Engineering of PVA/PVP Hydrogels for Agricultural Applications
Abstract
:1. Introduction
2. Structural Chemistry and Classification of Agricultural PVA/PVP-Based Hydrogels
3. Hydrogels as Carriers and Controlled Release of Pesticides, Fertilizers, and Water
3.1. PVA/PVP Hydrogel Carriers
3.2. Controlled Release by PVA/PVP Hydrogel
4. Characterization
- Fickian diffusion: In this case, the rate of transport is notably slower than the relaxation of the polymer chains. In such a scenario, the primary limiting factor affecting the swelling of the polymer is the diffusion of water into the polymer network;
- Case of rapid water diffusion: In contrast, here, the diffusion of water occurs at a significantly faster rate compared to the relaxation process of the polymer network. In this situation, the limiting factors for water movement are primarily associated with the polymer relaxation process and the constraints imposed by the polymer network’s swelling capacity;
- Non-Fickian or anomalous diffusion: This scenario represents an intermediate case where the diffusion of water and the relaxation rates of the polymer network are approximately equal in magnitude. It is characterized by a more complex interplay between diffusion and relaxation, leading to behavior that deviates from the typical Fickian diffusion model.
5. Conceptual Shapes of PVA/PVP-Based Hydrogels in Crops
- Extrusion printing: In this method, continuous filaments serve as the building blocks;
- Inkjet printing: This technique utilizes low-viscosity inks, often combined with in situ or post-fabrication processing to achieve mechanically stable structures;
- Stereolithography printing: Stereolithography employs photopolymerizable prepolymer solutions;
- Laser-assisted printing: Laser beams are employed to construct intricate structures from ink droplets.
6. Recent Agricultural Applications and Results with PVA/PVP-based Hydrogels
7. Sustainability
8. Conclusions and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bahram, M.; Mohseni, N.; Moghtader, M. An Introduction to Hydrogels and Some Recent Applications. In Emerging Concepts in Analysis and Applications of Hydrogels; IntechOpen: London, UK, 2016; pp. 9–38. [Google Scholar] [CrossRef]
- Kaur, P.; Agrawal, R.; Pfeffer, F.M.; Williams, R.; Bohidar, H.B. Hydrogels in Agriculture: Prospects and Challenges. J. Polym. Environ. 2023, 31, 3701–3718. [Google Scholar] [CrossRef]
- Peppas, N.A.; Hoffman, A.S. Hydrogels; Academic Press: Austin, TX, USA, 2020; pp. 153–166. [Google Scholar]
- Zhang, S.; Zhai, Y.; Zhang, Z. Study on medical polyvinyl alcohol (PVA)/polyvinyl pyrrolidone (PVP) hydrogel burns dressing. In Proceedings of the 2011 International Conference on Electronic and Mechanical Engineering and Information Technology, EMEIT 2011, Harbin, China, 12–14 August 2011; Volume 9, pp. 4485–4488. [Google Scholar] [CrossRef]
- Lewis, L.; Hatzikiriakos, S.G.; Hamad, W.Y.; Maclachlan, M.J. Freeze-Thaw Gelation of Cellulose Nanocrystals. ACS Macro Lett. 2019, 53, 486–491. [Google Scholar] [CrossRef]
- Joshi, N.; Suman, K.; Joshi, Y.M. Rheological Behavior of Aqueous Poly(Vinyl Alcohol) Solution during a Freeze-Thaw Gelation Process. Macromolecules 2020, 53, 3452–3463. [Google Scholar] [CrossRef]
- Holloway, J.L.; Lowman, A.M.; Palmese, G.R. The Role of Crystallization and Phase Separation in the Formation of Physically Cross-Linked PVA Hydrogels. Soft Matter 2013, 9, 826–833. [Google Scholar] [CrossRef]
- Adelnia, H.; Ensandoost, R.; Moonshi, S.S.; Gavgani, J.N.; Vasafi, E.I.; Ta, H.T. Freeze/Thawed Polyvinyl Alcohol Hydrogels: Present, Past and Future. Eur. Polym. J. 2022, 164, 110974. [Google Scholar] [CrossRef]
- Khalesi, H.; Lu, W.; Nishinari, K.; Fang, Y. New Insights into Food Hydrogels with Reinforced Mechanical Properties: A Review on Innovative Strategies. Adv. Colloid Interface Sci. 2020, 285, 102278. [Google Scholar] [CrossRef]
- Wei, X.; Bao, X.; Yu, L.; Liu, H.; Lu, K.; Chen, L.; Bai, L.; Zhou, X.; Li, Z.; Li, W. Correlation Between Gel Strength of Starch-Based Hydrogel and Slow-Release Behavior of Its Embedded Urea. J. Polym. Environ. 2020, 28, 863–870. [Google Scholar] [CrossRef]
- Xie, L.; Wei, H.; Kou, L.; Ren, L.; Zhou, J. Antibiotic Drug Release Behavior of Poly (Vinyl Alcohol)/Sodium Alginate Hydrogels. Materwiss Werksttech 2020, 51, 850–855. [Google Scholar] [CrossRef]
- Yang, J.; Chen, Y.; Zhao, L.; Zhang, J.; Luo, H. Constructions and Properties of Physically Cross-Linked Hydrogels Based on Natural Polymers. Polym. Rev. 2023, 63, 574–612. [Google Scholar] [CrossRef]
- Jing, H.; Shi, J.; Guoab, P.; Guan, S.; Fu, H.; Cui, W. Hydrogels Based on Physically Cross-Linked Network with High Mechanical Property and Recasting Ability. Colloids Surf. A Physicochem. Eng. Asp. 2021, 611, 125805. [Google Scholar] [CrossRef]
- Lu, J.; Gu, J.; Hu, O.; Fu, Y.; Ye, D.; Zhang, X.; Zheng, Y.; Hou, L.; Liu, H.; Jiang, X. Highly Tough, Freezing-Tolerant, Healable and Thermoplastic Starch/Poly(Vinyl Alcohol) Organohydrogels for Flexible Electronic Devices. J. Mater. Chem. A Mater. 2021, 9, 18406–18420. [Google Scholar] [CrossRef]
- Zhang, H.; Tung, W.Y.; Li, X.; Jin, H.; Deng, R.; Chen, Y.M.; Mao, Y.; Zhu, Y. Conjugated Polymer with Dynamic and Thermoreversible Hydrogen Bonding on the Backbone. Polymer 2020, 203, 122787. [Google Scholar] [CrossRef]
- Cao, H.; Duan, L.; Zhang, Y.; Cao, J.; Zhang, K. Current Hydrogel Advances in Physicochemical and Biological Response-Driven Biomedical Application Diversity. Signal Transduct. Target. Ther. 2021, 6, 426. [Google Scholar] [CrossRef]
- Sánchez-Cid, P.; Jiménez-Rosado, M.; Romero, A.; Pérez-Puyana, V. Novel Trends in Hydrogel Development for Biomedical Applications: A Review. Polymers 2022, 14, 3023. [Google Scholar] [CrossRef]
- Roy, N.; Saha, N. PVP-Based Hydrogels: Synthesis, Properties and Applications. Hydrogels Synth. Charact. Appl. 2012, 227–252. [Google Scholar]
