A Comparative Analysis of the Physico-Chemical Properties of Pectin Isolated from the Peels of Seven Different Citrus Fruits
Abstract
:1. Introduction
2. Results and Discussion
2.1. Yield of Pectin
2.2. Equivalent Weight
2.3. Methoxyl Content
2.4. Anhydrouronic Acid Content
2.5. Degree of Esterification
2.6. Statistical Analysis
2.7. FTIR Analysis for the Identification of Functional Groups
3. Conclusions
4. Materials and Methods
4.1. Sample Collection
4.2. Pectin Extraction and Purification
4.3. Equivalent Weight of Pectin
4.4. Methoxyl Content of Pectin
4.5. Anhydrouronic Acid Content of Pectin
4.6. Degree of Esterification of Pectin
4.7. FTIR Analysis of Pectin Samples
4.8. Statistical Analysis
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vincken, J.-P.; Schols, H.A.; Oomen, R.J.F.J.; Beldman, G.; Visser, R.G.F.; Voragen, A.G.J. Pectin—The Hairy Thing. In Advances in Pectin and Pectinase Research; Voragen, F., Schols, H., Visser, R., Eds.; Springer: Dordrecht, The Netherlands, 2003; pp. 47–59. ISBN 978-94-017-0331-4. [Google Scholar]
- Willats, W.G.T.; McCartney, L.; Mackie, W.; Knox, J.P. Pectin: Cell Biology and Prospects for Functional Analysis. Plant Mol. Biol. 2001, 47, 9–27. [Google Scholar] [CrossRef]
- Ridley, B.L.; O’Neill, M.A.; Mohnen, D. Pectins: Structure, Biosynthesis, and Oligogalacturonide-Related Signaling. Phytochemistry 2001, 57, 929–967. [Google Scholar] [CrossRef] [PubMed]
- Willats, W.G.T.; Knox, J.P.; Mikkelsen, J.D. Pectin: New Insights into an Old Polymer Are Starting to Gel. Trends Food Sci. Technol. 2006, 17, 97–104. [Google Scholar] [CrossRef]
- Guo, Q.; Li, T.; Qu, Y.; Liang, M.; Ha, Y.; Zhang, Y.; Wang, Q. New Research Development on Trans Fatty Acids in Food: Biological Effects, Analytical Methods, Formation Mechanism, and Mitigating Measures. Prog. Lipid Res. 2023, 89, 101199. [Google Scholar] [CrossRef] [PubMed]
- Yadav, V.K.; Gupta, N.; Kumar, P.; Dashti, M.G.; Tirth, V.; Khan, S.H.; Yadav, K.K.; Islam, S.; Choudhary, N.; Algahtani, A.; et al. Recent Advances in Synthesis and Degradation of Lignin and Lignin Nanoparticles and Their Emerging Applications in Nanotechnology. Materials 2022, 15, 953. [Google Scholar] [CrossRef]
- Güzel, M.; Akpınar, Ö. Valorisation of Fruit By-Products: Production Characterization of Pectins from Fruit Peels. Food Bioprod. Process. 2019, 115, 126–133. [Google Scholar] [CrossRef]
- Sun, S.J.; Deng, P.; Peng, C.E.; Ji, H.Y.; Mao, L.F.; Peng, L.Z. Extraction, Structure and Immunoregulatory Activity of Low Molecular Weight Polysaccharide from Dendrobium Officinale. Polymers 2022, 14, 2899. [Google Scholar] [CrossRef] [PubMed]
- Koubala, B.B.; Kansci, G.; Mbome, L.I.; Crépeau, M.-J.; Thibault, J.-F.; Ralet, M.-C. Effect of Extraction Conditions on Some Physicochemical Characteristics of Pectins from “Améliorée” and “Mango” Mango Peels. Food Hydrocoll. 2008, 22, 1345–1351. [Google Scholar] [CrossRef]
