Cellulose-Based Metallogels—Part 3: Multifunctional Materials
Abstract
:1. Introduction
2. Metallogel Science, Approaches, and Applications
2.1. Medical Application
2.1.1. Antimicrobial, Antifungal, and Antiviral Properties
2.1.2. Anticancer Properties
2.1.3. Drug Delivery
2.1.4. Tissue Engineering
Nanoparticle | Hydrogel Matrice/Additives | Biological Effect | References |
---|---|---|---|
Ag | Flax, cotton, and hardwood powder cellulose | Antibacterial activity against S. aureus and E. coli. | [24,46,47] |
Bacterial cellulose/PVA (2:5 wt.) | Antibacterial activity against E. coli and S. aureus. Promotion of the growth of new blood vessels. Anti-inflammatory activity. Accelerating wound healing. | [41] | |
Microcrystalline cellulose | Antibacterial activity against E. coli and S. aureus. | [45] | |
Bacterial cellulose | Antibacterial activity against K. pneumonia and S. aureus. | [51] | |
Bacterial cellulose/aqueous curcumin | Cytocompatibility, wound-healing properties, and antimicrobial activity against S.aureus, P.aeruginosa, and C. auris. | [53] | |
Hydroxypropyl-β-cyclodextrin complex | Tissue repair and wound healing via a decrease in inflammation; increase in angiogenesis, collagen deposition, and rate of neo-epithelialization; and cytocompatibility. Antimicrobial activity against P. aeruginosa, C. freundii, E. cloacae, E. coli, S. aureus, S. epidermidis, B. subtilis, and C. parapsilosis. | [60] | |
Cellulose nanocrystals isolated from Syzygium cumini leaves | Low toxicity to hFB cells. | [96] | |
Hydroxyethyl cellulose | Antibacterial activity against E. coli and L. monocytogenes. The composite did not significantly reduce the viability of Caco-2 and FHC colon cells. | [97] | |
Cu | Cellulose nanofibrils | Effective ibuprofen drug carrier with controlled release in the gastrointestinal tract. Low toxicity against Caco-2 cells. | [89] |
CuO, Cu2O, and Cu | Carboxymethyl cellulose/ibuprofen | Antibacterial activity against E. coli and S. aureus. Biocompatibility with HaCaT cells. | [42] |
CuO | Carboxymethyl cellulose, hydroxypropylmethyl cellulose | Antibacterial activity against K. pneumonia and S. aureus. | [51] |
Au | Bacterial cellulose | Stimuli-responsive thermosensitive carriers for therapeutic agents to enhance the bioactivity of leptin for obesity therapy. | [90] |
Methylcellulose/leptin | Antibacterial activity against E. coli and P. aeruginosa; biocompatibility. Promotion of wound repair. | [43] | |
Bacterial cellulose/4,6-diamino-2-pyrimidinethiol | Antibacterial activity against S. aureus and E. coli. | [46] | |
ZnO | Flax and hardwood powder cellulose | Antibacterial activity against E. coli and S. aureus. | [49] |
Bacterial cellulose | Antifungal activity towards phytopathogen F. oxysporum. Reduced the wilt disease symptom incidence of pepper plant. | [44] | |
Cellulose from watermelon peel waste | Antibacterial activity against K. pneumonia and S. aureus. | [51] | |
Bacterial cellulose | The synergetic antimicrobial effect against E. coli, B. subtilis, and C. albicans. Without propolis extract, BC/ZnO hydrogels had no influence on Gram-negative and eukaryotic cells. | [54] | |
Bacterial cellulose/ethanolic propolis extracts | Effective quercetin drug carrier. Antimicrobial activity against S. aureus and T. rubrum. Biocompatibility and anticancer properties against normal L929 murine fibroblast cells and A431 human skin carcinoma cell lines, respectively. | [55] | |
Chitosan/dialdehyde cellulose derived from Sugarcane bagasse/phyto-derived quercetin | Effective curcumin drug carrier. Antimicrobial activity against S. aureus and T. rubrum. | [56] | |
Sugarcane bagasse cellulose/curcumin | Stimuli-responsive (pH) carriers for therapeutic agents. Antimicrobial activity against S. aureus and T. rubrum. Biocompatibility towards L929 cells. Anticancer activity towards A431 cells. | [91] | |
Chitosan/dialdehyde cellulose derived from Sugarcane bagasse/L-Histidine/Naringenin, quercetin, and curcumin | Antibacterial activity against E. coli, Salmonella, L. monocytogenes, and S. aureus. A decline in the capacity and virulence of microorganisms to pose infections. | [98] |
2.2. Food Packaging
2.3. Wastewater Treatment
2.4. Catalysis
2.5. Conductive Materials
2.6. Magnetic Materials
3. Conclusions
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Acharya, S.; Liyanage, S.; Parajuli, P.; Rumi, S.S.; Shamshina, J.L.; Abidi, N. Utilization of Cellulose to Its Full Potential: A Review on Cellulose Dissolution, Regeneration, and Applications. Polymers 2021, 13, 4344. [Google Scholar] [CrossRef]
- Tofanica, B.-M.; Belosinschi, D.; Volf, I. Gels, Aerogels and Hydrogels: A Challenge for the Cellulose-Based Product Industries. Gels 2022, 8, 497. [Google Scholar] [CrossRef] [PubMed]
- Kontturi, E.; Tammelin, T.; Österberg, M. Cellulose—Model Films and the Fundamental Approach. Chem. Soc. Rev. 2006, 35, 1287–1304. [Google Scholar] [CrossRef] [PubMed]