- Wang, M.; Bai, J.; Shao, K.; Tang, W.; Zhao, X.; Lin, D.; Huang, S.; Chen, C.; Ding, Z.; Ye, J. Poly(Vinyl Alcohol) Hydrogels: The Old and New Functional Materials. Int. J. Polym. Sci. 2021, 2021, 2225426. [Google Scholar] [CrossRef]
- Gu, Y.; Zhang, B.-W.; Guo, Z.; Li, J.-H.; Yu, M.; Li, L.-F.; Li, J.-Y. Radiation-Induced Cross-Linking: A Novel Avenue to Permanent 3D of Polymeric Membranes. Nucl. Sci. Tech. 2021, 32, 70. [Google Scholar] [CrossRef]
- Burkert, S.; Schmidt, T.; Gohs, U.; Dorschner, H.; Arndt, K.F. Cross-Linking of Poly(N-Vinyl Pyrrolidone) Films by Electron Beam Irradiation. Radiat. Phys. Chem. 2007, 76, 1324–1328. [Google Scholar] [CrossRef]
- Jeong, J.-O.; Park, J.-S.; Kim, Y.-A.; Yang, S.-J.; Jeong, S.-I.; Lee, J.-Y.; Lim, Y.-M. Gamma Ray-Induced Polymerization and Cross-Linking for Optimization of PPy/PVP Hydrogel as Biomaterial. Polymers 2020, 12, 111. [Google Scholar] [CrossRef]
- Hwang, I.-S.; Lee, M.-H.; Lim, J.-H.; Kim, K.-M. Synthesis and characterization of PVP/PVA hydrogels using E-beam irradiation. In Proceedings of the 2016 IEEE International Nanoelectronics Conference (INEC), Chengdu, China, 9–11 May 2016; IEEE: Piscataway, NJ, USA, 2016; Volume 2016, pp. 1–2. [Google Scholar]
- Abd El-Mohdy, H.L.; Ghanem, S. Biodegradability, Antimicrobial Activity and Properties of PVA/PVP Hydrogels Prepared by γ-Irradiation. J. Polym. Res. 2009, 16, 1–10. [Google Scholar] [CrossRef]
- Deghiedy, N.M.; El-Sayed, S.M. Evaluation of the Structural and Optical Characters of PVA/PVP Blended Films. Opt. Mater. 2020, 100, 109667. [Google Scholar] [CrossRef]
- Raza, M.A.; Lim, Y.M.; Lee, S.W.; Seralathan, K.K.; Park, S.H. Synthesis and Characterization of Hydrogels Based on Carboxymethyl Chitosan and Poly(Vinylpyrrolidone) Blends Prepared by Electron Beam Irradiation Having Anticancer Efficacy, and Applications as Drug Carrier for Controlled Release of Drug. Carbohydr. Polym. 2021, 258, 117718. [Google Scholar] [CrossRef] [PubMed]
- Ghobashy, M.M.; Abd El-Wahab, H.; Ismail, M.A.; Naser, A.M.; Abdelhai, F.; El-Damhougy, B.K.; Nady, N.; Meganid, A.S.; Alkhursani, S.A. Characterization of Starch-Based Three Components of Gamma-Ray Cross-Linked Hydrogels to Be Used as a Soil Conditioner. Mater. Sci. Eng. B 2020, 260, 114645. [Google Scholar] [CrossRef]
- Xie, H.; Yang, K.K.; Wang, Y.Z. Photo-Cross-Linking: A Powerful and Versatile Strategy to Develop Shape-Memory Polymers. Prog. Polym. Sci. 2019, 95, 32–64. [Google Scholar] [CrossRef]
- Campiglio, C.E.; Negrini, N.C.; Farè, S.; Draghi, L. Cross-Linking Strategies for Electrospun Gelatin Scaffolds. Materials 2019, 12, 2476. [Google Scholar] [CrossRef]
- Arbid, Y.; Sleiman, M.; Richard, C. Photochemical Interactions between Pesticides and Plant Volatiles. Sci. Total Environ. 2022, 807, 150716. [Google Scholar] [CrossRef]
- Zang, Y.; Farhood, R. Effects of Hydrogen Peroxide Concentration and Ultraviolet Light Intensity on Methyl Tert-Butyl Ether Degradation Kinetics. Chem. Eng. Sci. 2005, 60, 1641–1648. [Google Scholar] [CrossRef]
- Pestov, A.; Privar, Y.; Slobodyuk, A.; Boroda, A.; Bratskaya, S. Chitosan Cross-Linking with Acetaldehyde Acetals. Biomimetics 2022, 7, 10. [Google Scholar] [CrossRef]
- Kumar, A.; Mahto, V.; Choubey, A.K. Synthesis and Characterization of Cross-Linked Hydrogels Using Polyvinyl Alcohol and Polyvinyl Pyrrolidone and Their Blend for Water Shut-off Treatments. J. Mol. Liq. 2020, 301, 112472. [Google Scholar] [CrossRef]
- Gadhave, R.V.; Vineeth, S.K.; Gadekar, P.T. Cross-Linking of Polyvinyl Alcohol/Starch Blends by Glutaraldehyde Sodium Bisulfite for Improvement in Thermal and Mechanical Properties. J. Mater. Environ. Sci 2020, 11, 704–712. [Google Scholar] [CrossRef]
- Rahmani, F.; Ziyadi, H.; Baghali, M.; Luo, H.; Ramakrishna, S. Electrospun Pvp/Pva Nanofiber Mat as a Novel Potential Transdermal Drug-Delivery System for Buprenorphine: A Solution Needed for Pain Management. Appl. Sci. 2021, 11, 2779. [Google Scholar] [CrossRef]
- Gadhave, R.V.; Mahanwar, P.A.; Gadekar, P.T. Effect of Glutaraldehyde on Thermal and Mechanical Properties of Starch and Polyvinyl Alcohol Blends. Des. Monomers Polym. 2019, 22, 164–170. [Google Scholar] [CrossRef] [PubMed]
- Shagholani, H.; Ghoreishi, S.M.; Rahmatolahzadeh, R. Influence of Cross-Linking Agents on Drug Delivery Behavior of Magnetic Nanohydrogels Made of Polyvinyl Alcohol and Chitosan. Bionanoscience 2019, 9, 883–892. [Google Scholar] [CrossRef]
- Liu, B.; Thayumanavan, S. Substituent Effects on the PH Sensitivity of Acetals and Ketals and Their Correlation with Encapsulation Stability in Polymeric Nanogels. J. Am. Chem. Soc. 2017, 139, 2306–2317. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.; Tian, Y.; Kong, Z.; Ying, W.B.; Chen, C.; Li, F.; Zhang, R.; Zhu, J. A High Performance Copolyester with “Locked” Biodegradability: Solid Stability and Controlled Degradation Enabled by Acid-Labile Acetal. ACS Sustain. Chem. Eng. 2021, 9, 2280–2290. [Google Scholar] [CrossRef]
- McKenzie, A.T. Glutaraldehyde: A Review of Its Fixative Effects on Nucleic Acids, Proteins, lipids, and carbohydrates. 2019; preprints. [Google Scholar] [CrossRef]
- Frihart, C.R.; Wescott, J.M.; Chaffee, T.L.; Gonner, K.M. Formaldehyde Emissions from Urea-Formaldehyde-and No-Added-Formaldehyde-Bonded Particleboard as Influenced by Temperature and Relative Humidity. For. Prod. J. 2012, 62, 551–558. [Google Scholar] [CrossRef]
- Thumtecho, S.; Sriapha, C.; Tongpoo, A.; Udomsubpayakul, U.; Wananukul, W.; Trakulsrichai, S. Poisoning of Glutaraldehyde-Containing Products: Clinical Characteristics and Outcomes. Clin. Toxicol. 2021, 59, 480–487. [Google Scholar] [CrossRef]
- Chen, J. Effect of Chemical Cross-Links on the Mechanical and Thermal Properties of Graphene-Reinforced Polymer Matrix Composites. 2022. Available online: https://dx.doi.org/10.2139/ssrn.4244848 (accessed on 5 November 2023).
