agents Chemother. 2012, 56, 765–769. [Google Scholar] [CrossRef]
- Emrick, D.; Ravichandran, A.; Gosai, J.; Lu, S.; Gordon, D.M.; Smith, L. The antifungal occidiofungin triggers an apoptotic mechanism of cell death in yeast. J. Nat. Prod. 2013, 76, 829–838. [Google Scholar] [CrossRef]
- Gu, G.; Smith, L.; Liu, A.; Lu, S.-E. Genetic and biochemical map for the biosynthesis of occidiofungin, an antifungal produced by burkholderia contaminans strain MS14. Appl. Environ. Microbiol. 2011, 77, 6189–6198. [Google Scholar] [CrossRef] [PubMed]
- Hing, S.L.; Ravichandran, A.; Escano, J.; Cooley, J.; Austin, F.; Lu, S.-E.; Pruett, S.; Smith, L. Toxicological Evaluation of Occidiofungin against Mice and Human Cancer Cell Lines. Pharmacol. Pharm. 2014, 5, 1085–1093. [Google Scholar] [CrossRef]
- Lu, S.-E.; Novak, J.; Austin, F.W.; Gu, G.; Ellis, D.; Kirk, M.; Wilson-Stanford, S.; Tonelli, M.; Smith, L. Occidiofungin, a unique antifungal glycopeptide produced by a strain of Burkholderia contaminans. Biochemistry 2009, 48, 8312. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Guo, F.; Jin, Z.; Geng, M.; Ju, M.; Ravichandran, A.; Orugunty, R.; Smith, L.; Zhu, G.; Zhang, H. Novel Antiparasitic Activity of the Antifungal Lead Occidiofungin. Antimicrob. Agents Chemother. 2020, 64, 10-1128. [Google Scholar] [CrossRef] [PubMed]
- Ravichandran, A.; Escano, J.; Lee, J.H.; Ross, M.K.; Austin, F.; Orugunty, R.; Lu, S.-E.; Smith, L. Formulation, Pharmacological Evaluation, and Efficacy Studies of Occidiofungin, a Novel Antifungal. Antimicrob. Agents Chemother. 2020, 64, 10-1128. [Google Scholar] [CrossRef] [PubMed]
- Ravichandran, A.; Geng, M.; Hull, K.G.; Li, J.; Romo, D.; Lu, S.-E.; Albee, A.; Nutter, C.; Gordon, D.M.; Ghannoum, M.A.; et al. A Novel Actin Binding Drug with In Vivo Efficacy. Antimicrob. Agents Chemother. 2018, 63, 10-1128. [Google Scholar] [CrossRef]
- Ravichandran, A.; Gu, G.; Escano, J.; Lu, S.-E.; Smith, L. The Presence of Two Cyclase Thioesterases Expands the Conformational Freedom of the Cyclic Peptide Occidiofungin. J. Nat. Prod. 2013, 76, 150–156. [Google Scholar] [CrossRef] [PubMed]
- Wei, T.; Cooley, J.; Austin, F.; Lu, S.E.; Pruett, S.B.; Smith, L. Pre-clinical Toxicological Evaluation of Occidiofungin, a Unique Glyco-lipopeptide Antifungal. Int. J. Toxicol. 2012, 31, 326–336. [Google Scholar]
- Anderson, D.J.; Marathe, J.; Pudney, J. The structure of the human vaginal stratum corneum and its role in immune defense. Am. J. Reprod. Immunol. 2014, 71, 618–623. [Google Scholar] [CrossRef]
- Younes, J.A.; Klappe, K.; Kok, J.W.; Busscher, H.J.; Reid, G.; van der Mei, H.C. Vaginal epithelial cells regulate membrane adhesiveness to co-ordinate bacterial adhesion. Cell. Microbiol. 2016, 18, 605–614. [Google Scholar] [CrossRef]