- Ji, Q.; Zhou, C.; Li, Z.; Boateng, I.D.; Liu, X. Is Nanocellulose a Good Substitute for Non-Renewable Raw Materials? A Comprehensive Review of the State of the Art, Preparations, and Industrial Applications. Ind. Crops Prod. 2023, 202, 117093. [Google Scholar] [CrossRef]
- Zainal, S.H.; Mohd, N.H.; Suhaili, N.; Anuar, F.H.; Lazim, A.M.; Othaman, R. Preparation of Cellulose-Based Hydrogel: A Review. J. Mater. Res. Technol. 2020, 10, 935–952. [Google Scholar] [CrossRef]
- Kabir, S.F.; Sikdar, P.P.; Haque, B.; Bhuiyan, M.R.; Ali, A.; Islam, M.N. Cellulose-Based Hydrogel Materials: Chemistry, Properties and Their Prospective Applications. Prog. Biomater. 2018, 7, 153–174. [Google Scholar] [CrossRef] [PubMed]
- Ciolacu, D.E.; Suflet, D.M. Cellulose-Based Hydrogels for Medical/Pharmaceutical Applications. In Biomass as Renewable Raw Material to Obtain Bioproducts of High-Tech Value; Popa, V., Volf, I., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 401–439. ISBN 978-0-444-63774-1. [Google Scholar]
- Abeer, M.M.; Mohd Amin, M.C.I.; Martin, C. A Review of Bacterial Cellulose-Based Drug Delivery Systems: Their Biochemistry, Current Approaches and Future Prospects. J. Pharm. Pharmacol. 2014, 66, 1047–1061. [Google Scholar] [CrossRef]
- Dutta, S.D.; Patel, D.K.; Lim, K.-T. Functional Cellulose-Based Hydrogels as Extracellular Matrices for Tissue Engineering. J. Biol. Eng. 2019, 13, 55. [Google Scholar] [CrossRef]
- Volf, I.; Popa, V.I. Integrated Processing of Biomass Resources for Fine Chemical Obtaining: Polyphenols. In Biomass as Renewable Raw Material to Obtain Bioproducts of High-Tech Value; Popa, V.I., Volf, I., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 113–160. [Google Scholar] [CrossRef]
- Huang, K.; Wang, Y. Recent Applications of Regenerated Cellulose Films and Hydrogels in Food Packaging. Curr. Opin. Food Sci. 2022, 43, 7–17. [Google Scholar] [CrossRef]
- Mikhailidi, A.; Volf, I.; Belosinschi, D.; Tofanica, B.-M.; Ungureanu, E. Cellulose-Based Metallogels—Part 2: Physico-Chemical Properties and Biological Stability. Gels 2023, 9, 633. [Google Scholar] [CrossRef]
- Fortună, M.E.; Ungureanu, E.; Jităreanu, D.C.; Țopa, D.C.; Harabagiu, V. Effects of hybrid polymeric material based on polycaprolactone on the environment. Materials 2022, 15, 4868. [Google Scholar] [CrossRef] [PubMed]
- Figueiredo, J.A.; Ismael, M.I.; Anjo, C.M.S.; Duarte, A.P. Cellulose and Derivatives from Wood and Fibers as Renewable Sources of Raw-Materials. In Carbohydrates in Sustainable Development I; Rauter, A.P., Vogel, P., Queneau, Y., Eds.; Topics in Current Chemistry; Springer: Berlin/Heidelberg, Germany, 2010; pp. 117–128. ISBN 978-3-642-14837-8. [Google Scholar]
- Gavrilescu, D.; Tofănică, B.M.; Puițel, A.C.; Petrea, P. Sustainable Use of Vegetal Fibers in Composite Materials. Sources of Vegetal Fibers. Environ. Eng. Manag. J. 2009, 8, 429–438. [Google Scholar] [CrossRef]
- Domozych, D.; Ciancia, M.; Fangel, J.; Mikkelsen, M.; Ulvskov, P.; Willats, W. The Cell Walls of Green Algae: A Journey through Evolution and Diversity. Front. Plant Sci. 2012, 3, 82. [Google Scholar] [CrossRef] [PubMed]
- Qian, H.; Liu, J.; Wang, X.; Pei, W.; Fu, C.; Ma, M.; Huang, C. The State-of-the-Art Application of Functional Bacterial Cellulose-Based Materials in Biomedical Fields. Carbohydr. Polym. 2023, 300, 120252. [Google Scholar] [CrossRef]
- Chesca, A.M.; Nicu, R.; Tofănică, B.M.; Puiţel, A.C.; Vlase, R.; Gavrilescu, D. Pulping of Corn Stalks-Assessment in Bio-Based Packaging Materials. Cellul. Chem. Technol. 2018, 52, 645–653. [Google Scholar]
- Gavrilescu, D.; Chesca, A.M.; Tofanica, B.M.; Puitel, A.C.; Nicu, R. Environmentally Friendly Cellulosic Fibers from Corn Stalks. Environ. Eng. Manag. J. 2018, 17, 1765–1771. [Google Scholar] [CrossRef]
- Mikhailidi, A.M.; Saurov, S.K.; Markin, V.I.; Kotelnikova, N.E. Functional Materials from Paper Wastes: I. From Waste Newsprint Paper and Cardboard to High-Grade Cellulose Fibers. Russ. J. Bioorg. Chem. 2019, 45, 888–894. [Google Scholar] [CrossRef]
- Mikhailidi, A.; Volf, I.; Belosinschi, D.; Tofanica, B.-M.; Ungureanu, E. Cellulose-Based Metallogels—Part 1: Raw Materials and Preparation. Gels 2023, 9, 390. [Google Scholar] [CrossRef]
- Zahran, M.; Marei, A.H. Innovative Natural Polymer Metal Nanocomposites and Their Antimicrobial Activity. Int. J. Biol. Macromol. 2019, 136, 586–596. [Google Scholar] [CrossRef]
- Oprea, M.; Panaitescu, D.M. Nanocellulose Hybrids with Metal Oxides Nanoparticles for Biomedical Applications. Molecules 2020, 25, 4045. [Google Scholar] [CrossRef]
- Mikhailidi, A.M.; Kotel′nikova, N.E.; Shakhmin, A.L.; Andersson, S.; Saprykina, N.N.; Kudryashov, V.I.; Anan′eva, E.P.; Martakova, Y.V. Preparation, Characteristics, and Antibacterial Properties of Pulp—Silver Nanocomposites Obtained from DMA/LiCl Solutions. Fiber. Chem. 2015, 47, 260–264. [Google Scholar] [CrossRef]
- Cuenya, B.R. Synthesis and Catalytic Properties of Metal Nanoparticles: Size, Shape, Support, Composition, and Oxidation State Effects. Thin Solid Film. 2010, 518, 3127–3150. [Google Scholar] [CrossRef]