- Danielli, C.; van Langen, L.; Boes, D.; Asaro, F.; Anselmi, S.; Provenza, F.; Renzi, M.; Gardossi, L. 2,5-Furandicarboxaldehyde as a Bio-Based Crosslinking Agent Replacing Glutaraldehyde for Covalent Enzyme Immobilization. RSC Adv. 2022, 12, 35676–35684. [Google Scholar] [CrossRef]
- Ropek, D.; Kulikowski, E. Potential of Hydrogel Application for Plant Protection. Ecol. Chem. Eng. A 2009, 16, 1191–1198. [Google Scholar]
- Sousa, H.R.; Lima, I.S.; Neris, L.M.L.; Silva, A.S.; Nascimento, A.M.S.S.; Araújo, F.P.; Ratke, R.F.; Silva, D.A.; Osajima, J.A.; Bezerra, L.R.; et al. Superabsorbent Hydrogels Based to Polyacrylamide/Cashew Tree Gum for the Controlled Release of Water and Plant Nutrients. Molecules 2021, 26, 2680. [Google Scholar] [CrossRef]
- Rudzinski, W.E.; Dave, A.M.; Vaishnav, U.H.; Kumbar, S.G.; Kulkarni, A.R.; Aminabhavi, T.M. Hydrogels as Controlled Release Devices in Agriculture. Des. Monomers Polym. 2002, 5, 39–65. [Google Scholar] [CrossRef]
- Reinhardt, P.D.; Radics, U.D.; Niclas, H.-J.D. Mixture for the Treatment of Fertilisers. CA2802076A1, 11 October 2016. [Google Scholar]
- Atkinson, J.M.; Liu, L.; Olds, M.G.; Keeney, F.N. Liquid Agricultural Formulations of Improved Stability. AU2011301966A1, 4 June 2015. [Google Scholar]
- Margel, S.; Malka, E.; Mizrahi, Y.K. Biodegradable PVA/PVP Hydrogels, Uses and Preparation Thereof. WO-2022264149-A1, 2021. [Google Scholar]
- Rizwan, M.; Rubina Gilani, S.; Iqbal Durani, A.; Naseem, S. Materials Diversity of Hydrogel: Synthesis, Polymerization Process and Soil Conditioning Properties in Agricultural Field. J. Adv. Res. 2021, 33, 15–40. [Google Scholar] [CrossRef]
- Aly, E. Effect of Water Regimes and Polyvinyl Alcohol on Faba Bean Yield, Chemical Composition and Water Use Efficiency. J. Soil Sci. Agric. Eng. 2020, 11, 769–777. [Google Scholar] [CrossRef]
- Wang, Z.; Ding, Y.; Wang, J. Novel Polyvinyl Alcohol (PVA)/Cellulose Nanocrystal (CNC) Supramolecular Composite Hydrogels: Preparation and Application as Soil Conditioners. Nanomaterials 2019, 9, 1397. [Google Scholar] [CrossRef]
- Yeung, C.W.S.; Teo, J.Y.Q.; Loh, X.J.; Lim, J.Y.C. Polyolefins and Polystyrene as Chemical Resources for a Sustainable Future: Challenges, Advances, and Prospects. ACS Mater. Lett. 2021, 3, 1660–1676. [Google Scholar] [CrossRef]
- Jubinville, D.; Esmizadeh, E.; Saikrishnan, S.; Tzoganakis, C.; Mekonnen, T. A Comprehensive Review of Global Production and Recycling Methods of Polyolefin (PO) Based Products and Their Post-Recycling Applications. Sustain. Mater. Technol. 2020, 25, e00188. [Google Scholar] [CrossRef]
- Paxton, N.C.; Allenby, M.C.; Lewis, P.M.; Woodruff, M.A. Biomedical Applications of Polyethylene. Eur. Polym. J. 2019, 118, 412–428. [Google Scholar] [CrossRef]
- Sievers, J.; Sperlich, K.; Stahnke, T.; Kreiner, C.; Eickner, T.; Martin, H.; Guthoff, R.F.; Schünemann, M.; Bohn, S.; Stachs, O. Determination of Hydrogel Swelling Factors by Two Established and a Novel Non-Contact Continuous Method. J. Appl. Polym. Sci. 2021, 138, 50326. [Google Scholar] [CrossRef]
- Xiang, D.; Cui, Y.; Wan, Z.; Wang, S.; Peng, L.; Liao, Z.; Chen, C.; Liu, W. Study on Swelling, Compression Property and Degradation Stability of PVA Composite Hydrogels for Artificial Nucleus Pulposus. J. Mech. Behav. Biomed. Mater. 2022, 136, 105496. [Google Scholar] [CrossRef]
- Xu, N.; Zhang, M.; Xu, W.; Ling, G.; Yu, J.; Zhang, P. Swellable PVA/PVP Hydrogel Microneedle Patches for the Extraction of Interstitial Skin Fluid toward Minimally Invasive Monitoring of Blood Glucose Level. Analyst 2022, 147, 1478–1491. [Google Scholar] [CrossRef]
- Shah, J.A.; Vendl, T.; Aulicky, R.; Frankova, M.; Stejskal, V. Gel Carriers for Plant Extracts and Synthetic Pesticides in Rodent and Arthropod Pest Control: An Overview. Gels 2022, 8, 522. [Google Scholar] [CrossRef] [PubMed]
- Xiang, Y.; Lu, X.; Yue, J.; Zhang, Y.; Sun, X.; Zhang, G.; Cai, D.; Wu, Z. Stimuli-Responsive Hydrogel as Carrier for Controlling the Release and Leaching Behavior of Hydrophilic Pesticide. Sci. Total Environ. 2020, 722, 137811. [Google Scholar] [CrossRef] [PubMed]
- He, F.; Zhou, Q.; Wang, L.; Yu, G.; Li, J.; Feng, Y. Fabrication of a Sustained Release Delivery System for Pesticides Using Interpenetrating Polyacrylamide/Alginate/Montmorillonite Nanocomposite Hydrogels. Appl. Clay Sci. 2019, 183, 105347. [Google Scholar] [CrossRef]
- Tay, J.-W.; Choe, D.-H.; Mulchandani, A.; Rust, M.K. Hydrogels: From Controlled Release to a New Bait Delivery for Insect Pest Management. J. Econ. Entomol. 2020, 113, 2061–2068. [Google Scholar] [CrossRef] [PubMed]
- Nagy, K.; Duca, R.C.; Lovas, S.; Creta, M.; Scheepers, P.T.J.; Godderis, L.; Ádám, B. Systematic Review of Comparative Studies Assessing the Toxicity of Pesticide Active Ingredients and Their Product Formulations. Environ. Res. 2020, 181, 108926. [Google Scholar] [CrossRef] [PubMed]
- Malka, E.; Caspi, A.; Cohen, R.; Margel, S. Fabrication and Characterization of Hydrogen Peroxide and Thymol-Loaded PVA/PVP Hydrogel Coatings as a Novel Anti-Mold Surface for Hay Protection. Polymers 2022, 14, 5518. [Google Scholar] [CrossRef] [PubMed]
- Totaro, M.; Casini, B.; Profeti, S.; Tuvo, B.; Privitera, G.; Baggiani, A. Role of Hydrogen Peroxide Vapor (HPV) for the Disinfection of Hospital Surfaces Contaminated by Multiresistant Bacteria. Pathogens 2020, 9, 408. [Google Scholar] [CrossRef] [PubMed]
- Escobar, A.; Pérez, M.; Romanelli, G.; Blustein, G. Thymol Bioactivity: A Review Focusing on Practical Applications. Arab. J. Chem. 2020, 13, 9243–9269. [Google Scholar] [CrossRef]
- Lazarević, J.; Jevremović, S.; Kostić, I.; Vuleta, A.; Manitašević Jovanović, S.; Kostić, M.; Šešlija Jovanović, D. Assessment of Sex-Specific Toxicity and Physiological Responses to Thymol in a Common Bean Pest Acanthoscelides obtectus Say. Front. Physiol. 2022, 13, 842314. [Google Scholar] [CrossRef]
- Yusoff, S.N.M.; Kamari, A.; Ishak, S.; Jumadi, J.; Abdulrasool, M.M.; Kumaran, S.; Wong, S.T.S. Synthesis and Characterization of Thymol-Loaded Lauryl Glycol Chitosan for Pesticide Formulation. J. Phys. Conf. Ser. 2019, 1397, 012026. [Google Scholar] [CrossRef]
- Liu, B.; Chen, B.; Zhang, J.; Wang, P.; Feng, G. The Environmental Fate of Thymol, a Novel Botanical Pesticide, in Tropical Agricultural Soil and Water. Toxicol. Environ. Chem. 2017, 99, 223–232. [Google Scholar] [CrossRef]
- Duarah, I.; Deka, M.; Saikia, N.; Deka Boruah, H.P. Phosphate Solubilizers Enhance NPK Fertilizer Use Efficiency in Rice and Legume Cultivation. 3 Biotech 2011, 1, 227–238. [Google Scholar] [CrossRef] [PubMed]
- Chemutai, R.; Mwine, J.; Awichi, R.; Bwogi, G. Effects of NPK and Plant Tea Manure (Tithonia) on Growth Rate of Amaranth (Amaranthus L.) in Soilless Growing Media. Afr. J. Agric. Res. 2019, 14, 1169–1179. [Google Scholar]