- Francois, M.; Snoeckx, E.; Putteman, P.; Wouters, F.; De Proost, E.; Delaet, U.; Peeters, J.; Brewster, M.E. A mucoadhesive, cyclodextrin-based vaginal cream formulation of itraconazole. AAPS PharmSci 2003, 5, 50–54. [Google Scholar] [CrossRef] [PubMed]
- Notario-Pérez, F.; Martín-Illana, A.; Cazorla-Luna, R.; Ruiz-Caro, R.; Tamayo, A.; Rubio, J.; María-Dolores, V. Mucoadhesive Vaginal Discs based on Cyclodextrin and Surfactants for the Controlled Release of Antiretroviral Drugs to Prevent the Sexual Transmission of HIV. Pharmaceutics 2020, 12, 321. [Google Scholar] [CrossRef] [PubMed]
- Garg, S.; Tambwekar, K.R.; Vermani, K.; Garg, A. Compendium of Pharmaceutical Excipients for Vaginal Formulations. Pharm. Technol. 2001, 2001. [Google Scholar]
- Vincent, K.L.; Moss, J.A.; Marzinke, M.A.; Hendrix, C.W.; Anton, P.A.; Pyles, R.B.; Guthrie, K.M.; Dawson, L.; Olive, T.J.; Butkyavichene, I.; et al. Safety and pharmacokinetics of single, dual, and triple antiretroviral drug formulations delivered by pod-intravaginal rings designed for HIV-1 prevention: A Phase I trial. PLoS Med. 2018, 15, e1002655. [Google Scholar] [CrossRef] [PubMed]
- Cunha, A.R.; Machado, R.M.; Palmeira-De-Oliveira, A.; Martinez-De-Oliveira, J.; Das Neves, J.; Palmeira-De-Oliveira, R. Characterization of commercially available vaginal lubricants: A safety perspective. Pharmaceutics 2014, 6, 530–542. [Google Scholar] [CrossRef] [PubMed]
- Ng, S.-F.; Rouse, J.; Sanderson, D.; Eccleston, G. A Comparative Study of Transmembrane Diffusion and Permeation of Ibuprofen across Synthetic Membranes Using Franz Diffusion Cells. Pharmaceutics 2010, 2, 209–223. [Google Scholar] [CrossRef]
- Justin-Temu, M.; Damian, F.; Kinget, R.; Mooter, G.V.D. Intravaginal gels as drug delivery systems. J. Women’s Health 2004, 13, 834–844. [Google Scholar] [CrossRef]
- Geng, M.; Hansanant, N.; Lu, S.-E.; Lockless, S.W.; Shin, R.; Orugunty, R.; Smith, L. Synthesis and characterization of semisynthetic analogs of the antifungal occidiofungin. Front. Microbiol. 2022, 13, 1056453. [Google Scholar] [CrossRef]
- Hansanant, N.; Smith, L. Occidiofungin: Actin Binding as a Novel Mechanism of Action in an Antifungal Agent. Antibiotics 2022, 11, 1143. [Google Scholar] [CrossRef]
- Grant, L.M.; Orenstein, R. Treatment of Recurrent Vulvovaginal Candidiasis with Ibrexafungerp. J. Investig. Med. High Impact Case Rep. 2022, 10, 23247096221123144. [Google Scholar] [CrossRef]
- Kably, B.; Launay, M.; Derobertmasure, A.M.; Lefeuvre, S.; Dannaoui, E.; Billaud, E.M. Antifungal Drugs TDM: Trends and Update. Ther. Drug Monit. 2022, 44, 166–197. [Google Scholar] [CrossRef] [PubMed]
- Ma, Z.; Wang, X.; Li, C. Advances in anti-invasive fungal drug delivery systems. J. Zhejiang Univ. Med. Sci. 2023, 52, 318–327. [Google Scholar] [CrossRef] [PubMed]