- Ungureanu, E.; Căpraru, A.M.; Ungureanu, O.; Jităreanu, C.D.; Iacob, V.; Ulea, E.; Popa, V.I. Ecologycal biocide systems based on unmodified and epoxydation lignin, furan resin and copper. Cellul. Chem. Technol. 2012, 46, 599–603. [Google Scholar]
- Ungureanu, E.; Trofin, A.E.; Ariton, A.M.; Jităreanu, C.D.; Ungureanu, O.; Gîlcă, V.; Borş, S.I.; Popa, V.I. Applications of epoxidated lignins for bioprotection of lignocellulosic materials. Cellul. Chem. Technol. 2016, 50, 77–85. [Google Scholar]
- Hamrayev, H.; Shameli, K.; Korpayev, S. Green Synthesis of Zinc Oxide Nanoparticles and Its Biomedical Applications: A Review. J. Res. Nanosci. Nanotechnol. 2021, 1, 62–74. [Google Scholar] [CrossRef]
- Dong, H.; Snyder, J.F.; Tran, D.T.; Leadore, J.L. Hydrogel, Aerogel and Film of Cellulose Nanofibrils Functionalized with Silver Nanoparticles. Carbohydr. Polym. 2013, 95, 760–767. [Google Scholar] [CrossRef] [PubMed]
- Bao, Y.; He, J.; Song, K.; Guo, J.; Zhou, X.; Liu, S. Functionalization and Antibacterial Applications of Cellulose-Based Composite Hydrogels. Polymers 2022, 14, 769. [Google Scholar] [CrossRef]
- Ciolacu, D.E.; Nicu, R.; Ciolacu, F. Cellulose-Based Hydrogels as Sustained Drug-Delivery Systems. Materials 2020, 13, 5270. [Google Scholar] [CrossRef] [PubMed]
- Rusu, D.; Ciolacu, D.; Simionescu, B. Cellulose-Based Hydrogels in Tissue Engineering Applications. Cellul. Chem. Technol. 2019, 53, 907–923. [Google Scholar] [CrossRef]
- Wang, C.; Bai, J.; Tian, P.; Xie, R.; Duan, Z.; Lv, Q.; Tao, Y. The Application Status of Nanoscale Cellulose-Based Hydrogels in Tissue Engineering and Regenerative Biomedicine. Front. Bioeng. Biotechnol. 2021, 9, 732513. [Google Scholar] [CrossRef]
- Sánchez-Cid, P.; Jiménez-Rosado, M.; Romero, A.; Pérez-Puyana, V. Novel Trends in Hydrogel Development for Biomedical Applications: A Review. Polymers 2022, 14, 3023. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-López, E.; Gomes, D.; Esteruelas, G.; Bonilla, L.; Lopez-Machado, A.L.; Galindo, R.; Cano, A.; Espina, M.; Ettcheto, M.; Camins, A.; et al. Metal-Based Nanoparticles as Antimicrobial Agents: An Overview. Nanomaterials 2020, 10, 292. [Google Scholar] [CrossRef] [PubMed]
- Hoseinzadeh, E.; Makhdoumi, P.; Taha, P.; Hossini, H.; Stelling, J.; Amjad Kamal, M.; Ashraf, G.M. A Review on Nano-Antimicrobials: Metal Nanoparticles, Methods and Mechanisms. Curr. Drug Metab. 2017, 18, 120–128. [Google Scholar] [CrossRef] [PubMed]
- Huy, T.Q.; Hien Thanh, N.T.; Thuy, N.T.; Chung, P.V.; Hung, P.N.; Le, A.-T.; Hong Hanh, N.T. Cytotoxicity and Antiviral Activity of Electrochemical–Synthesized Silver Nanoparticles against Poliovirus. J. Virol. Methods 2017, 241, 52–57. [Google Scholar] [CrossRef] [PubMed]
- Meléndez-Villanueva, M.A.; Morán-Santibañez, K.; Martínez-Sanmiguel, J.J.; Rangel-López, R.; Garza-Navarro, M.A.; Rodríguez-Padilla, C.; Zarate-Triviño, D.G.; Trejo-Ávila, L.M. Virucidal Activity of Gold Nanoparticles Synthesized by Green Chemistry Using Garlic Extract. Viruses 2019, 11, 1111. [Google Scholar] [CrossRef]
- Zhou, J.; Hu, Z.; Zabihi, F.; Chen, Z.; Zhu, M. Progress and Perspective of Antiviral Protective Material. Adv. Fiber Mater. 2020, 2, 123–139. [Google Scholar] [CrossRef]
- Kundu, R.; Payal, P. Antimicrobial Hydrogels: Promising Soft Biomaterials. Chem. Sel. 2020, 5, 14800–14810. [Google Scholar] [CrossRef]
- Song, S.; Liu, Z.; Abubaker, M.A.; Ding, L.; Zhang, J.; Yang, S.; Fan, Z. Antibacterial Polyvinyl Alcohol/Bacterial Cellulose/Nano-Silver Hydrogels That Effectively Promote Wound Healing. Mater. Sci. Eng. C 2021, 126, 112171. [Google Scholar] [CrossRef]
- Dharmalingam, K.; Bordoloi, D.; Kunnumakkara, A.B.; Anandalakshmi, R. Preparation and Characterization of Cellulose-Based Nanocomposite Hydrogel Films Containing CuO/Cu2O/Cu with Antibacterial Activity. J. Appl. Polym. Sci. 2020, 137, 49216. [Google Scholar] [CrossRef]
- Li, Y.; Tian, Y.; Zheng, W.; Feng, Y.; Huang, R.; Shao, J.; Tang, R.; Wang, P.; Jia, Y.; Zhang, J.; et al. Composites of Bacterial Cellulose and Small Molecule-Decorated Gold Nanoparticles for Treating Gram-Negative Bacteria-Infected Wounds. Small 2017, 13, 1700130. [Google Scholar] [CrossRef]
- Abdelaziz, A.M.; Dacrory, S.; Hashem, A.H.; Attia, M.S.; Hasanin, M.; Fouda, H.M.; Kamel, S.; El Saied, H. Protective Role of Zinc Oxide Nanoparticles Based Hydrogel against Wilt Disease of Pepper Plant. Biocatal. Agric. Biotechnol. 2021, 35, 102083. [Google Scholar] [CrossRef]
- Li, S.-M.; Jia, N.; Ma, M.-G.; Zhang, Z.; Liu, Q.-H.; Sun, R.-C. Cellulose–Silver Nanocomposites: Microwave-Assisted Synthesis, Characterization, Their Thermal Stability, and Antimicrobial Property. Carbohydr. Polym. 2011, 86, 441–447. [Google Scholar] [CrossRef]
- Mikhailidi, A.; Kotelnikova, N. Antibacterial Cellulose Hydrogels with Noble Metals Nanoparticles: Synthesis, Mechanism, and Properties. In Proceedings of the International Conference “Progress in Organic and Macromolecular Compounds”, Iasi, Romania, 7 October 2021; pp. 129–130. [Google Scholar]