- Jassim Kazem AL-Gym, A.; Hameed Salman Al-Asady, M. Effect of the Method and Level of Adding Npk Nanoparticles and Mineral Fertilizers on the Growth and Yield of Yellow Corn and the Content of Mineral Nutrient of Some Plant Parts. Plant Arch. 2020, 20, 38–43. [Google Scholar]
- Sabry, A.K. Synthetic Fertilizers; Role and Hazards. Fertil. Technol. 2015, 1, 110–133. [Google Scholar] [CrossRef]
- El-Gioushy, S.F. Comparative Study on the Npk Fertilization Sources of Young Manfalouty Pomegranate Trees. J. Plant Prod. Mansoura Univ. 2016, 7, 1037–1042. [Google Scholar] [CrossRef]
- Zhang, X.; Fang, Q.; Zhang, T.; Ma, W.; Velthof, G.L.; Hou, Y.; Oenema, O.; Zhang, F. Benefits and Trade-Offs of Replacing Synthetic Fertilizers by Animal Manures in Crop Production in China: A Meta-Analysis. Glob. Chang. Biol. 2020, 26, 888–900. [Google Scholar] [CrossRef]
- Hammad, H.M.; Khaliq, A.; Abbas, F.; Farhad, W.; Fahad, S.; Aslam, M.; Shah, G.M.; Nasim, W.; Mubeen, M.; Bakhat, H.F. Comparative Effects of Organic and Inorganic Fertilizers on Soil Organic Carbon and Wheat Productivity under Arid Region. Commun. Soil. Sci. Plant Anal. 2020, 51, 1406–1422. [Google Scholar] [CrossRef]
- Ekanayake, S.A.; Godakumbura, P.I. Synthesis of a Dual-Functional Nanofertilizer by Embedding ZnO and CuO Nanoparticles on an Alginate-Based Hydrogel. ACS Omega 2021, 6, 26262–26272. [Google Scholar] [CrossRef]
- Chontal, M.A.H.; Collado, C.J.L.; Orozco, N.R.; Velasco, J.V.; Gabriel, A.L.; Romero, G.L. Nutrient Content of Fermented Fertilizers and Its Efficacy in Combination with Hydrogel in Zea Mays L. Int. J. Recycl. Org. Waste Agric. 2019, 8, 309–315. [Google Scholar] [CrossRef]
- Zafar, N.; Niazi, M.B.K.; Sher, F.; Khalid, U.; Jahan, Z.; Shah, G.A.; Zia, M. Starch and Polyvinyl Alcohol Encapsulated Biodegradable Nanocomposites for Environment Friendly Slow Release of Urea Fertilizer. Chem. Eng. J. Adv. 2021, 7, 100123. [Google Scholar] [CrossRef]
- Sun, H.; Lei, T.; Liu, J.; Guo, X.; Lv, J. Physicochemical Properties of Water-Based Copolymer and Zeolite Composite Sustained-Release Membrane Materials. Materials 2022, 15, 8553. [Google Scholar] [CrossRef] [PubMed]
- European Food Safety Authority. Statement on the Request for a Modification of the Specification on Solubility of the Food Additive Polyvinyl Alcohol (E 1203) in Ethanol and Its Possible Impact on the Safety Assessment. EFSA J. 2014, 12, 3820. [Google Scholar] [CrossRef]
- Aslam, M.; Kalyar, M.A.; Raza, Z.A. Polyvinyl Alcohol: A Review of Research Status and Use of Polyvinyl Alcohol Based Nanocomposites. Polym. Eng. Sci. 2018, 58, 2119–2132. [Google Scholar] [CrossRef]
- Baker, M.I.; Walsh, S.P.; Schwartz, Z.; Boyan, B.D. A Review of Polyvinyl Alcohol and Its Uses in Cartilage and Orthopedic Applications. J. Biomed. Mater. Res. B Appl. Biomater. 2012, 100B, 1451–1457. [Google Scholar] [CrossRef] [PubMed]
- Tahir, R.; Albargi, H.B.; Ahmad, A.; Qadir, M.B.; Khaliq, Z.; Nazir, A.; Khalid, T.; Batool, M.; Arshad, S.N.; Jalalah, M.; et al. Development of Sustainable Hydrophilic Azadirachta indica Loaded PVA Nanomembranes for Cosmetic Facemask Applications. Membranes 2023, 13, 156. [Google Scholar] [CrossRef]
- Saad, F.; Hassabo, A.G.; Othman, H.A.; Mosaad, M.M.; Mohamed, A.L. A Valuable Observation on Thickeners for Valuable Utilisation in the Printing of Different Textile Fabrics. Egypt J. Chem. 2022, 65, 431–448. [Google Scholar] [CrossRef]
- Park, J.; Lee, J.; Kim, Y.M.; Kang, M.J.; Suh, H.J.; Lee, J.; Lee, H.S.; Lee, C. A High-Performance Liquid Chromatography–Evaporative Light Scattering Detection–Based Quantitative Analytical Method for Polyvinyl Alcohol in Food Supplements with Pyrolysis–Gas Chromatography/Mass Spectrometry-Based Verification. Food Sci. Biotechnol. 2022, 31, 797–805. [Google Scholar] [CrossRef]
- Chiellini, E.; Corti, A.; D’Antone, S.; Solaro, R. Biodegradation of Poly (Vinyl Alcohol) Based Materials. Prog. Polym. Sci. 2003, 28, 963–1014. [Google Scholar] [CrossRef]
- de Oliveira, T.V.; de Freitas, P.A.V.; Pola, C.C.; da Silva, J.O.R.; Diaz, L.D.A.; Ferreira, S.O.; Soares, N.D.F.F. Development and Optimization of Antimicrobial Active Films Produced with a Reinforced and Compatibilized Biodegradable Polymers. Food Packag. Shelf Life 2020, 24, 100459. [Google Scholar] [CrossRef]
- Bian, H.; Cao, M.; Wen, H.; Tan, Z.; Jia, S.; Cui, J. Biodegradation of Polyvinyl Alcohol Using Cross-Linked Enzyme Aggregates of Degrading Enzymes from Bacillus niacini. Int. J. Biol. Macromol. 2019, 124, 10–16. [Google Scholar] [CrossRef] [PubMed]
- Yin, Z.; Cao, J.; Li, Z.; Qiu, D. Optimizing the Interaction between Poly(Vinyl Alcohol) and Sandy Soil for Enhanced Water Retention Performance. RSC Adv. 2016, 6, 13377–13383. [Google Scholar] [CrossRef]
- Jo, H.J.; Park, K.M.; Min, S.C.; Na, J.H.; Park, K.H.; Han, J. Development of an Anti-Insect Sachet Using a Polyvinyl Alcohol-Cinnamon Oil Polymer Strip against Plodia interpunctella. J. Food Sci. 2013, 78, E1713–E1720. [Google Scholar] [CrossRef] [PubMed]
- López-Velázquez, J.C.; Rodríguez-Rodríguez, R.; Espinosa-Andrews, H.; Qui-Zapata, J.A.; García-Morales, S.; Navarro-López, D.E.; Luna-Bárcenas, G.; Vassallo-Brigneti, E.C.; García-Carvajal, Z.Y. Gelatin–Chitosan–PVA Hydrogels and Their Application in Agriculture. J. Chem. Technol. Biotechnol. 2019, 94, 3495–3504. [Google Scholar] [CrossRef]
- Younes, M.; Aquilina, G.; Castle, L.; Engel, K.H.; Fowler, P.; Fürst, P.; Gürtler, R.; Gundert-Remy, U.; Husøy, T.; Manco, M.; et al. Re-Evaluation of Polyvinylpyrrolidone (E 1201) and Polyvinylpolypyrrolidone (E 1202) as Food Additives and Extension of Use of Polyvinylpyrrolidone (E 1201). EFSA J. 2020, 18, e06215. [Google Scholar] [CrossRef] [PubMed]
- Kurakula, M.; Rao, G.S.N.K. Pharmaceutical Assessment of Polyvinylpyrrolidone (PVP): As Excipient from Conventional to Controlled Delivery Systems with a Spotlight on COVID-19 Inhibition. J. Drug Deliv. Sci. Technol. 2020, 60, 102046. [Google Scholar] [CrossRef]
- Luo, Y.; Hong, Y.; Shen, L.; Wu, F.; Lin, X. Multifunctional Role of Polyvinylpyrrolidone in Pharmaceutical Formulations. AAPS PharmSciTech 2021, 22, 34. [Google Scholar] [CrossRef]
- Ben Ammar, N.E.; Essid, R.; Saied, T.; Şen, M.; Elkahoui, S.; Hamzaoui, A.H. Synthesis and Characterization of Radiation Cross-Linked PVP Hydrogels and Investigation of Its Potential as an Antileishmanial Drug Carrier. Polym. Bull. 2020, 77, 1343–1357. [Google Scholar] [CrossRef]
- Tajik, F.; Eslahi, N.; Rashidi, A.; Rad, M.M. Hybrid Antibacterial Hydrogels Based on PVP and Keratin Incorporated with Lavender Extract. J. Polym. Res. 2021, 28, 316. [Google Scholar] [CrossRef]
- Mondal, D.; Mollick, M.M.R.; Bhowmick, B.; Maity, D.; Bain, M.K.; Rana, D.; Mukhopadhyay, A.; Dana, K.; Chattopadhyay, D. Effect of Poly(Vinyl Pyrrolidone) on the Morphology and Physical Properties of Poly(Vinyl Alcohol)/Sodium Montmorillonite Nanocomposite Films. Prog. Nat. Sci. Mater. Int. 2013, 23, 579–587. [Google Scholar] [CrossRef]
