Magnetic and Magnetostrictive Properties of Sol–Gel-Synthesized Chromium-Substituted Cobalt Ferrite
Abstract
:1. Introduction
2. Results and Discussion
2.1. XRD Analysis
2.2. Saturation Magnetization
2.3. Maximum Magnetostriction
2.4. Strain Derivative (dλ/dH)
2.5. Coercivity
3. Conclusions
4. Materials and Methods
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Petit, G.A.; Forester, D.W. Mössbauer Study of Cobalt-Zinc Ferrites. Phys. Rev. B 1971, 4, 3912. [Google Scholar] [CrossRef]
- Sawatzky, G.A.; van Der Woude, F.; Morrish, A.H. Mössbauer Study of Several Ferrimagnetic Spinels. Phys. Rev. 1969, 187, 747. [Google Scholar] [CrossRef]
- Sawatzky, G.A.; van Der Woude, F.; Morrish, A.H. Cation Distributions in Octahedral and Tetrahedral Sites of the Ferrimagnetic Spinel CoFe2O4. J. Appl. Phys. 1968, 39, 1204. [Google Scholar] [CrossRef]
- Zhong, H.; Zhang, H. Effects of different sintering temperature and Mn content on magnetic properties of NiZn ferrites. J. Magn. Magn. Mater. 2004, 283, 247. [Google Scholar] [CrossRef]
- Kerter, E.; Perriat, P.; Gillot, B.; Tailhades, P.; Rousset, A. Correlation between oxidation states of transition metal ions and variation of the coercivity in mixed-valence defect spinel ferrites. Solid State Ion. 1997, 101, 457. [Google Scholar] [CrossRef]
- Sarmah, S.; Maji, D.; Ravi, S.; Bora, T. Effect of Cr3+ substitution on the magnetic and dielectric properties of cobalt ferrites. J. Alloys Compd. 2023, 960, 170589. [Google Scholar] [CrossRef]
- Panda, R.K.; Muduli, R.; Jayarao, G.; Sanyal, D.; Behera, D. Effect of Cr3+ substitution on electric and magnetic properties of cobalt ferrite nanoparticles. J. Alloys Compd. 2016, 669, 19. [Google Scholar] [CrossRef]
- Kim, K.J.; Kim, H.K.; Park, Y.R. Variation of the Structural and the Magnetic Properties in Mn-Doped CoFe2O4 Thin Films. J. Korean Phys. Soc. 2006, 49, 1024. [Google Scholar]
- Zhou, B.; Zhang, Y.W.; Liao, C.S.; Cheng, F.X.; Yan, C.H.; Chen, L.Y.; Wang, S.Y. Enhanced magneto-optical Kerr effects and decreased Curie temperature in Co–Mn ferrite thin films. Appl. Phys. Lett. 2001, 79, 1849. [Google Scholar] [CrossRef]
- Kim, K.J.; Kim, H.K.; Park, Y.R. Effects of Mn substitution of Co and Fe in spinel CoFe2O4 thin films. J. Magn. Magn. Mater. 2006, 304, e106. [Google Scholar] [CrossRef]
- Paulsen, J.A.; Ring, A.P.; Lo, C.C.H.; Snyder, J.E.; Jiles, D.C. Manganese-substituted cobalt ferrite magnetostrictive materials for magnetic stress sensor applications. J. Appl. Phys. 2005, 97, 044502. [Google Scholar] [CrossRef]
- Lee, E.W. Magnetostriction and Magnetomechanical Effects. Rep. Prog. Phys. 1955, 18, 184. [Google Scholar] [CrossRef]
- Went, J.J. Linear magnetostriction of homogeneous nickel alloys. Physica 1951, 17, 98. [Google Scholar] [CrossRef]
- Vonsovsky, S. Ferromagnetism. J. Phys. 1946, 10, 468. [Google Scholar]
- Yamamoto, M.; Miyasawa, R. Magnetostriction constants of face centered cubic Nickel-Copper and Nickel-Cobalt Alloys. Sci. Rep. Res. Insts. Tohoku Univ. A 1953, 5, 113. [Google Scholar]