- Mikhailidi, A.M.; Ivanova, M.V.; Shakhmin, A.L.; Saprikina, N.N.; Kotelnikova, N.E. Antimicrobial Cellulose Hydrogels for Medical Applications. In Proceedings of the XIX International Conference “New Polymer Composite Materials. Mikitaev Readings”, Elbrus, Russia, 3 July 2023; p. 272. [Google Scholar]
- Anžlovar, A.; Žagar, E. Cellulose Structures as a Support or Template for Inorganic Nanostructures and Their Assemblies. Nanomaterials 2022, 12, 1837. [Google Scholar] [CrossRef] [PubMed]
- Katepetch, C.; Rujiravanit, R.; Tamura, H. Formation of Nanocrystalline ZnO Particles into Bacterial Cellulose Pellicle by Ultrasonic-Assisted in Situ Synthesis. Cellulose 2013, 20, 1275–1292. [Google Scholar] [CrossRef]
- Alavi, M.; Nokhodchi, A. An Overview on Antimicrobial and Wound Healing Properties of ZnO Nanobiofilms, Hydrogels, and Bionanocomposites Based on Cellulose, Chitosan, and Alginate Polymers. Carbohydr. Polym. 2020, 227, 115349. [Google Scholar] [CrossRef] [PubMed]
- Heidari, H.; Teimuri, F.; Ahmadi, A.-R. Nanocellulose-Based Aerogels Decorated with Ag, CuO and ZnO Nanoparticles: Synthesis, Characterization and the Antibacterial Activity. Polyhedron 2022, 213, 115629. [Google Scholar] [CrossRef]
- Mikhailidi, A.; Saprykina, N.; Mokeev, M.; Zinchenko, A.; Kotelnikova, N. Highly Porous Hybrid Composite Hydrogels Based on Cellulose and 1,10-Phenanthrocyanine of Zn (II): Synthesis and Characterization with WAXS, FTIR, 13C CP/MAS NMR and SEM. Cellul. Chem. Technol. 2020, 54, 875–888. [Google Scholar] [CrossRef]
- Gupta, A.; Briffa, S.M.; Swingler, S.; Gibson, H.; Kannappan, V.; Adamus, G.; Kowalczuk, M.; Martin, C.; Radecka, I. Synthesis of Silver Nanoparticles Using Curcumin-Cyclodextrins Loaded into Bacterial Cellulose-Based Hydrogels for Wound Dressing Applications. Biomacromolecules 2020, 21, 1802–1811. [Google Scholar] [CrossRef] [PubMed]
- Mocanu, A.; Isopencu, G.; Busuioc, C.; Popa, O.-M.; Dietrich, P.; Socaciu-Siebert, L. Bacterial Cellulose Films with ZnO Nanoparticles and Propolis Extracts: Synergistic Antimicrobial Effect. Sci. Rep. 2019, 9, 17687. [Google Scholar] [CrossRef]
- George, D.; Maheswari, P.U.; Begum, K.M.M.S. Synergic Formulation of Onion Peel Quercetin Loaded Chitosan-Cellulose Hydrogel with Green Zinc Oxide Nanoparticles towards Controlled Release, Biocompatibility, Antimicrobial and Anticancer Activity. Int. J. Biol. Macromol. 2019, 132, 784–794. [Google Scholar] [CrossRef]
- Anagha, B.; George, D.; Maheswari, P.U.; Begum, K.M.M.S. Biomass Derived Antimicrobial Hybrid Cellulose Hydrogel with Green ZnO Nanoparticles for Curcumin Delivery and Its Kinetic Modelling. J. Polym. Env. 2019, 27, 2054–2067. [Google Scholar] [CrossRef]
- Yuan, Y.; Ding, L.; Chen, Y.; Chen, G.; Zhao, T.; Yu, Y. Nano-Silver Functionalized Polysaccharides as a Platform for Wound Dressings: A Review. Int. J. Biol. Macromol. 2022, 194, 644–653. [Google Scholar] [CrossRef] [PubMed]
- Elangwe, C.N.; Morozkina, S.N.; Olekhnovich, R.O.; Krasichkov, A.; Polyakova, V.O.; Uspenskaya, M.V. A Review on Chitosan and Cellulose Hydrogels for Wound Dressings. Polymers 2022, 14, 5163. [Google Scholar] [CrossRef]
- Zhao, J.; Xu, W.; Zhao, Z.; Ling, G.; Zhang, P. Intelligent Nanocomposite Hydrogels with Simultaneous Photothermal Antitumor and Antibacterial Efficacy for Cutaneous Melanoma Treatment. Compos. Part B Eng. 2022, 243, 110130. [Google Scholar] [CrossRef]
- Singla, R.; Soni, S.; Patial, V.; Kulurkar, P.M.; Kumari, A.; Mahesh, S.; Padwad, Y.S.; Yadav, S.K. Cytocompatible Anti-Microbial Dressings of Syzygium Cumini Cellulose Nanocrystals Decorated with Silver Nanoparticles Accelerate Acute and Diabetic Wound Healing. Sci. Rep. 2017, 7, 10457. [Google Scholar] [CrossRef] [PubMed]
- Sood, A.; Granick, M.S.; Tomaselli, N.L. Wound Dressings and Comparative Effectiveness Data. Adv. Wound Care 2014, 3, 511–529. [Google Scholar] [CrossRef]
- Leaper, D.; Münter, C.; Meaume, S.; Scalise, A.; Mompó, N.B.; Jakobsen, B.P.; Gottrup, F. The Use of Biatain Ag in Hard-to-Heal Venous Leg Ulcers: Meta-Analysis of Randomised Controlled Trials. PLoS ONE 2013, 8, e67083. [Google Scholar] [CrossRef]
- Jørgensen, B.; Price, P.; Andersen, K.E.; Gottrup, F.; Bech-Thomsen, N.; Scanlon, E.; Kirsner, R.; Rheinen, H.; Roed-Petersen, J.; Romanelli, M.; et al. The Silver-Releasing Foam Dressing, Contreet Foam, Promotes Faster Healing of Critically Colonised Venous Leg Ulcers: A Randomised, Controlled Trial. Int. Wound J. 2005, 2, 64–73. [Google Scholar] [CrossRef] [PubMed]
- León, A.H.; Hebal, F.; Stake, C.; Baldwin, K.; Barsness, K.A. Prevention of Hypergranulation Tissue after Gastrostomy Tube Placement: A Randomised Controlled Trial of Hydrocolloid Dressings. Int. Wound J. 2019, 16, 41–46. [Google Scholar] [CrossRef]
- Chugh, H.; Sood, D.; Chandra, I.; Tomar, V.; Dhawan, G.; Chandra, R. Role of Gold and Silver Nanoparticles in Cancer Nano-Medicine. Artif. Cells Nanomed. Biotechnol. 2018, 46, 1210–1220. [Google Scholar] [CrossRef]