- Jin, S.G. Production and Application of Biomaterials Based on Polyvinyl Alcohol (PVA) as Wound Dressing. Chem Asian J 2022, 17. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wei, Q. Editorial on the Special Issue “Modification of Hydrogels and Their Applications in Biomedical Engineering”. Gels 2023, 9, 263. [Google Scholar] [CrossRef] [PubMed]
- Barbosa, E.J.; Ferraz, H.G. Gellan Gum and Polyvinylpyrrolidone (PVP) as Binding Agents in Extrusion/Spheronization Pellet Formulations. Acta Pharm. 2019, 69, 99–109. [Google Scholar] [CrossRef] [PubMed]
- Odunayo, A.B.; Kayode, F.I.; Benjamin, A.A.; Adekola, A.I.; Ruth, O.O. Evaluation of the Binding Property of Some Binders in Metronidazole Tablet Formulation. Int. J. Pharm. Chem. 2021, 7, 22. [Google Scholar] [CrossRef]
- Darabi, M.A.; Khosrozadeh, A.; Wang, Y.; Ashammakhi, N.; Alem, H.; Erdem, A.; Chang, Q.; Xu, K.; Liu, Y.; Luo, G.; et al. An Alkaline Based Method for Generating Crystalline, Strong, and Shape Memory Polyvinyl Alcohol Biomaterials. Adv. Sci. 2020, 7, 1902740. [Google Scholar] [CrossRef]
- Bhuiyan, M.A.Q.; Shaifur Rahman, M.D.; Rahaman, M.S.; Shajahan, M.; Dafader, N.C. Improvement of Swelling Behaviour of Poly (Vinyl Pyrrolidone) and Acrylic Acid Blend Hydrogel Prepared By the Application of Gamma Radiation. Org. Chem. Curr. Res. 2015, 4, 2. [Google Scholar] [CrossRef]
- Ghobashy, M.M. Ionizing radiation-induced polymerization. In Ionizing Radiation Effects and Applications; IntechOpen: London, UK, 2018; pp. 113–134. [Google Scholar]
- Wang, Y.; Li, J.; Muhammad, N.; Wang, Z.; Wu, D. Hierarchical Networks of Anisotropic Hydrogels Based on Cross-Linked Poly(Vinyl Alcohol)/Poly(Vinylpyrrolidone). Polymer 2022, 251, 124920. [Google Scholar] [CrossRef]
- Panarin, E.F.; Kalninsh, K.K.; Pestov, D.V. Complexation of Hydrogen Peroxide with Polyvinylpyrrolidone: Ab Initio Calculations. Eur. Polym. J. 2001, 37, 375–379. [Google Scholar] [CrossRef]
- Liu, B.; Wang, Y.N.; Ding, W.; Shi, B. Preparation of Oxidised Polyvinyl Alcohol Using Hydrogen Peroxide and Its Application for Collagen Modification. J. Soc. Leather Technol. Chem. 2019, 103, 14–20. [Google Scholar]
- Taliansky, S. Urea-Hydrogen Peroxide Complex. Synlett 2005, 12, 1962–1963. [Google Scholar] [CrossRef]
- Sasson, E.; Agazani, O.; Malka, E.; Reches, M.; Margel, S. Engineered Cross-Linked Silane with Urea Polymer Thin Durable Coatings onto Polymeric Films for Controlled Antiviral Release of Activated Chlorine and Essential Oils. J. Funct. Biomater. 2023, 14, 270. [Google Scholar] [CrossRef]
- de Faria, E.H.; Pimenta, G.; Matias, F.; e Silva, M.L.A.; Silva Filho, A.A.D.; Srgio, P.; Jos, E.; Jorge, K. Green Oxidation Reactions of Drugs Catalyzed by Bio-Inspired Complexes as an Efficient Methodology to Obtain New Active Molecules. In Biomimetic Based Applications; IntechOpen: London, UK, 2011. [Google Scholar]
- Deveci, H. Factors Affecting Decomposition of Hydrogen Peroxide. In Proceedings of the XIIth International Mineral Processing Symposium, Cappadocia-Nevşehir, Turkey, 6–8 October 2010; pp. 609–616. [Google Scholar] [CrossRef]
- Mahendra, K.T.; Shrikant, P.; Rakesh, M.; Snehasis, J. Structural and Physical Properties of Biofield Treated Thymol and Menthol. J. Mol. Pharm. Org. Process. Res. 2015, 3, 1000127. [Google Scholar] [CrossRef]
- Najafloo, R.; Behyari, M.; Imani, R.; Nour, S. A Mini-Review of Thymol Incorporated Materials: Applications in Antibacterial Wound Dressing. J. Drug Deliv. Sci. Technol. 2020, 60, 101904. [Google Scholar] [CrossRef]
- Malka, E.; Dombrovsky, A.; Margel, S. Preparation and Characterization of a Novel PVA/PVP Hydrogel Containing Entrapped Hydrogen Peroxide for Agricultural Applications. ACS Agric. Sci. Technol. 2022, 2, 430–436. [Google Scholar] [CrossRef]
- Chen, S.; Yang, M.; Ba, C.; Yu, S.; Jiang, Y.; Zou, H.; Zhang, Y. Preparation and Characterization of Slow-Release Fertilizer Encapsulated by Biochar-Based Waterborne Copolymers. Sci. Total Environ. 2018, 615, 431–437. [Google Scholar] [CrossRef]
- Wanapu, C.; Pinpeangchan, S.; Wanapu, C. Impact of Nitrogen Fertilizer (Encapsulated Urea Fertilizer) in Process of Controlled-Release Their Effect on Growth of Chinese Kale (Brassica alboglabra Bailey). Glob. Adv. Res. J. Agric. Sci. 2015, 4, 173–181. [Google Scholar]
- Chang, L.; Xu, L.; Liu, Y.; Qiu, D. Superabsorbent Polymers Used for Agricultural Water Retention. Polym. Test 2021, 94, 107021. [Google Scholar] [CrossRef]
- Tyagi, V.; Thakur, A. Carboxymethyl Cellulose-Polyvinyl Alcohol Based Materials: A Review. Mater. Today Proc. 2023. [Google Scholar] [CrossRef]
- Mohammad, R.M.; Ali, A.; Hossain, M.F.; Bhuiyan, M.A.R.; Abd El-Lateef, H.M.; El-Moaty, A.R.A. Improved Protection and Comfort of Barrier Clothing via Moisture-Permeable Poly (Vinyl Alcohol)–Superabsorbent Polymer Nanofibrous Membrane. J. Mater. Res. Technol. 2023, 24, 3600–3607. [Google Scholar] [CrossRef]
- Prakash, S.; Vasudevan, S.; Banerjee, A.; Joe, A.C.; Geetha, K.N.; Mani, S.K. Sustainable Irrigation through Application of Hydrogel: A Review. Alinteri J. Agric. Sci. 2021, 36, 38–52. [Google Scholar] [CrossRef]
- Berradi, A.; Aziz, F.; Achaby, M.E.; Ouazzani, N.; Mandi, L. A Comprehensive Review of Polysaccharide-Based Hydrogels as Promising Biomaterials. Polymers 2023, 15, 2908. [Google Scholar] [CrossRef] [PubMed]
- Rather, R.A.; Bhat, M.A.; Shalla, A.H. An Insight into Synthetic and Physiological Aspects of Superabsorbent Hydrogels Based on Carbohydrate Type Polymers for Various Applications: A Review. Carbohydr. Polym. Technol. Appl. 2022, 3, 100202. [Google Scholar] [CrossRef]
- Damiri, F.; Bachra, Y.; Berrada, M.; Tuteja, J.; Sand, A. Future challenges and opportunities in the field of superabsorbent polymers. In Properties and Applications of Superabsorbent Polymers: Smart Applications with Smart Polymers; Arpit, S., Jaya, T., Eds.; Springer: Singapore, 2023; pp. 231–242. [Google Scholar]
- Patra, S.K.; Poddar, R.; Brestic, M.; Acharjee, P.U.; Bhattacharya, P.; Sengupta, S.; Pal, P.; Bam, N.; Biswas, B.; Barek, V.; et al. Prospects of Hydrogels in Agriculture for Enhancing Crop and Water Productivity under Water Deficit Condition. Int. J. Polym. Sci. 2022, 2022, 4914836. [Google Scholar] [CrossRef]
- Teodorescu, M.; Bercea, M.; Morariua, S. Biomaterials of PVA and PVP in Medical and Pharmaceutical Applications: Perspectives and Challenges. Biotechnol. Adv. 2019, 37, 109–131. [Google Scholar] [CrossRef]
- Muresan-Pop, M.; Magyari, K.; Vulpoi, A. PVA and PVP Hydrogel Blends for Wound Dressing: Synthesis and Characterisation. Adv. Mat. Res. 2019, 1151, 9–14. [Google Scholar] [CrossRef]
- Alipour, R.; Khorshidi, A.; Shojaei, A.F.; Mashayekhi, F.; Moghaddam, M.J.M. Skin Wound Healing Acceleration by Ag Nanoparticles Embedded in PVA/PVP/Pectin/Mafenide Acetate Composite Nanofibers. Polym. Test 2019, 79, 106022. [Google Scholar] [CrossRef]