- Tsoga, A.; Richardson, R.K.; Morris, E.R. Role of Cosolutes in Gelation of High-Methoxy Pectin. Part 1. Comparison of Sugars and Polyols. Food Hydrocoll. 2004, 18, 907–919. [Google Scholar] [CrossRef]
- Shanmugam, S.; Monis, S.A.; Roy, N.; Gabriela John, S. Effects of Antioxidants and Dietary Fiber from Apple and Strawberries on Value Addition into Mutton Patties. Ann. Univ. Dunarea De Jos Galati. 2017, 41, 95–105. [Google Scholar]
- Simpson, R.; Morris, G.A. The Anti-Diabetic Potential of Polysaccharides Extracted from Members of the Cucurbit Family: A Review. Bioact. Carbohydr. Diet. Fibre 2014, 3, 106–114. [Google Scholar] [CrossRef]
- Wathoni, N.; Yuan Shan, C.; Yi Shan, W.; Rostinawati, T.; Indradi, R.B.; Pratiwi, R.; Muchtaridi, M. Characterization and Antioxidant Activity of Pectin from Indonesian Mangosteen (Garcinia mangostana L.) Rind. Heliyon 2019, 5, e02299. [Google Scholar] [CrossRef] [PubMed]
- Dolge, R.R.; Kruma, Z.; Karklina, D.; Dimins, F. Physical-Chemical Parameters of Latvian Apple Juices and Their Suitability for Cider Production. Eng. Technol. Int. J. Nutr. Food Eng. 2014, 8, 263–267. [Google Scholar]
- Kaczmarczyk, M.M.; Miller, M.J.; Freund, G.G. The Health Benefits of Dietary Fiber: Beyond the Usual Suspects of Type 2 Diabetes Mellitus, Cardiovascular Disease and Colon Cancer. Metabolism 2012, 61, 1058–1066. [Google Scholar] [CrossRef] [PubMed]
- Sotelo, T.; Lema, M.; Soengas, P.; Cartea, M.E.; Velasco, P. In Vitro Activity of Glucosinolates and Their Degradation Products against Brassica-Pathogenic Bacteria and Fungi. Appl. Environ. Microbiol. 2015, 81, 432–440. [Google Scholar] [CrossRef] [PubMed]
- Halder, R.; Hennion, M.; Vidal, R.O.; Shomroni, O.; Rahman, R.-U.; Rajput, A.; Centeno, T.P.; van Bebber, F.; Capece, V.; Vizcaino, J.C.G.; et al. DNA Methylation Changes in Plasticity Genes Accompany the Formation and Maintenance of Memory. Nat. Neurosci. 2016, 19, 102–110. [Google Scholar] [CrossRef]
- Srivastava, P.; Malviya, R. Sources of Pectin, Extraction and Its Applications in Pharmaceutical Industry—An Overview. Indian J. Nat. Prod. Resour. 2011, 2, 10–18. [Google Scholar]
- Liu, Y.; Shi, J.; Langrish, T.A.G. Water-Based Extraction of Pectin from Flavedo and Albedo of Orange Peels. Chem. Eng. J. 2006, 120, 203–209. [Google Scholar] [CrossRef]
- Zheng, Y.; Zhang, Z.; Tang, P.; Wu, Y.; Zhang, A.; Li, D.; Wang, C.Z.; Wan, J.Y.; Yao, H.; Yuan, C.S. Probiotics Fortify Intestinal Barrier Function: A Systematic Review and Meta-Analysis of Randomized Trials. Front. Immunol. 2023, 14, 1143548. [Google Scholar] [CrossRef]
- Iglesias, M.T.; Lozano, J.E. Extraction and Characterization of Sunflower Pectin. J. Food Eng. 2004, 62, 215–223. [Google Scholar] [CrossRef]
- Tavker, N.; Yadav, V.K.; Yadav, K.K.; Cabral-Pinto, M.M.S.; Alam, J.; Shukla, A.K.; Ali, F.A.A.; Alhoshan, M. Removal of Cadmium and Chromium by Mixture of Silver Nanoparticles and Nano-Fibrillated Cellulose Isolated from Waste Peels of Citrus Sinensis. Polymers 2021, 13, 234. [Google Scholar] [CrossRef]