- Zhang, H.; Li, T.; Luo, W.; Peng, G.X.; Xiong, J. Green Synthesis of Ag Nanoparticles from Leucus Aspera and Its Application in Anticancer Activity against Alveolar Cancer. J. Exp. Nanosci. 2022, 17, 47–60. [Google Scholar] [CrossRef]
- El-Sonbaty, S.; Kandil, E.I.; Haroun, R.A.-H. Assessment of the Antitumor Activity of Green Biosynthesized Zinc Nanoparticles as Therapeutic Agent Against Renal Cancer in Rats. Biol. Trace Elem. Res. 2023, 201, 272–281. [Google Scholar] [CrossRef]
- Dhanalekshmi, K.I.; Sangeetha, K.; Magesan, P.; Johnson, J.; Zhang, X.; Jayamoorthy, K. Photodynamic Cancer Therapy: Role of Ag- and Au-Based Hybrid Nano-Photosensitizers. J. Biomol. Struct. Dyn. 2022, 40, 4766–4773. [Google Scholar] [CrossRef] [PubMed]
- Katifelis, H.; Lyberopoulou, A.; Mukha, I.; Vityuk, N.; Grodzyuk, G.; Theodoropoulos, G.E.; Efstathopoulos, E.P.; Gazouli, M. Ag/Au Bimetallic Nanoparticles Induce Apoptosis in Human Cancer Cell Lines via P53, CASPASE-3 and BAX/BCL-2 Pathways. Artif. Cells Nanomed. Biotechnol. 2018, 46, 389–398. [Google Scholar] [CrossRef]
- Elsayed, K.A.; Alomari, M.; Drmosh, Q.A.; Alheshibri, M.; Al Baroot, A.; Kayed, T.S.; Manda, A.A.; Al-Alotaibi, A.L. Fabrication of ZnO-Ag Bimetallic Nanoparticles by Laser Ablation for Anticancer Activity. Alex. Eng. J. 2022, 61, 1449–1457. [Google Scholar] [CrossRef]
- Greulich, C.; Diendorf, J.; Simon, T.; Eggeler, G.; Epple, M.; Köller, M. Uptake and Intracellular Distribution of Silver Nanoparticles in Human Mesenchymal Stem Cells. Acta Biomater. 2011, 7, 347–354. [Google Scholar] [CrossRef]
- Zhang, X.-F.; Shen, W.; Gurunathan, S. Silver Nanoparticle-Mediated Cellular Responses in Various Cell Lines: An in Vitro Model. Int. J. Mol. Sci. 2016, 17, 1603. [Google Scholar] [CrossRef] [PubMed]
- Park, E.-J.; Yi, J.; Kim, Y.; Choi, K.; Park, K. Silver Nanoparticles Induce Cytotoxicity by a Trojan-Horse Type Mechanism. Toxicol Vitr. 2010, 24, 872–878. [Google Scholar] [CrossRef] [PubMed]
- Darweesh, R.S.; Ayoub, N.M.; Nazzal, S. Gold Nanoparticles and Angiogenesis: Molecular Mechanisms and Biomedical Applications. Int. J. Nanomed. 2019, 14, 7643–7663. [Google Scholar] [CrossRef]
- Gurunathan, S.; Lee, K.-J.; Kalishwaralal, K.; Sheikpranbabu, S.; Vaidyanathan, R.; Eom, S.H. Antiangiogenic Properties of Silver Nanoparticles. Biomaterials 2009, 30, 6341–6350. [Google Scholar] [CrossRef]
- Arul, B.; Kothai, R.; Anbazhagan, V. Antiproliferative Activity of Green Synthesised Silver Nanoparticles of Cassia Marginata Roxb. Appl. Biochem. Biotechnol. 2023, 195, 3807–3821. [Google Scholar] [CrossRef]
- AshaRani, P.; Hande, M.P.; Valiyaveettil, S. Anti-Proliferative Activity of Silver Nanoparticles. BMC Cell Biol. 2009, 10, 65. [Google Scholar] [CrossRef] [PubMed]
- Riaz Ahmed, K.B.; Nagy, A.M.; Brown, R.P.; Zhang, Q.; Malghan, S.G.; Goering, P.L. Silver Nanoparticles: Significance of Physicochemical Properties and Assay Interference on the Interpretation of in Vitro Cytotoxicity Studies. Toxicol Vitr. 2017, 38, 179–192. [Google Scholar] [CrossRef]
- Ajnai, G.; Chiu, A.; Kan, T.; Cheng, C.-C.; Tsai, T.-H.; Chang, J. Trends of Gold Nanoparticle-Based Drug Delivery System in Cancer Therapy. J. Exp. Clin. Med. 2014, 6, 172–178. [Google Scholar] [CrossRef]
- Sztandera, K.; Gorzkiewicz, M.; Klajnert-Maculewicz, B. Gold Nanoparticles in Cancer Treatment. Mol. Pharm. 2019, 16, 1–23. [Google Scholar] [CrossRef]
- Vines, J.B.; Yoon, J.-H.; Ryu, N.-E.; Lim, D.-J.; Park, H. Gold Nanoparticles for Photothermal Cancer Therapy. Front. Chem. 2019, 7, 167. [Google Scholar] [CrossRef] [PubMed]
- Calavia, P.G.; Bruce, G.; Pérez-García, L.; Russell, D.A. Photosensitiser-Gold Nanoparticle Conjugates for Photodynamic Therapy of Cancer. Photochem. Photobiol. Sci. 2018, 17, 1534–1552. [Google Scholar] [CrossRef] [PubMed]
- Islam, S.U.; Ul-Islam, M.; Ahsan, H.; Ahmed, M.B.; Shehzad, A.; Fatima, A.; Sonn, J.K.; Lee, Y.S. Potential Applications of Bacterial Cellulose and Its Composites for Cancer Treatment. Int. J. Biol. Macromol. 2021, 168, 301–309. [Google Scholar] [CrossRef]
- Shen, K.-H.; Lu, C.-H.; Kuo, C.-Y.; Li, B.-Y.; Yeh, Y.-C. Smart near Infrared-Responsive Nanocomposite Hydrogels for Therapeutics and Diagnostics. J. Mater. Chem. B 2021, 9, 7100–7116. [Google Scholar] [CrossRef]
- Askari, E.; Seyfoori, A.; Amereh, M.; Gharaie, S.S.; Ghazali, H.S.; Ghazali, Z.S.; Khunjush, B.; Akbari, M. Stimuli-Responsive Hydrogels for Local Post-Surgical Drug Delivery. Gels 2020, 6, 14. [Google Scholar] [CrossRef] [PubMed]
- Gholamali, I.; Yadollahi, M. Bio-Nanocomposite Polymer Hydrogels Containing Nanoparticles for Drug Delivery: A Review. Regen. Eng. Transl. Med. 2021, 7, 129–146. [Google Scholar] [CrossRef]
- Fu, L.-H.; Qi, C.; Ma, M.-G.; Wan, P. Multifunctional Cellulose-Based Hydrogels for Biomedical Applications. J. Mater. Chem. B 2019, 7, 1541–1562. [Google Scholar] [CrossRef] [PubMed]
- Zou, P.; Yao, J.; Cui, Y.-N.; Zhao, T.; Che, J.; Yang, M.; Li, Z.; Gao, C. Advances in Cellulose-Based Hydrogels for Biomedical Engineering: A Review Summary. Gels 2022, 8, 364. [Google Scholar] [CrossRef] [PubMed]