- Wen, P.; Hu, T.G.; Wen, Y.; Li, K.E.; Qiu, W.P.; He, Z.L.; Wang, H.; Wu, H. Development of Nervilia fordii extract-loaded electrospun pva/pvp nanocomposite for antioxidant packaging. Foods 2021, 10, 1728. [Google Scholar] [CrossRef]
- Guo, Y.; Guo, R.; Shi, X.; Lian, S.; Zhou, Q.; Chen, Y.; Liu, W.; Li, W. Synthesis of Cellulose-Based Superabsorbent Hydrogel with High Salt Tolerance for Soil Conditioning. Int. J. Biol. Macromol. 2022, 209, 1169–1178. [Google Scholar] [CrossRef]
- de Vasconcelos, M.C.; Gomes, R.F.; Sousa, A.A.L.; Moreira, F.J.C.; Rodrigues, F.H.A.; Fajardo, A.R.; Neto, L.G.P. Superabsorbent Hydrogel Composite Based on Starch/Rice Husk Ash as a Soil Conditioner in Melon (Cucumis melo L.) Seedling Culture. J. Polym. Environ. 2020, 28, 131–140. [Google Scholar] [CrossRef]
- Shi, Y.; Xiong, D.; Liu, Y.; Wang, N.; Zhao, X. Swelling, Mechanical and Friction Properties of PVA/PVP Hydrogels after Swelling in Osmotic Pressure Solution. Mater. Sci. Eng. C 2016, 65, 172–180. [Google Scholar] [CrossRef]
- Leone, G.; Consumi, M.; Greco, G.; Bonechi, C.; Lamponi, S.; Rossi, C.; Magnani, A. A PVA/PVP Hydrogel for Human Lens Substitution: Synthesis, Rheological Characterization, and in Vitro Biocompatibility. J. Biomed. Mater. Res. B Appl. Biomater. 2011, 97B, 278–288. [Google Scholar] [CrossRef] [PubMed]
- Karoyo, A.H.; Wilson, L.D. A Review on the Design and Hydration Properties of Natural Polymer-Based Hydrogels. Materials 2021, 14, 1095. [Google Scholar] [CrossRef] [PubMed]
- Xiang, Y.; Ru, X.; Shi, J.; Song, J.; Zhao, H.; Liu, Y.; Guo, D.; Lu, X. Preparation and Properties of a Novel Semi-IPN Slow-Release Fertilizer with the Function of Water Retention. J. Agric. Food Chem. 2017, 65, 10851–10858. [Google Scholar] [CrossRef] [PubMed]
- Sharma, N.; Singh, A.; Dutta, R.K. Biodegradable Fertilizer Nanocomposite Hydrogel Based on Poly(Vinyl Alcohol)/Kaolin/Diammonium Hydrogen Phosphate (DAhP) for Controlled Release of Phosphate. Polymer. Bulletin. 2021, 78, 2933–2950. [Google Scholar] [CrossRef]
- Zhang, M.; Yang, M.; Woo, M.W.; Li, Y.; Han, W.; Dang, X. High-Mechanical Strength Carboxymethyl Chitosan-Based Hydrogel Film for Antibacterial Wound Dressing. Carbohydr. Polym. 2021, 256, 117590. [Google Scholar] [CrossRef]
- Jeong, D.; Kim, C.; Kim, Y.; Jung, S. Dual Crosslinked Carboxymethyl Cellulose/Polyacrylamide Interpenetrating Hydrogels with Highly Enhanced Mechanical Strength and Superabsorbent Properties. Eur. Polym. J. 2020, 127, 109586. [Google Scholar] [CrossRef]
- Pamies, R.; Martinez, M.C.L.; Cifre, J.G.H.; De La Torre, J.G. Non-Newtonian Viscosity of Dilute Polymer Solutions. Macromolecules 2005, 38, 1371–1377. [Google Scholar] [CrossRef]
- Yi, Y.; Chiao, M.; Mahmoud, K.A.; Wu, L.; Wang, B. Preparation and Characterization of PVA/PVP Conductive Hydrogels Formed by Freeze–Thaw Processes as a Promising Material for Sensor Applications. J. Mater. Sci. 2022, 57, 8029–8038. [Google Scholar] [CrossRef]
- Sharma, T.; Joshi, A.; Jain, A.; Chaturvedi, K.R. Enhanced Oil Recovery and CO2 Sequestration Potential of Bi-Polymer Polyvinylpyrrolidone-Polyvinyl Alcohol. J. Pet. Sci. Eng. 2022, 211, 110167. [Google Scholar] [CrossRef]
- Bonelli, N.; Poggi, G.; Chelazzi, D.; Giorgi, R.; Baglioni, P. Poly(Vinyl Alcohol)/Poly(Vinyl Pyrrolidone) Hydrogels for the Cleaning of Art. J. Colloid Interface Sci. 2019, 536, 339–348. [Google Scholar] [CrossRef]
- Bercea, M.; Morariu, S.; Teodorescu, M. Rheological Investigation of Poly(Vinyl Alcohol)/Poly(N-Vinyl Pyrrolidone) Mixtures in Aqueous Solution and Hydrogel State. J. Polym. Res. 2016, 23, 142. [Google Scholar] [CrossRef]
- Kowalczyk, A.; Przychodna, M.; Sopata, S.; Bodalska, A.; Fecka, I. Thymol and Thyme Essential Oil—New Insights into Selected Therapeutic Applications. Molecules 2020, 25, 4125. [Google Scholar] [CrossRef] [PubMed]
- Sigurdarson, J.J.; Svane, S.; Karring, H. The Molecular Processes of Urea Hydrolysis in Relation to Ammonia Emissions from Agriculture. Rev. Environ. Sci. Biotechnol. 2018, 17, 241–258. [Google Scholar] [CrossRef]
- Beig, B.; Niazi, M.B.K.; Jahan, Z.; Hussain, A.; Zia, M.H.; Mehran, M.T. Coating Materials for Slow Release of Nitrogen from Urea Fertilizer: A Review. J. Plant Nutr. 2020, 43, 1510–1533. [Google Scholar] [CrossRef]
- Skrzypczak, D.; Jarzembowski, Ł.; Izydorczyk, G.; Mikula, K.; Hoppe, V.; Mielko, K.A.; Pudełko-Malik, N.; Młynarz, P.; Chojnacka, K.; Witek-Krowiak, A. Hydrogel Alginate Seed Coating as an Innovative Method for Delivering Nutrients at the Early Stages of Plant Growth. Polymers 2021, 13, 4233. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.; Luo, J.; Sun, Q.; Yang, X.; Li, R.; Sun, X. Recent Progress on Solid-State Hybrid Electrolytes for Solid-State Lithium Batteries. Energy Storage Mater. 2019, 21, 308–334. [Google Scholar] [CrossRef]
- Bidadi, H.; Olad, A.; Parhizkar, M.; Mohammadi Aref, S.; Ghafouri, M. Nonlinear Properties of ZnO-Polymer Composites Prepared by Solution-Casting Method. Vacuum 2013, 87, 50–54. [Google Scholar] [CrossRef]
- Zhang, S.; He, Y.; Yin, Y.; Jiang, G. Fabrication of Innovative Thermoplastic Starch Bio-Elastomer to Achieve High Toughness Poly(Butylene Succinate) Composites. Carbohydr. Polym. 2019, 206, 827–836. [Google Scholar] [CrossRef]
- Emerson, A.E.; Mccall, A.B.; Brady, S.R.; Slaby, E.M.; Weaver, J.D. Hydrogel Injection Molding to Generate Complex Cell Encapsulation Geometries. ACS Biomater. Sci. Eng. 2022, 8, 4002–4013. [Google Scholar] [CrossRef]
- Turner, J.G.; White, L.R.; Estrela, P.; Leese, H.S. Hydrogel-Forming Microneedles: Current Advancements and Future Trends. Macromol. Biosci. 2021, 21, e2000307. [Google Scholar] [CrossRef]
- Fu, H.; Xu, H.; Liu, Y.; Yang, Z.; Kormakov, S.; Wu, D.; Sun, J. Overview of Injection Molding Technology for Processing Polymers and Their Composites. ES Mater. Manuf. 2020, 8, 3–23. [Google Scholar] [CrossRef]
- Cao, D.; Malakooti, S.; Kulkarni, V.N.; Ren, Y.; Liu, Y.; Nie, X.; Qian, D.; Griffith, D.T.; Lu, H. The Effect of Resin Uptake on the Flexural Properties of Compression Molded Sandwich Composites. Wind. Energy 2022, 25, 71–93. [Google Scholar] [CrossRef]
- Guerrero, P.; Muxika, A.; Zarandona, I.; de la Caba, K. Crosslinking of Chitosan Films Processed by Compression Molding. Carbohydr. Polym. 2019, 206, 820–826. [Google Scholar] [CrossRef] [PubMed]
- Jaafar, J.; Siregar, J.P.; Tezara, C.; Hamdan, M.H.M.; Rihayat, T. A Review of Important Considerations in the Compression Molding Process of Short Natural Fiber Composites. Int. J. Adv. Manuf. Technol. 2019, 105, 3437–3450. [Google Scholar] [CrossRef]
- Liu, F.; Li, W.; Liu, H.; Yuan, T.; Yang, Y.; Zhou, W.; Hu, Y.; Yang, Z. Preparation of 3D Printed Chitosan/Polyvinyl Alcohol Double Network Hydrogel Scaffolds. Macromol. Biosci. 2021, 21, 2000398. [Google Scholar] [CrossRef]