- Schwebke, J.R.; Sobel, R.; Gersten, J.K.; Sussman, S.A.; Lederman, S.N.; Jacobs, M.A.; Chappell, B.T.; Weinstein, D.L.; Moffett, A.H.; Azie, N.E.; et al. Ibrexafungerp Versus Placebo for Vulvovaginal Candidiasis Treatment: A Phase 3, Randomized, Controlled Superiority Trial (VANISH 303). Clin. Infect. Dis. 2022, 74, 1979–1985. [Google Scholar] [CrossRef] [PubMed]
Ingredient | Composition Percentage (w/w) |
OCF001-(0.300 mg/g of gel) | |
USP purified water | 89.510% |
Propylene glycol | 7.00% |
Hydroxypropyl β-cyclodextrin | 0.30% |
Hydroxyethyl cellulose (Natrosol 250 HHX) | 2.00% |
Citric acid monohydrate | 0.580% |
Sodium citrate dihydrate | 0.480% |
OCF drug substance | 0.030% |
Sorbic acid | 0.100% |
Ingredient | Composition Percentage (w/w) |
OCF001-(0.150 mg/g of gel) | |
USP purified water | 89.675% |
Propylene glycol | 7.00% |
Hydroxypropyl β-cyclodextrin | 0.150% |
Hydroxyethyl cellulose (Natrosol 250 HHX) | 2.00% |
Citric acid monohydrate | 0.580% |
Sodium citrate dihydrate | 0.480% |
OCF drug substance | 0.015% |
Sorbic acid | 0.100% |
Ingredient | Composition Percentage (w/w) |
OCF001-(1.5 mg/g of gel) | |
USP purified water | 88.19% |
Propylene glycol | 7.00% |
Hydroxypropyl β-cyclodextrin | 1.5% |
Hydroxyethyl cellulose (Natrosol 250 HHX) | 2.00% |
Citric acid monohydrate | 0.580% |
Sodium citrate dihydrate | 0.480% |
OCF drug substance | 0.15% |
Sorbic acid | 0.100% |
Ingredient | Composition Percentage (w/w) |
OCF001-(0.000 mg/g of placebo gel) | |
USP purified water | 89.690% |
Propylene glycol | 7.00% |
Hydroxypropyl β-cyclodextrin | 0.15% |
Hydroxyethyl cellulose (Natrosol 250 HHX) | 2.00% |
Citric acid monohydrate | 0.580% |
Sodium citrate dihydrate | 0.480% |
OCF drug substance | 0.000% |
Sorbic acid | 0.100% |
OCF001: 0.150 mg of OCF/g Gel | |||
Sample Prep Number | 1 | 2 | 3 |
UPLC Concentration 1 | 0.016 | 0.020 | 0.019 |
UPLC Concentration 2 | 0.017 | 0.019 | 0.019 |
UPLC Concentration 3 | 0.017 | 0.020 | 0.019 |
Avg. | 0.017 | 0.020 | 0.019 |
Sample Std Dev. | 0.001 | 0.001 | 0.000 |
Expected conc. of gel (mg/g) | 0.150 | 0.150 | 0.150 |
conc of gel (mg/g) | 0.150 | 0.177 | 0.171 |
Conc. % error | −0.02 | 15.24 | 12.27 |
Avg of conc. (mg/g) | 0.166 | ||
Avg conc. % Accuracy | 9.62 | ||
% Accuracy Std Dev. | 8.09 | ||
OCF001: 0.300 mg of OCF/g gel | |||
Sample Prep Number | 1 | 2 | 3 |
UPLC Concentration 1 | 0.020 | 0.020 | 0.020 |
UPLC Concentration 2 | 0.020 | 0.020 | 0.021 |
UPLC Concentration 3 | 0.020 | 0.020 | 0.020 |
Avg. | 0.020 | 0.020 | 0.020 |
Sample Std Dev. | 0.0000 | 0.0000 | 0.0006 |
Expected conc. of gel (mg/g) | 0.300 | 0.300 | 0.300 |
conc of gel (mg/g) | 0.360 | 0.360 | 0.366 |
Conc. % error | 16.67 | 16.66 | 18.03 |
Avg of conc. (mg/g) | 0.362 | ||
Avg conc. % Accuracy | 17.12 | ||
% Accuracy Std Dev. | 0.79 |
OCF Diffusion Characteristics | ||||
---|---|---|---|---|
Time (Hours) | 0.150 mg of OCF/g of Gel | 0.300 mg of OCF/g of Gel | 0.150 mg of OCF/mL no Gel | 0.300 mg of OCF/mL no Gel |