- Javanbakht, S.; Pooresmaeil, M.; Hashemi, H.; Namazi, H. Carboxymethylcellulose Capsulated Cu-Based Metal-Organic Framework-Drug Nanohybrid as a PH-Sensitive Nanocomposite for Ibuprofen Oral Delivery. Int. J. Biol. Macromol. 2018, 119, 588–596. [Google Scholar] [CrossRef] [PubMed]
- Liao, Z.-X.; Liu, M.-C.; Kempson, I.; Fa, Y.-C.; Huang, K.-Y. Light-Triggered Methylcellulose Gold Nanoparticle Hydrogels for Leptin Release to Inhibit Fat Stores in Adipocytes. Int. J. Nanomed. 2017, 12, 7603–7611. [Google Scholar] [CrossRef]
- George, D.; Maheswari, P.U.; Begum, K.M.M.S. Chitosan-Cellulose Hydrogel Conjugated with L-Histidine and Zinc Oxide Nanoparticles for Sustained Drug Delivery: Kinetics and in-Vitro Biological Studies. Carbohydr. Polym. 2020, 236, 116101. [Google Scholar] [CrossRef]
- Liu, Y.; Huo, Y.; Li, M.; Qin, C.; Liu, H. Synthesis of Metal–Organic-Frameworks on Polydopamine Modified Cellulose Nanofibril Hydrogels: Constructing Versatile Vehicles for Hydrophobic Drug Delivery. Cellulose 2022, 29, 379–393. [Google Scholar] [CrossRef]
- Tan, H.-L.; Teow, S.-Y.; Pushpamalar, J. Application of Metal Nanoparticle–Hydrogel Composites in Tissue Regeneration. Bioengineering 2019, 6, 17. [Google Scholar] [CrossRef]
- Chen, C.; Xi, Y.; Weng, Y. Recent Advances in Cellulose-Based Hydrogels for Tissue Engineering Applications. Polymers 2022, 14, 3335. [Google Scholar] [CrossRef]
- Mohamad, N.; Mohd Amin, M.C.I.; Pandey, M.; Ahmad, N.; Rajab, N.F. Bacterial Cellulose/Acrylic Acid Hydrogel Synthesized via Electron Beam Irradiation: Accelerated Burn Wound Healing in an Animal Model. Carbohydr. Polym. 2014, 114, 312–320. [Google Scholar] [CrossRef]
- Zulkifli, F.H.; Hussain, F.S.J.; Zeyohannes, S.S.; Rasad, M.S.B.A.; Yusuff, M.M. A Facile Synthesis Method of Hydroxyethyl Cellulose-Silver Nanoparticle Scaffolds for Skin Tissue Engineering Applications. Mater. Sci. Eng. C 2017, 79, 151–160. [Google Scholar] [CrossRef]
- Yu, Z.; Wang, W.; Kong, F.; Lin, M.; Mustapha, A. Cellulose Nanofibril/Silver Nanoparticle Composite as an Active Food Packaging System and Its Toxicity to Human Colon Cells. Int. J. Biol. Macromol. 2019, 129, 887–894. [Google Scholar] [CrossRef] [PubMed]
- Dawwam, G.E.; Al-Shemy, M.T.; El-Demerdash, A.S. Green Synthesis of Cellulose Nanocrystal/ZnO Bio-Nanocomposites Exerting Antibacterial Activity and Downregulating Virulence Toxigenic Genes of Food-Poisoning Bacteria. Sci. Rep. 2022, 12, 16848. [Google Scholar] [CrossRef] [PubMed]
- Manzocco, L.; Mikkonen, K.S.; García-González, C.A. Aerogels as Porous Structures for Food Applications: Smart Ingredients and Novel Packaging Materials. Food Struct. 2021, 28, 100188. [Google Scholar] [CrossRef]
- Vieira, I.R.S.; de Carvalho, A.P.A.; de Conte-Junior, C.A. Recent Advances in Biobased and Biodegradable Polymer Nanocomposites, Nanoparticles, and Natural Antioxidants for Antibacterial and Antioxidant Food Packaging Applications. Compr. Rev. Food Sci. Food Saf. 2022, 21, 3673–3716. [Google Scholar] [CrossRef]
- Lin, L.; Yang, H.; Xu, X. Effects of Water Pollution on Human Health and Disease Heterogeneity: A Review. Front. Environ. Sci. 2022, 10, 880246. [Google Scholar] [CrossRef]
- Zahoor, I.; Mushtaq, A. Water Pollution from Agricultural Activities: A Critical Global Review. Int. J. Chem. Biochem. Sci. 2023, 23, 164–176. [Google Scholar]
- Dong, Y.; Liu, Y.; Hu, C.; MacDonald, I.R.; Lu, Y. Chronic Oiling in Global Oceans. Science 2022, 376, 1300–1304. [Google Scholar] [CrossRef] [PubMed]
- Voisin, H.; Bergström, L.; Liu, P.; Mathew, A.P. Nanocellulose-Based Materials for Water Purification. Nanomaterials 2017, 7, 57. [Google Scholar] [CrossRef]
- Mikhailidi, A.M.; Kotelnikova, N.E. Horizons for Future Sustainability. From Trash to Functional Cellulose Fibres. In Sustainability of Biomass through Bio-Based Chemistry; Popa, V.I., Ed.; CRC Press: Boca Raton, FL, USA, 2021; pp. 91–130. ISBN 978-0-429-34799-3. [Google Scholar]
- Rocky, M.M.H.; Rahman, I.M.M.; Biswas, F.B.; Rahman, S.; Endo, M.; Wong, K.H.; Mashio, A.S.; Hasegawa, H. Cellulose-Based Materials for Scavenging Toxic and Precious Metals from Water and Wastewater: A Review. Chem. Eng. J. 2023, 472, 144677. [Google Scholar] [CrossRef]
- Rana, A.; Sudhaik, A.; Raizada, P.; Khan, A.A.P.; Van Le, Q.; Singh, A.; Selvasembian, R.; Nadda, A.; Singh, P. An Overview on Cellulose-Supported Semiconductor Photocatalysts for Water Purification. Nanotechnol. Environ. Eng. 2021, 6, 40. [Google Scholar] [CrossRef]
- Ren, J.-X.; Zhu, J.-L.; Shi, S.-C.; Yin, M.-Q.; Huang, H.-D.; Li, Z.-M. In-Situ Structuring a Robust Cellulose Hydrogel with ZnO/SiO2 Heterojunctions for Efficient Photocatalytic Degradation. Carbohydr. Polym. 2022, 296, 119957. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.-L.; Chen, S.-P.; Lin, W.; Huang, H.-D.; Li, Z.-M. Cellulose Mineralization with In-Situ Synthesized Amorphous Titanium Dioxide for Enhanced Adsorption and Auto-Accelerating Photocatalysis on Water Pollutant. Chem. Eng. J. 2023, 456, 141036. [Google Scholar] [CrossRef]