- Tamaki, Y.; Konishi, T.; Tako, M. Isolation and Characterization of Pectin from Peel of Citrus Tankan. Biosci. Biotechnol. Biochem. 2008, 72, 896–899. [Google Scholar] [CrossRef]
- Methacanon, P.; Krongsin, J.; Gamonpilas, C. Pomelo (Citrus Maxima) Pectin: Effects of Extraction Parameters and Its Properties. Food Hydrocoll. 2014, 35, 383–391. [Google Scholar] [CrossRef]
- Dananjaya, S.H.S.; Chandrarathna, H.P.S.U.; Nayanaransi, L.A.U.; Edussuriya, M.; Dissanayake, A.S.; Whang, I.; De Zoysa, M. Pectin Purified from Pomelo (Citrus Maxima) Peel as a Natural Hatching Agent for Fish Embryos. Aquac. Res. 2020, 51, 3109–3118. [Google Scholar] [CrossRef]
- Kamal, M.M.; Kumar, J.; Mamun, M.A.H.; Ahmed, M.N.U.; Shishir, M.R.I.; Mondal, S.C. Extraction and Characterization of Pectin from Citrus Sinensis Peel. J. Biosyst. Eng. 2021, 46, 16–25. [Google Scholar] [CrossRef]
- Salma, M.A.; Jahan, N.; Islam, M.A.; Hoque, M.M. Extraction of Pectin from Lemon Peel: Technology Development. J. Chem. Eng. IEB 2012, 27, 25–30. [Google Scholar] [CrossRef]
- Norziah, M.H.; Fang, E.O.; Karim, A.A. Extraction and Characterisation of Pectin from Pomelo Fruit Peels. In Gums and Stabilisers for the Food Industry 10; Williams, P.A., Phillips, G.O., Eds.; Woodhead Publishing: Cambridge, UK, 2000; pp. 27–36. ISBN 978-1-85573-788-4. [Google Scholar]
- Kumar Shaha, R.; Nayagi Punichelvana, Y.A.; Afandi, A. Optimized Extraction Condition and Characterization of Pectin from Kaffir Lime (Citrus Hystrix). Res. J. Agric. For. Sci. 2013, 1, 1–11. [Google Scholar]
- Devi, W.E.; Shukla, R.N.; Bala, K.L.; Kumar, A.; Mishra, A.A.; Yadav, K.C. Extraction of Pectin from Citrus Fruit Peel and Its Utilization in Preparation of Jelly. Int. J. Eng. Res. Technol. (IJERT) 2014, 3, 1925–1932. [Google Scholar]
- Kanmani, P. Extraction and Analysis of Pectin from Citrus Peels: Augmenting the Yield from Citrus Limon Using Statistical Experimental Design. Iran. J. Energy Environ. 2014, 5. [Google Scholar] [CrossRef]
- Ahmed, S.; Belal, M.; Sikder, H. Extraction, Characterization and Application of Three Varieties of Citrus Limon L. Pectin in Jelly Product. Food Appl. Biosci. J. 2019, 7, 31–50. [Google Scholar]
- Priya; Verma, R.K.; Lakhawat, S.; Yadav, V.K.; Gacem, A.; Abbas, M.; Yadav, K.K.; Park, H.-K.; Jeon, B.-H.; Mishra, S. Millets: Sustainable Treasure House of Bioactive Components. Int. J. Food Prop. 2023, 26, 1822–1840. [Google Scholar] [CrossRef]
- Thapa, A.; Kaushik, R.; Arora, S.; Jaglan, S.; Jaswal, V.; Yadav, V.K.; Singh, M.; Bains, A.; Chawla, P.; Khan, A.; et al. Biological Activity of Picrorhiza Kurroa: A Source of Potential Antimicrobial Compounds against Yersinia Enterocolitica. Int. J. Mol. Sci. 2022, 23, 14090. [Google Scholar] [CrossRef] [PubMed]
- Cui, G.; Li, Y.; Shi, T.; Gao, Z.; Qiu, N.; Satoh, T.; Kakuchi, T.; Duan, Q. Synthesis and Characterization of Eu(III) Complexes of Modified Cellulose and Poly(N-Isopropylacrylamide). Carbohydr. Polym. 2013, 94, 77–81. [Google Scholar] [CrossRef]