- Kalossaka, L.M.; Sena, G.; Barter, L.M.C.; Myant, C. Review: 3D Printing Hydrogels for the Fabrication of Soilless Cultivation Substrates. Appl. Mater. Today 2021, 24, 101088. [Google Scholar] [CrossRef]
- Puza, F.; Lienkamp, K. 3D Printing of Polymer Hydrogels—From Basic Techniques to Programmable Actuation. Adv. Funct. Mater. 2022, 32, 2205345. [Google Scholar] [CrossRef]
- Zhou, L.; Yu, M.; Yao, L.; Lai, W.Y. Mayer Rod-Coated Organic Light-Emitting Devices: Binary Solvent Inks, Film Topography Optimization, and Large-Area Fabrication. Adv. Eng. Mater. 2022, 24, 2101558. [Google Scholar] [CrossRef]
- Salawi, A. Pharmaceutical Coating and Its Different Approaches, A Review. Polymers 2022, 14, 3318. [Google Scholar] [CrossRef]
- Krishnamoorthy, V.; Elumalai, G.; Rajiv, S. Environment Friendly Synthesis of Polyvinylpyrrolidone Nanofibers and Their Potential Use as Seed Coats. N. J. Chem. 2016, 40, 3268–3276. [Google Scholar] [CrossRef]
- Vaňharová, L.; Julinová, M.; Jurča, M.; Minařík, A.; Vinter, Š.; Šašinková, D.; Wrzecionko, E. Environmentally Friendly Polymeric Films Based on Biocarbon, Synthetic Zeolite and PVP for Agricultural Chemistry. Polym. Bull. 2022, 79, 4971–4998. [Google Scholar] [CrossRef]
- Ventura-Aguilar, R.I.; Díaz-Galindo, E.P.; Bautista-Baños, S.; Mendoza-Acevedo, S.; Munguía-Cervantes, J.E.; Correa-Pacheco, Z.N.; Bosquez-Molina, E. Monitoring the Infection Process of Rhizopus Stolonifer on Strawberry Fruit during Storage Using Films Based on Chitosan/Polyvinyl Alcohol/Polyvinylpyrrolidone and Plant Extracts. Int. J. Biol. Macromol. 2021, 182, 583–594. [Google Scholar] [CrossRef] [PubMed]
- Abdul, S.; Soud, S.; Hasson, B.A.; Ismail, A. Synthesis and characterization of plant extracts loaded PVA/PVP blend films and evaluate their biological activities. EurAsian J. BioSci. 2020, 14, 2921–2931. [Google Scholar]
- Chen, S.; Han, Y.; Yang, M.; Zhu, X.; Liu, C.; Liu, H.; Zou, H. Hydrophobically Modified Water-Based Polymer for Slow-Release Urea Formulation. Prog Org Coat 2020, 149. [Google Scholar] [CrossRef]
- Marcelo, G.A.; Galhano, J.; Duarte, M.P.; Kurutos, A.; Capelo-Martínez, J.L.; Lodeiro, C.; Oliveira, E. Functional Cyanine-Based PVA:PVP Polymers as Antimicrobial Tools toward Food and Health-Care Bacterial Infections. Macromol. Biosci. 2022, 22, e2200244. [Google Scholar] [CrossRef]
- Hussain, Z.; Khan, M.A.; Iqbal, F.; Raffi, M.; Hafeez, F.Y. Electrospun Microbial-Encapsulated Composite-Based Plasticized Seed Coat for Rhizosphere Stabilization and Sustainable Production of Canola (Brassica napus L.). J. Agric. Food Chem. 2019, 67, 5085–5095. [Google Scholar] [CrossRef]
- Pokhrel, S.; Karki, P. Peanut Shells Cellulose Based Biodegradable Nanocomposites with Polyvinyl Pyrrolidone (PVP) and Polyvinyl Alcohol (PVA). Macromol. Symp. 2023, 409, 2200183. [Google Scholar] [CrossRef]
- Narasimhamurthy, K.N.; Daruka Prasad, B.; Radha Krushna, B.R.; Sharma, S.C.; Ponnazhagan, K.; Francis, D.; Nijalingappa, T.B.; Nasreen Taj, M.; Nagabhushana, H. Nanocomposites of PVA-PVP and l-Ascorbic Acid Modified ZnO:Fe via Ultrasonic Irradiation as a Green Technique: Latent Fingerprint Detection, Food Packing and Anti-Bacterial Applications. Inorg. Chem. Commun. 2023, 156, 111161. [Google Scholar] [CrossRef]
- Akraa, M.; Kadhim, H.; Salah, A.S.; Akraa, M.A.; Jawad, M.; Kadhim, H.; Abbas, S.J.; Hasan, A.S. Simulation and Preparation of an Eco-Food Container by Using Bio-Additive of Beet Juice in Polyvinyl Alcohol/Polyvinylpyrrolidone Blend: Physical Application The Effects of the PEDOT:PSS Acidity on the Performance and Stability of P3HT:PCBM-Based OSCs View Project Nanotechnology View Project Simulation and Preparation of an Eco-Food Container by Using Bio-Additive of Beet Juice in Polyvinyl Alcohol/Polyvinylpyrrolidone Blend: Physical Application. TEST Eng. Manag. 2020, 83, 16669–16676. [Google Scholar]
- Hashmi, M.; Ullah, S.; Ullah, A.; Saito, Y.; Haider, M.K.; Bie, X.; Wada, K.; Kim, I.S. Carboxymethyl Cellulose (Cmc) Based Electrospun Composite Nanofiber Mats for Food Packaging. Polymers 2021, 13, 302. [Google Scholar] [CrossRef]
- Astuti, R.D. Patch Formulation of Celery Leaves Extract (Apium Graveolens L.) As Mosquito Repellent. In Proceedings of the First International Conference on Health, Social Sciences and Technology (ICoHSST 2020), Palembang, Indonesia, 20–21 October 2020; Atlantis Press: Amsterdam, The Netherlands, 2021; pp. 83–87. [Google Scholar]
- Jiang, L.; Huang, H.; Shi, X.; Wu, J.; Ye, J.; Xu, Q.; Fang, S.; Wu, C.; Luo, R.; Lu, C.; et al. Biocontrol Microneedle Patch: A Promising Agent for Protecting Citrus Fruits from Postharvest Infection. Pharmaceutics 2023, 15, 1219. [Google Scholar] [CrossRef] [PubMed]
- Badineni, V.; Maseed, H.; Arla, S.K.; Yerramala, S.; Vijaya Kumar Naidu, B.; Kaviyarasu, K. Effect of PVA/PVP Protective Agent on the Formation of Silver Nanoparticles and Its Photocatalytic and Antimicrobial Activity. Mater. Today Proc. 2019, 36, 121–125. [Google Scholar] [CrossRef]
- Mohamed, S.S.; Hassan, M.A.; Abdelgani, M.E. Effect of High Temperature on Rhizobia Survival on Different Leguminous Seeds Inoculated with Liquid Formulations. Glob. Adv. Res. J. Agric. Sci. 2020, 9, 2315–5094. [Google Scholar]
- El-Kader, M.F.H.A.; Elabbasy, M.T.; Adeboye, A.A.; Menazea, A.A. Nanocomposite of PVA/PVP Blend Incorporated by Copper Oxide Nanoparticles via Nanosecond Laser Ablation for Antibacterial Activity Enhancement. Polym. Bull. 2022, 79, 9779–9795. [Google Scholar] [CrossRef]
- Narayanan, A.; Marimuthu, M.; Mani, A.; Vasu, G.; Subhadra, R. Studies on the Antimicrobial Activity of Ormocarpum Cochinchinense Leaf Extract/PVA-PVP Blended Polymer. ChemistrySelect 2023, 8, e202203512. [Google Scholar] [CrossRef]
- Reich, S.; Kaiser, P.; Mafi, M.; Schmalz, H.; Rhinow, D.; Freitag, R.; Greiner, A. High-Temperature Spray-Dried Polymer/Bacteria Microparticles for Electrospinning of Composite Nonwovens. Macromol. Biosci. 2019, 19, e1800356. [Google Scholar] [CrossRef]
- Raja, K.; Prabhu, C.; Subramanian, K.S.; Govindaraju, K. Electrospun Polyvinyl Alcohol (PVA) Nanofibers as Carriers for Hormones (IAA and GA3) Delivery in Seed Invigoration for Enhancing Germination and Seedling Vigor of Agricultural Crops (Groundnut and Black Gram). Polym. Bull. 2021, 78, 6429–6440. [Google Scholar] [CrossRef]
- El-Gamal, S.; Elsayed, M. Positron Annihilation and Electrical Studies on the Influence of Loading Magnesia Nanoribbons on PVA-PVP Blend. Polym. Test 2020, 89, 106681. [Google Scholar] [CrossRef]
- Hashmi, M.; Ullah, S.; Ullah, A.; Akmal, M.; Saito, Y.; Hussain, N.; Ren, X.; Kim, I.S. Optimized Loading of Carboxymethyl Cellulose (Cmc) in Tri-Component Electrospun Nanofibers Having Uniform Morphology. Polymers 2020, 12, 2524. [Google Scholar] [CrossRef]