- Zhu, J.-L.; Chen, S.-P.; Ma, G.-Q.; Ren, J.-X.; Li, H.-L.; Lin, W.; Huang, H.-D.; Li, Z.-M. Regenerated Cellulose as Template for In-Situ Synthesis of Monoclinic Titanium Dioxide Nanocomposite Carbon Aerogel towards Multiple Application in Water Treatment. J. Colloid Interface Sci. 2023, 630, 772–782. [Google Scholar] [CrossRef]
- Godiya, C.B.; Cheng, X.; Li, D.; Chen, Z.; Lu, X. Carboxymethyl Cellulose/Polyacrylamide Composite Hydrogel for Cascaded Treatment/Reuse of Heavy Metal Ions in Wastewater. J. Hazard. Mater. 2019, 364, 28–38. [Google Scholar] [CrossRef] [PubMed]
- Mahdavinia, G.R.; Hasanpour, J.; Rahmani, Z.; Karami, S.; Etemadi, H. Nanocomposite Hydrogel from Grafting of Acrylamide onto HPMC Using Sodium Montmorillonite Nanoclay and Removal of Crystal Violet Dye. Cellulose 2013, 20, 2591–2604. [Google Scholar] [CrossRef]
- Qin, C.; Li, S.; Jiang, G.; Cao, J.; Guo, Y.; Li, J.; Zhang, B.; Han, S. Preparation of Flower-like ZnO Nanoparticles in a Cellulose Hydrogel Microreactor. BioResources 2017, 12, 3182–3191. [Google Scholar] [CrossRef]
- Hosseinzadeh, H.; Javadi, A. Fabrication and Characterization of CMC-Based Magnetic Superabsorbent Hydrogel Nanocomposites for Crystal Violet Removal. Polym. Adv. Technol. 2016, 27, 1609–1616. [Google Scholar] [CrossRef]
- Zhou, Y.; Fu, S.; Zhang, L.; Zhan, H.; Levit, M.V. Use of Carboxylated Cellulose Nanofibrils-Filled Magnetic Chitosan Hydrogel Beads as Adsorbents for Pb(II). Carbohydr. Polym. 2014, 101, 75–82. [Google Scholar] [CrossRef]
- Akter, M.; Bhattacharjee, M.; Dhar, A.K.; Rahman, F.B.A.; Haque, S.; Rashid, T.U.; Kabir, S.M.F. Cellulose-Based Hydrogels for Wastewater Treatment: A Concise Review. Gels 2021, 7, 30. [Google Scholar] [CrossRef]
- Xiong, Y.; Xu, L.; Jin, C.; Sun, Q. Cellulose Hydrogel Functionalized Titanate Microspheres with Self-Cleaning for Efficient Purification of Heavy Metals in Oily Wastewater. Cellulose 2020, 27, 7751–7763. [Google Scholar] [CrossRef]
- Tang, L.; Tang, F.; Li, M.; Li, L. Facile Synthesis of Ag@AgCl-Contained Cellulose Hydrogels and Their Application. Colloids Surf. A Physicochem. Eng. Asp. 2018, 553, 618–623. [Google Scholar] [CrossRef]
- Su, R.; Wang, F.; Ding, J.; Li, Q.; Zhou, W.; Liu, Y.; Gao, B.; Yue, Q. Magnetic Hydrogel Derived from Wheat Straw Cellulose/Feather Protein in Ionic Liquids as Copper Nanoparticles Carrier for Catalytic Reduction. Carbohydr. Polym. 2019, 220, 202–210. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.; Han, X.; Wang, J. In Situ Synthesis of Easily Separable Au Nanoparticles Catalysts Based on Cellulose Hydrogels. Polym. J. 2018, 50, 495–501. [Google Scholar] [CrossRef]
- Liu, X.; Liu, F. Bimetallic (AuAg, AuPd and AgPd) Nanoparticles Supported on Cellulose-Based Hydrogel for Reusable Catalysis. Carbohydr. Polym. 2023, 310, 120726. [Google Scholar] [CrossRef]
- Song, L.; Shu, L.; Wang, Y.; Zhang, X.-F.; Wang, Z.; Feng, Y.; Yao, J. Metal Nanoparticle-Embedded Bacterial Cellulose Aerogels via Swelling-Induced Adsorption for Nitrophenol Reduction. Int. J. Biol. Macromol. 2020, 143, 922–927. [Google Scholar] [CrossRef]
- Riva, L.; Lotito, A.D.; Punta, C.; Sacchetti, A. Zinc- and Copper-Loaded Nanosponges from Cellulose Nanofibers Hydrogels: New Heterogeneous Catalysts for the Synthesis of Aromatic Acetals. Gels 2022, 8, 54. [Google Scholar] [CrossRef]
- Fu, H.; Wang, B.; Li, J.; Xu, J.; Li, J.; Zeng, J.; Gao, W.; Chen, K. A Self-Healing, Recyclable and Conductive Gelatin/Nanofibrillated Cellulose/Fe3+ Hydrogel Based on Multi-Dynamic Interactions for a Multifunctional Strain Sensor. Mater. Horiz. 2022, 9, 1412–1421. [Google Scholar] [CrossRef]
- Cui, C.; Fu, Q.; Meng, L.; Hao, S.; Dai, R.; Yang, J. Recent Progress in Natural Biopolymers Conductive Hydrogels for Flexible Wearable Sensors and Energy Devices: Materials, Structures, and Performance. ACS Appl. Bio. Mater. 2021, 4, 85–121. [Google Scholar] [CrossRef]
- Bhaladhare, S.; Das, D. Cellulose: A Fascinating Biopolymer for Hydrogel Synthesis. J. Mater. Chem. B 2022, 10, 1923–1945. [Google Scholar] [CrossRef]
- Wang, X.; Wang, Z.; Wang, X.; Shi, L.; Ran, R. Preparation of Silver Nanoparticles by Solid-State Redox Route from Hydroxyethyl Cellulose for Antibacterial Strain Sensor Hydrogel. Carbohydr. Polym. 2021, 257, 117665. [Google Scholar] [CrossRef] [PubMed]
- Jian, J.; Xie, Y.; Gao, S.; Sun, Y.; Lai, C.; Wang, J.; Wang, C.; Chu, F.; Zhang, D. A Skin-Inspired Biomimetic Strategy to Fabricate Cellulose Enhanced Antibacterial Hydrogels as Strain Sensors. Carbohydr. Polym. 2022, 294, 119760. [Google Scholar] [CrossRef]
- Korhonen, J.T.; Hiekkataipale, P.; Malm, J.; Karppinen, M.; Ikkala, O.; Ras, R.H.A. Inorganic Hollow Nanotube Aerogels by Atomic Layer Deposition onto Native Nanocellulose Templates. ACS Nano 2011, 5, 1967–1974. [Google Scholar] [CrossRef]