- Altaf, F.; Egardt, B. Gain-Scheduled Control of Modular Battery for Thermal and State-of-Charge Balancing**The Work Was Supported by the Chalmers Energy Initiative. IFAC-PapersOnLine 2016, 49, 62–69. [Google Scholar] [CrossRef]
- Muthukumaran, C.; Banupriya, L.; Harinee, S.; Sivaranjani, S.; Sharmila, G.; Rajasekar, V.; Kumar, N.M. Pectin from Muskmelon (Cucumis Melo Var. Reticulatus) Peels: Extraction Optimization and Physicochemical Properties. 3 Biotech 2017, 7, 66. [Google Scholar] [CrossRef]
- Wongkaew, M.; Sommano, S.R.; Tangpao, T.; Rachtanapun, P.; Jantanasakulwong, K. Mango Peel Pectin by Microwave-Assisted Extraction and Its Use as Fat Replacement in Dried Chinese Sausage. Foods 2020, 9, 450. [Google Scholar] [CrossRef]
- Azad, A.K.M. Isolation and Characterization of Pectin Extracted from Lemon Pomace during Ripening. J. Food Nutr. Sci. 2014, 2, 30. [Google Scholar] [CrossRef]
- Sila, D.N.; Van Buggenhout, S.; Duvetter, T.; Fraeye, I.; De Roeck, A.; Van Loey, A.; Hendrickx, M. Pectins in Processed Fruits and Vegetables: Part II—Structure–Function Relationships. Compr. Rev. Food Sci. Food Saf. 2009, 8, 86–104. [Google Scholar] [CrossRef]
- O’Shea, N.; Ktenioudaki, A.; Smyth, T.P.; McLoughlin, P.; Doran, L.; Auty, M.A.E.; Arendt, E.; Gallagher, E. Physicochemical Assessment of Two Fruit By-Products as Functional Ingredients: Apple and Orange Pomace. J. Food Eng. 2015, 153, 89–95. [Google Scholar] [CrossRef]
- Minhas, A.K.; Hodgson, P.; Barrow, C.J.; Adholeya, A. A Review on the Assessment of Stress Conditions for Simultaneous Production of Microalgal Lipids and Carotenoids. Front. Microbiol. 2016, 7, 546. [Google Scholar] [CrossRef]
- Wang, W.; Ma, X.; Jiang, P.; Hu, L.; Zhi, Z.; Chen, J.; Ding, T.; Ye, X.; Liu, D. Characterization of Pectin from Grapefruit Peel: A Comparison of Ultrasound-Assisted and Conventional Heating Extractions. Food Hydrocoll. 2016, 61, 730–739. [Google Scholar] [CrossRef]
- Silva, S.; Martins, S.; Karmali, A.; Rosa, E. Production, Purification and Characterisation of Polysaccharides from Pleurotus Ostreatus with Antitumour Activity. J. Sci. Food Agric. 2012, 92, 1826–1832. [Google Scholar] [CrossRef]
- Gnanasambandam, R.; Proctor, A. Determination of Pectin Degree of Esterification by Diffuse Reflectance Fourier Transform Infrared Spectroscopy. Food Chem. 2000, 68, 327–332. [Google Scholar] [CrossRef]
- Tang, Y.; Yang, G.; Liu, X.; Qin, L.; Zhai, W.; Fodjo, E.K.; Shen, X.; Wang, Y.; Lou, X.; Kong, C. Rapid Sample Enrichment, Novel Derivatization, and High Sensitivity for Determination of 3-Chloropropane-1,2-Diol in Soy Sauce via High-Performance Liquid Chromatography–Tandem Mass Spectrometry. J. Agric. Food Chem. 2023, 71, 15388–15397. [Google Scholar] [CrossRef] [PubMed]