- Van Groenou, A.B.; Bongers, P.F.; Stuyts, A.L. Magnetism, microstructure and crystal chemistry of spinel ferrites. Mater. Sci. Eng. 1969, 3, 317. [Google Scholar] [CrossRef]
- Gyorgy, E.M.; Krause, J.T.; Le Craw, R.C.; Testardi, L.R.; VanUitert, L.G. Variation of Sound Velocity with Magnetic Field in Mn-Doped YIG. J. Appl. Phys. 1967, 38, 1226. [Google Scholar] [CrossRef]
- Dionne, G.F. Molecular-orbital solution of magnetic exchange in spinel ferrites. J. Appl. Phys. 2006, 99, 08M913. [Google Scholar] [CrossRef]
- Yosida, K.; Tachiki, M. On the Origin of the Magnetic Anisotropy Energy of Ferrites. Prog. Theor. Phys. 1957, 17, 331. [Google Scholar] [CrossRef]
- Dionne, G.F. Determination of Magnetic Anisotropy and Porosity from the Approach to Saturation of Polycrystalline Ferrites. J. Appl. Phys. 1969, 40, 1839. [Google Scholar] [CrossRef]
- Chen, Y.; Kriegermeier-Sutton, R.W.; Jiles, D.C. Magnetomechanical effects under torsional strain in iron, cobalt and nickel. J. Magn. Magn. Mater. 2001, 236, 131. [Google Scholar] [CrossRef]
- Bozorth, R.M. Ferromagnetism; Van Nostrand: NewYork, NY, USA, 1951. [Google Scholar]
- Van Vleck, J.H.; Penney, W.G. The Theory of the Paramagnetic Rotation and Susceptibility in Manganous and Ferric Salts. Philos. Mag. 1934, 17, 961. [Google Scholar] [CrossRef]
- Krieble, K.; Schaeffer, T.; Paulsen, J.A.; Ring, A.P.; Lo, C.C.H. Mossbauer Spectroscopy Investigation of Mn-Substituted Co-ferrite (CoMnFeO). J. Appl. Phys. 2005, 97, 10F101. [Google Scholar] [CrossRef]
- Bozorth, R.M.; Tilden, E.F.; Williams, A.J. Anisotropy and Magnetostriction of Some Ferrites. Phys. Rev. 1955, 99, 1788. [Google Scholar] [CrossRef]
- Chikazumi, S.; Charap, S.H. Physics of Magnetism; Krieger Publishing Company: Malabar, FL, USA, 1978; Volume 239. [Google Scholar]
- Slonczewski, J.C. Theory of Magnetostriction in Cobalt-Manganese Ferrite. Phys. Rev. 1961, 122, 1367. [Google Scholar] [CrossRef]
- Slonczewski, J.C. Anisotropy and Magnetostriction in Magnetic Oxides. J. Appl. Phys. 1961, 32, 253S. [Google Scholar] [CrossRef]
- Yousuf, M.A.; Jabeen, S.; Shahi, M.N.; Khan, M.A.; Shakir, I.; Warsi, M.F. Magnetic and electrical properties of yttrium substituted manganese ferrite nanoparticles prepared via micro-emulsion route. Results Phys. 2020, 16, 102973. [Google Scholar] [CrossRef]
- Song, S.H.; Lo, C.C.; Lee, S.J.; Aldini, S.T.; Snyder, J.E. Magnetic and magnetoelastic properties of Ga-substituted cobalt ferrite. J. Appl. Phys. 2007, 101, 09C517. [Google Scholar] [CrossRef]
- Lo, C.C.H. Compositional Dependence of the Magnetomechanical Effect in Substituted Cobalt Ferrite for Magnetoelastic Stress Sensors. IEEE Trans. Magn. 2007, 43, 2367. [Google Scholar] [CrossRef]
- Dhanalakshmi, B.; Vivekananda, K.V.; Rao, B.P.; Rao, P. Superparamagnetism in Bi0.95Mn0.05FeO3–Ni0.5Zn0.5Fe2O4 multiferroic nanocomposites. Phys. B Cond. Matter 2019, 571, 5. [Google Scholar] [CrossRef]
- Sreekanth, K.; Dhanalakshmi, B.; Madhavaprasad, D. Enhanced dielectric and magnetic properties of Cr/Co and Mn co-doped single phase multiferroic bismuth ferrite nanoparticles. J. Ind. Chem. Soc. 2022, 99, 100649. [Google Scholar] [CrossRef]