- Liu, S.; Luo, X.; Zhou, J. Magnetic Responsive Cellulose Nanocomposites and Their Applications. In Cellulose-Medical, Pharmaceutical and Electronic Applications; Van De Ven, T.G.M., Ed.; InTech: London, UK, 2013; ISBN 978-953-51-1191-7. [Google Scholar] [CrossRef]
- Singh, R.; Datta, B. Advances in Biomedical and Environmental Applications of Magnetic Hydrogels. ACS Appl. Polym. Mater. 2023, 5, 5474–5494. [Google Scholar] [CrossRef]
- Nypelö, T. Magnetic Cellulose: Does Extending Cellulose Versatility with Magnetic Functionality Facilitate Its Use in Devices? J. Mater. Chem. C 2022, 10, 805–818. [Google Scholar] [CrossRef]
- Yu, X.; Tong, S.; Ge, M.; Zuo, J.; Cao, C.; Song, W. One-Step Synthesis of Magnetic Composites of Cellulose@iron Oxide Nanoparticles for Arsenic Removal. J. Mater. Chem. A 2012, 1, 959–965. [Google Scholar] [CrossRef]
- Chatterjee, J.; Haik, Y.; Chen, C. PH-reversible Magnetic Gel with a Biodegradable Polymer. J. Appl. Polym. Sci 2004, 91, 3337–3341. [Google Scholar] [CrossRef]
- Lin, F.; Zheng, J.; Guo, W.; Zhu, Z.; Wang, Z.; Dong, B.; Lin, C.; Huang, B.; Lu, B. Smart Cellulose-Derived Magnetic Hydrogel with Rapid Swelling and Deswelling Properties for Remotely Controlled Drug Release. Cellulose 2019, 26, 6861–6877. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, H.; Liu, C.; Jiang, Y.; Yu, G.; Mu, X.; Wang, X. Magnetic Cellulose–Chitosan Hydrogels Prepared from Ionic Liquids as Reusable Adsorbent for Removal of Heavy Metal Ions. Chem. Commun. 2012, 48, 7350–7352. [Google Scholar] [CrossRef]
- Cui, S.; Wang, X.; Zhang, X.; Xia, W.; Tang, X.; Lin, B.; Wu, Q.; Zhang, X.; Shen, X. Preparation of Magnetic MnFe2O4-Cellulose Aerogel Composite and Its Kinetics and Thermodynamics of Cu(II) Adsorption. Cellulose 2018, 25, 735–751. [Google Scholar] [CrossRef]
- Wan, C.; Li, J. Synthesis of Well-Dispersed Magnetic CoFe2O4 Nanoparticles in Cellulose Aerogels via a Facile Oxidative Co-Precipitation Method. Carbohydr. Polym. 2015, 134, 144–150. [Google Scholar] [CrossRef]
- Olsson, R.T.; Azizi Samir, M.A.S.; Salazar-Alvarez, G.; Belova, L.; Ström, V.; Berglund, L.A.; Ikkala, O.; Nogués, J.; Gedde, U.W. Making Flexible Magnetic Aerogels and Stiff Magnetic Nanopaper Using Cellulose Nanofibrils as Templates. Nat. Nanotechnol. 2010, 5, 584–588. [Google Scholar] [CrossRef]
- Liu, S.; Yan, Q.; Tao, D.; Yu, T.; Liu, X. Highly Flexible Magnetic Composite Aerogels Prepared by Using Cellulose Nanofibril Networks as Templates. Carbohydr. Polym. 2012, 89, 551–557. [Google Scholar] [CrossRef]
- Singh, N.; Yadav, S.; Mehta, S.K.; Dan, A. In Situ Incorporation of Magnetic Nanoparticles within the Carboxymethyl Cellulose Hydrogels Enables Dye Removal. J. Macromol. Sci. Part A 2022, 59, 271–284. [Google Scholar] [CrossRef]
- Chen, X.; Huang, Z.; Luo, S.-Y.; Zong, M.-H.; Lou, W.-Y. Multi-Functional Magnetic Hydrogels Based on Millettia Speciosa Champ Residue Cellulose and Chitosan: Highly Efficient and Reusable Adsorbent for Congo Red and Cu2+ Removal. Chem. Eng. J. 2021, 423, 130198. [Google Scholar] [CrossRef]
- Iftime, M.M.; Ailiesei, G.L.; Ungureanu, E.; Marin, L. Designing chitosan based eco-friendly multifunctional soil conditioner systems with urea-controlled release and water retention. Carbohydr. Polym. 2019, 223, 115140. [Google Scholar] [CrossRef] [PubMed]
- Ungureanu, E.; Fortună, M.E.; Țopa, D.C.; Lobiuc, A.; Ungureanu, O.C.; Jităreanu, D.C. Design of the functional polymer systems to optimize the filler retention in obtaining cellulosic substrates with improved properties. Materials 2023, 16, 1904. [Google Scholar] [CrossRef] [PubMed]
- Fortună, M.E.; Ungureanu, E.; Jităreanu, C.D. Calcium carbonate-carboxymethyl chitosan hybrid materials. Materials 2021, 14, 3336. [Google Scholar] [CrossRef]
- Ren, J.; Dai, Q.; Zhong, H.; Liu, X.; Meng, L.; Wang, X.; Xin, F. Quaternized Xylan/Cellulose Nanocrystal Reinforced Magnetic Hydrogels with High Strength. Cellulose 2018, 25, 4537–4549. [Google Scholar] [CrossRef]
- Wu, B.; Yan, D.Y.S.; Khan, M.; Zhang, Z.; Lo, I.M.C. Application of Magnetic Hydrogel for Anionic Pollutants Removal from Wastewater with Adsorbent Regeneration and Reuse. J. Hazard. Toxic Radioact. Waste 2017, 21, 04016008. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mikhailidi, A.; Ungureanu, E.; Belosinschi, D.; Tofanica, B.-M.; Volf, I. Cellulose-Based Metallogels—Part 3: Multifunctional Materials. Gels 2023, 9, 878. https://doi.org/10.3390/gels9110878
Mikhailidi A, Ungureanu E, Belosinschi D, Tofanica B-M, Volf I. Cellulose-Based Metallogels—Part 3: Multifunctional Materials. Gels. 2023; 9(11):878. https://doi.org/10.3390/gels9110878
Chicago/Turabian StyleMikhailidi, Aleksandra, Elena Ungureanu, Dan Belosinschi, Bogdan-Marian Tofanica, and Irina Volf. 2023. "Cellulose-Based Metallogels—Part 3: Multifunctional Materials" Gels 9, no. 11: 878. https://doi.org/10.3390/gels9110878
APA StyleMikhailidi, A., Ungureanu, E., Belosinschi, D., Tofanica, B. -M., & Volf, I. (2023). Cellulose-Based Metallogels—Part 3: Multifunctional Materials. Gels, 9(11), 878. https://doi.org/10.3390/gels9110878