- Pappas, C.S.; Malovikova, A.; Hromadkova, Z.; Tarantilis, P.A.; Ebringerova, A.; Polissiou, M.G. Determination of the Degree of Esterification of Pectinates with Decyl and Benzyl Ester Groups by Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS) and Curve-Fitting Deconvolution Method. Carbohydr. Polym. 2004, 56, 465–469. [Google Scholar] [CrossRef]
- Zhang, L.; Ye, X.; Ding, T.; Sun, X.; Xu, Y.; Liu, D. Ultrasound Effects on the Degradation Kinetics, Structure and Rheological Properties of Apple Pectin. Ultrason. Sonochem. 2013, 20, 222–231. [Google Scholar] [CrossRef]
- Wang, Y.; Zhai, W.; Li, J.; Liu, H.; Li, C.; Li, J. Friction Behavior of Biodegradable Electrospun Polyester Nanofibrous Membranes. Tribol. Int. 2023, 188, 108891. [Google Scholar] [CrossRef]
- Wang, Q.; Guo, Q.; Niu, W.; Wu, L.; Gong, W.; Yan, S.; Nishinari, K.; Zhao, M. The PH-Responsive Phase Separation of Type-A Gelatin and Dextran Characterized with Static Multiple Light Scattering (S-MLS). Food Hydrocoll. 2022, 127, 107503. [Google Scholar] [CrossRef]
- Wang, Y.; Zhai, W.; Cheng, S.; Li, J.; Zhang, H. Surface-Functionalized Design of Blood-Contacting Biomaterials for Preventing Coagulation and Promoting Hemostasis. Friction 2023, 11, 1371–1394. [Google Scholar] [CrossRef]
- Shen, B.; Sun, S.; Zhu, L.; Yu, J.; Jiang, L. Intelligent Bio-FeS-Loaded Chitosan Films with H2O2 Rapid Response for Advanced Waterproof and Antibacterial Food Packaging. Food Packag. Shelf Life 2023, 37, 101083. [Google Scholar] [CrossRef]
- Khamsucharit, P.; Laohaphatanalert, K.; Gavinlertvatana, P.; Sriroth, K.; Sangseethong, K. Characterization of Pectin Extracted from Banana Peels of Different Varieties. Food Sci. Biotechnol. 2018, 27, 623–629. [Google Scholar] [CrossRef] [PubMed]
- Suhaila, M.; Zahariah, H. Extraction and Characterisation of Pectin from Various Tropical Agrowastes. In Proceedings of the Symposium Sumber Alam Tropika, Kuching, Malaysia, 6–9 December 1993. [Google Scholar]
- Aschemann-Witzel, J.; Bizzo, H.R.; Doria Chaves, A.C.S.; Faria-Machado, A.F.; Gomes Soares, A.; de Oliveira Fonseca, M.J.; Kidmose, U.; Rosenthal, A. Sustainable Use of Tropical Fruits? Challenges and Opportunities of Applying the Waste-to-Value Concept to International Value Chains. Crit. Rev. Food Sci. Nutr. 2023, 63, 1339–1351. [Google Scholar] [CrossRef] [PubMed]
- Hammer, Ø.; Harper, D.A.T.; Ryan, P.D. Past: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontol. Electron. 2001, 4, 1–9. [Google Scholar]
Sr. No. | Type of Bond | Wave Number (Pectin) from [42] | Wave Number (Pectin) from C. limon | Wave Number (Pectin) from C. sudachi | Wave Number (Pectin) from C. limetta | Wave Number (Pectin) from C. sinensis | Wave Number (Pectin) from C. maxima | Wave Number (Pectin) from C. jambhiri | Wave Number (Pectin) from C. hystrix |
---|---|---|---|---|---|---|---|---|---|
| O–H stretching vibration | 3437 | 3657.16 3309.96 | 3634.01 3410.26 | 3649.44 3317.67 3163.36 | 3618.58 3294.53 | 3294.53 | 3302.24 | 3286.81 |