- Khatun, M.A.; Sultana, S.; Islam, Z.; Kabir, M.S.; Hossain, M.S.; Nur, H.P.; Chowdhury, A.M.S. Extraction of Crystalline Nanocellulose (CNC) from Date Palm Mat Fibers and Its Application in the Production of Nanocomposites with Polyvinyl Alcohol and Polyvinylpyrrolidone Blended Films. Results Eng. 2023, 17, 101031. [Google Scholar] [CrossRef]
- Srivastav, A.L. Chemical Fertilizers and Pesticides: Role in Groundwater Contamination. In Agrochemicals Detection, Treatment and Remediation; Elsevier: Amsterdam, The Netherlands, 2020; pp. 143–159. [Google Scholar]
- Lobban, R.; Biswas, A.; Ruiz-Márquez, K.J.; Bellan, L.M. Leveraging the Gel-to-Sol Transition of Physically Crosslinked Thermoresponsive Polymer Hydrogels to Enable Reactions Induced by Lowering Temperature. RSC Adv. 2022, 12, 21885–21891. [Google Scholar] [CrossRef] [PubMed]
- Pan, J.; Jin, Y.; Lai, S.; Shi, L.; Fan, W.; Shen, Y. An Antibacterial Hydrogel with Desirable Mechanical, Self-Healing and Recyclable Properties Based on Triple-Physical Crosslinking. Chem. Eng. J. 2019, 370, 1228–1238. [Google Scholar] [CrossRef]
- Bustamante-Torres, M.; Romero-Fierro, D.; Arcentales-Vera, B.; Palomino, K.; Magaña, H.; Bucio, E. Hydrogels Classification According to the Physical or Chemical Interactions and as Stimuli-Sensitive Materials. Gels 2021, 7, 182. [Google Scholar] [CrossRef] [PubMed]
- Franco, P.; De Marco, I. The Use of Poly(N-Vinyl Pyrrolidone) in the Delivery of Drugs: A Review. Polymers 2020, 12, 1114. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.F.; Yue, L.Z.; Jiang, S.L.; Lu, Y.Q.; Wu, Y.X.; Wan, Z.Y. Biodegradation of Polyvinyl Alcohol by Different Dominant Degrading Bacterial Strains in a Baffled Anaerobic Bioreactor. Water Sci. Technol. 2019, 79, 2005–2012. [Google Scholar] [CrossRef]
- Zhang, H.Z.; Liu, B.L.; Luo, R.; Wu, Y.; Lei, D. The Negative Biodegradation of Poly(Vinyl Alcohol) Modified by Aldehydes. Polym. Degrad. Stab. 2006, 91, 1740–1746. [Google Scholar] [CrossRef]
- Danasa, A.S.; Soesilo, T.E.B.; Martono, D.N.; Sodri, A.; Hadi, A.S.; Chandrasa, G.T. The Ammonia Release Hazard and Risk Assessment: A Case Study of Urea Fertilizer Industry in Indonesia. Earth Environ. Sci. 2019, 399, 012087. [Google Scholar] [CrossRef]
- Roy, N.; Saha, N. Chemical Pesticides and Human Health: The Urgent Need for a New Concept in Agriculture. Front. Public Health 2016, 4, 148. [Google Scholar] [CrossRef]
- McDonnell, G. The Use of Hydrogen Peroxide for Disinfection and Sterilization Applications. In Patai’s Chemistry of Functional Groups; John Wiley & Sons: Hoboken, NJ, USA, 2009; pp. 1–34. [Google Scholar] [CrossRef]
- Hu, D.; Coats, J. Evaluation of the Environmental Fate of Thymol and Phenethyl Propionate in the Laboratory. Pest Manag. Sci. 2008, 64, 775–779. [Google Scholar] [CrossRef]
- Bortoletto-Santos, R.; Ribeiro, C.; Polito, W.L. Controlled Release of Nitrogen-Source Fertilizers by Natural-Oil-Based Poly(Urethane) Coatings: The Kinetic Aspects of Urea Release. J. Appl. Polym. Sci. 2016, 133, 43790. [Google Scholar] [CrossRef]
Hydrogel Type | Application Method | Purpose | Reference |
---|---|---|---|
Physical cross-linked PVA/PVP loaded with hydrogen peroxide | Loaded hydrogels in direct contact with the virus or exposure via released vapor | Virucide: eradication of Tomato Brown Rugose Fruit Virus (ToBRV) | [10] |
Physical cross-linked PVA/PVP loaded with varied thymol and hydrogen peroxide ratios | Hydrogel coatings placed on top of hay | Fungicide: prevention of mold growth on hay | [65] |
Physical cross-linked PVA/PVP | Coatings encapsulated urea granules | Slow-release fertilizer and soil conditioner | [118] |
Chemical cross-linked PVA/PVP with epoxy resin and zeolite | Membrane slow release of urea | Slow-release fertilizer | [81] |
Chemical cross-linked with biochar copolymer PVA/PVP | Coating material encapsulates urea granules | Slow-release fertilizer | [117] |
Physical cross-linked Chitosan/PVA/PVP | Films loaded with chitosan nanoparticles | Fungicide: prevention of fungus growth on strawberry | [165] |
Chemical cross-linked PVA/PVP | Films loaded with plant extracts | Broad-band antimicrobial activity | [166] |
Physical cross-linked PVA/PVP | Coatings encapsulate urea | Slow-release fertilizer | [167] |
Physical cross-linked PVA/PVP | Films loaded with cyanine derivatives and their Cu2+ complexes | Broad-band antimicrobial activity | [168] |
Physical cross-linked PVA/PVP/Glycerol | Coated seeds loaded with pro-microbial inoculant | Plant growth-promoting bacteria | [169] |
PVA/PVP/Cellulose | Films loaded with ZnO and cellulose | Antimicrobial activity | [170] |
Physical cross-linked PVA/PVP | Films loaded with ZnO:Fe modified with vitamin C nanoparticles | UV protection and antimicrobial activity | [171] |
Physical cross-linked PVA/PVP | Films loaded with anthocyanin | UV and visible radiation protectant | [172] |
Chemical cross-linked CMC/PVA/PVP | Nanofiber mats | Moisture reducer: fruit and vegetable preservatives | [173] |
Physical cross-linked PVA/PVP/PEG | Coatings loaded with celery leaf extract on aluminum foil | Insect repellent | [174] |
Chemical cross linked PVA/PVP | Microneedles loaded with epsilon-poly-L-lysine | Reduction of fungal infections in citrus fruit pericarp | [175] |
Physical cross-linked PVA/PVP | Protective solution for the preparation of silver nanoparticles | Antimicrobial activity | [176] |
Physical cross-linked PVA and PVP | Coated seeds loaded with pro-microbial inoculant | Plant growth-promoting bacteria | [177] |
Physical cross-linked PVA/PVP | Films loaded with CuO | Antimicrobial activity | [178] |
Physical cross-linked PVA/PVP | Films loaded with OrmocarpumCochinchinense Leaf Extract | Antifungal and antimicrobial activity | [179] |
Physical cross-linked PVA and PVP | Encapsulation of living bacteria in dry coatings | Bioremediation | [180] |
Physical cross-linked PVA and PVP | Nanofibers loaded with hormones | Plant growth-promoting hormones | [181] |
Physical cross-linked PVA/PVP | Nanoribbons loaded with magnesium oxide | Soil enrichment | [182] |
Physical cross-linked PVA/PVP | Nanofibers | General use in agriculture | [183] |
Physical cross-linked PVA/PVP | Nanocomposite films loaded with crystalline nanocellulose | Food packaging | [184] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malka, E.; Margel, S. Engineering of PVA/PVP Hydrogels for Agricultural Applications. Gels 2023, 9, 895. https://doi.org/10.3390/gels9110895
Malka E, Margel S. Engineering of PVA/PVP Hydrogels for Agricultural Applications. Gels. 2023; 9(11):895. https://doi.org/10.3390/gels9110895
Chicago/Turabian StyleMalka, Eyal, and Shlomo Margel. 2023. "Engineering of PVA/PVP Hydrogels for Agricultural Applications" Gels 9, no. 11: 895. https://doi.org/10.3390/gels9110895
APA StyleMalka, E., & Margel, S. (2023). Engineering of PVA/PVP Hydrogels for Agricultural Applications. Gels, 9(11), 895. https://doi.org/10.3390/gels9110895