- Dhanalakshmi, B.; Sekhar, B.C.; Vivekananda, K.V.; Rao, B.S.; Rao, B.P. Enhanced dielectric and magnetic properties in Mn-doped bismuth ferrite multiferroic nanoceramics. Appl. Phys. A 2020, 126, 557. [Google Scholar] [CrossRef]
- Ramesh, S.; Dhanalakshmi, B.; Sekhar, B.C.; Rao, P.; Rao, B.P. Structural and Magnetic Characterizations of Ni–Zn–Co Ferrite Nanoparticles Synthesized by Sol–Gel Autocombustion Method. J. Nanosci. Nanotechnol. 2016, 16, 11094. [Google Scholar] [CrossRef]
- Sekhar, B.; Rao, G.; Caltun, O.; Lakshmi, B.; Rao, B.; Rao, P. Magnetic and magnetostrictive properties of Cu substituted Co-ferrites. J. Mag. Mag. Mater. 2016, 398, 59. [Google Scholar] [CrossRef]
- Ramesh, S.; Dhanalakshmi, B.; Sekhar, B.; Rao, P.; Rao, B. Effect of Mn/Co substitutions on the resistivity and dielectric properties of nickel–zinc ferrites. Ceram. Int. 2016, 42, 9591. [Google Scholar] [CrossRef]
- Balmuchu, S.P.; Radhika, E.; Dobbidi, P. The impact of oxygen partial pressure in modifying energy storage property of lanthanum doped multiferroic bismuth ferrite thin films deposited via pulsed laser deposition. J. Energy Storage 2023, 71, 108179. [Google Scholar] [CrossRef]
- Manzoor, A.; Afzal, A.M.; Umair, M.; Ali, A.; Rizwan, M.; Yaqoob, M.Z. Synthesis and characterization of Bismuth ferrite (BiFeO3) nanoparticles by solution evaporation method. J. Mag. Mag. Mater. 2015, 393, 269. [Google Scholar] [CrossRef]
- Sravani, G.M.; Murali, N.; Chandra Sekhar, B.; Dhanalakshmi, B.; Parajuli, D.; Gunavardhana Naidu, T.; Verma, R.; Kumar, R.; Krishan, B.; Samatha, K. Structural and electrical properties of Ca doped BiFeO3 multiferroic nanomaterials prepared by sol-gel auto-combustion method. J. Indian Chem. Soc. 2022, 99, 100465. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Beera, C.S.; Dhanalakshmi, B.; Devi, D.N.; Vijayalakshmi, D.; Mishra, A.; Ramesh, S.; Rao, B.P.; Shyamala, P.; Menelaou, M.; Alanazi, N.; et al. Magnetic and Magnetostrictive Properties of Sol–Gel-Synthesized Chromium-Substituted Cobalt Ferrite. Gels 2023, 9, 873. https://doi.org/10.3390/gels9110873
Beera CS, Dhanalakshmi B, Devi DN, Vijayalakshmi D, Mishra A, Ramesh S, Rao BP, Shyamala P, Menelaou M, Alanazi N, et al. Magnetic and Magnetostrictive Properties of Sol–Gel-Synthesized Chromium-Substituted Cobalt Ferrite. Gels. 2023; 9(11):873. https://doi.org/10.3390/gels9110873
Chicago/Turabian StyleBeera, Chandra Sekhar, B. Dhanalakshmi, D. Nirmala Devi, D. Vijayalakshmi, Akanksha Mishra, S. Ramesh, B. Parvatheeswara Rao, P. Shyamala, Melita Menelaou, Nadyah Alanazi, and et al. 2023. "Magnetic and Magnetostrictive Properties of Sol–Gel-Synthesized Chromium-Substituted Cobalt Ferrite" Gels 9, no. 11: 873. https://doi.org/10.3390/gels9110873
APA StyleBeera, C. S., Dhanalakshmi, B., Devi, D. N., Vijayalakshmi, D., Mishra, A., Ramesh, S., Rao, B. P., Shyamala, P., Menelaou, M., Alanazi, N., & Alodhayb, A. N. (2023). Magnetic and Magnetostrictive Properties of Sol–Gel-Synthesized Chromium-Substituted Cobalt Ferrite. Gels, 9(11), 873. https://doi.org/10.3390/gels9110873