| C–H stretching vibration- asymmetrical | 2931 | 2947.33 | 2916.47 | 2916.47 | 2924.18 | 2924.18 | ||
| C–H stretching vibration- symmetrical | - | 2854.74 | - | 2839.31 | 2885.60 | - | - | - |
| O–H and N–H stretching vibration | - | 2430.39 | 2360.95 | 2492.11 | 2306.94 2492.11 | 2368.66 | 2353.23 | 2353.23 |
| Asymmetric C=C=C stretching vibration | 2029.18 | 2106.34 | 1921.16 2052.33 | 2036.90 | 2106.34 | - | 2052.33 | |
| C=O stretching vibration | 1749 | 1743.71 | 1720.53 | 1743.71 | 1743.71 | - | - | 1735.99 |
| C=C and COO- Stretching vibration | 1628 | 1527.67 | 1666.55 | 1519.96 | 1604.83 1527.67 | 1651.22 1527.67 | 1643.41 1527.67 | 1635.69 1527.67 |
| CH2 symmetric deformation vibration | 1444 | 1435.09 | 1411.94 | 1435.09 | 1435.09 | 1419.66 | 1419.66 | 1411.94 |
| C–H deformation vibration | 1350.22 | 1288.49 | 1357.93 | 1350.22 | - | 1311.64 | - | |
| CH2 wagging vibration | 1226.77 | 1242.20 | 1249.91 | 1234.48 | 1242.20 | 1242.20 | 1234.48 | |
| C–O and C–C stretching vibration | 1080.17 | 1087.89 | 1064.74 | 1087.89 | 1072.46 | 1072.46 | 1095.60 | |
| CH3 rocking vibration | 972.16 | 1018.45 956.72 | 979.87 | 979.89 | - | - | 1018.45 964.44 | |
| CH2 out-of-plane deformation vibration | 833.28 | - | 833.28 | 895.00 | - | 825.56 | ||
| C–H out-of-plane deformation vibration | 748.41 | 732.97 | 709.83 | 763.84 | - | - | - | |
| C–H wagging vibration | 648.10 | 671.25 | 617.24 | 663.53 | - | - | 640.39 | |
| C–C skeleton vibration | 516.94 439.78 | 547.80 | 486.08 | 509.22 | 470.65 | - | 493.79 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baraiya, K.; Yadav, V.K.; Choudhary, N.; Ali, D.; Raiyani, D.; Chowdhary, V.A.; Alooparampil, S.; Pandya, R.V.; Sahoo, D.K.; Patel, A.; et al. A Comparative Analysis of the Physico-Chemical Properties of Pectin Isolated from the Peels of Seven Different Citrus Fruits. Gels 2023, 9, 908. https://doi.org/10.3390/gels9110908
Baraiya K, Yadav VK, Choudhary N, Ali D, Raiyani D, Chowdhary VA, Alooparampil S, Pandya RV, Sahoo DK, Patel A, et al. A Comparative Analysis of the Physico-Chemical Properties of Pectin Isolated from the Peels of Seven Different Citrus Fruits. Gels. 2023; 9(11):908. https://doi.org/10.3390/gels9110908
Chicago/Turabian StyleBaraiya, Khodidash, Virendra Kumar Yadav, Nisha Choudhary, Daoud Ali, Daya Raiyani, Vibhakar A. Chowdhary, Sheena Alooparampil, Rohan V. Pandya, Dipak Kumar Sahoo, Ashish Patel, and et al. 2023. "A Comparative Analysis of the Physico-Chemical Properties of Pectin Isolated from the Peels of Seven Different Citrus Fruits" Gels 9, no. 11: 908. https://doi.org/10.3390/gels9110908
APA StyleBaraiya, K., Yadav, V. K., Choudhary, N., Ali, D., Raiyani, D., Chowdhary, V. A., Alooparampil, S., Pandya, R. V., Sahoo, D. K., Patel, A., & Tank, J. G. (2023). A Comparative Analysis of the Physico-Chemical Properties of Pectin Isolated from the Peels of Seven Different Citrus Fruits. Gels, 9(11), 908. https://doi.org/10.3390/gels9110908