Concentration ng/mL | ||||
0 | BLOQ | BLOQ | BLOQ | BLOQ |
0.25 | 96 | 326 | 166 | 170 |
0.5 | 179 | 496 | 537 | 545 |
1 | 226 | 680 | 1216 | 1268 |
2 | 394 | 1105 | 2312 | 2581 |
4 | 1099 | 1560 | 4246 | 5456 |
8 | 1667 | 2274 | 5752 | 9009 |
16 | 2607 | 2797 | 8483 | 12,409 |
24 | 3279 | 3829 | 9051 | 13,987 |
Final Concentration vs. Equilibrium Concentrations | |||
---|---|---|---|
Sample | 24-h Concentration (µg/mL) | Theoretical Max (µg/mL) | Percent Difference |
0.150 mg of OCF/mL no gel | 9.0 | 25 | 64% |
0.150 mg of OCF/g of gel | 3.3 | 25 | 87% |
0.300 mg of OCF/mL no gel | 14.0 | 50 | 72% |
0.300 mg of OCF/g of gel | 3.8 | 50 | 92% |
Ex vivo Trial with OCF001 | |||
---|---|---|---|
Control Group | Treatment Group | t-Test Two Tail | |
Trial 1 3/23/22 | 1.30 × 106 | 3.70 × 103 | 0.00032 |
4.07 × 105 | 1.57 × 104 | ||
3.40 × 106 | 1.33 × 103 | ||
Trial 2 3/30/22 | 2.35 × 106 | 1.58 × 105 | |
2.12 × 106 | 1.16 × 105 | ||
3.80 × 106 | 5.00 × 105 | ||
Trial 3 4/6//22 | 2.70 × 106 | 1.55 × 105 | |
4.50 × 106 | 6.20 × 104 | ||
2.40 × 106 | 3.40 × 105 | ||
Average CFUs | 2.55 × 106 | 1.50 × 105 |
Group | Saline | OCF001 0.0 mg of OCF/g of Gel | OCF001 0.150 mg of OCF/g of Gel | OCF001 1.5 mg of OCF/g of Gel | Saline; Recovery | OCF001 0.0 mg of OCF/g of Gel Recovery | OCF001 1.5 mg of OCF/g of Gel Recovery | |
---|---|---|---|---|---|---|---|---|
Number of animals examined | 6 | 6 | 6 | 6 | 6 | 6 | 6 | |
Number of animals with microscopic lesions | - | - | 2 | 6 | - | - | - | |
Vagina | Infiltrate, inflammatory cells | - | - | 2 | - | - | - | - |
Inflammation, neutrophilic | - | - | - | 6 | - | - | - |
Occidiofungin Variants: Parent Masses and Product Masses | |||
---|---|---|---|
OCF A | OCF B | N15 OCF | |
Parent Mass | 1200.73 | 1216.49 | 1227.34 |
Product Mass | 1068.7 | 1084.7 | 1095.36 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cothrell, A.; Cao, K.; Bonasera, R.; Tenorio, A.; Orugunty, R.; Smith, L. Intravaginal Gel for Sustained Delivery of Occidiofungin and Long-Lasting Antifungal Effects. Gels 2023, 9, 787. https://doi.org/10.3390/gels9100787
Cothrell A, Cao K, Bonasera R, Tenorio A, Orugunty R, Smith L. Intravaginal Gel for Sustained Delivery of Occidiofungin and Long-Lasting Antifungal Effects. Gels. 2023; 9(10):787. https://doi.org/10.3390/gels9100787
Chicago/Turabian StyleCothrell, Andrew, Kevin Cao, Rachele Bonasera, Abraham Tenorio, Ravi Orugunty, and Leif Smith. 2023. "Intravaginal Gel for Sustained Delivery of Occidiofungin and Long-Lasting Antifungal Effects" Gels 9, no. 10: 787. https://doi.org/10.3390/gels9100787
APA StyleCothrell, A., Cao, K., Bonasera, R., Tenorio, A., Orugunty, R., & Smith, L. (2023). Intravaginal Gel for Sustained Delivery of Occidiofungin and Long-Lasting Antifungal Effects. Gels, 9(10), 787. https://doi.org/10.3390/gels9100787