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Abstract: Plant essential oil has attracted much attention in delaying pork spoilage due to its safety,
but its low antibacterial efficiency needs to be solved by encapsulation. Our previous research
had fabricated a type of ovalbumin gel nanoparticles loaded with carvacrol (OCGn-2) using the
gel-embedding method, which had a high encapsulation rate and antibacterial activity. The main
purpose of this study was to further evaluate the stability and slow-release characteristics of OCGn-2
and potential quality effects of the nanoparticles on the preservation of fresh pork pieces during 4 ◦C
storage. The particle test showed that the nanoparticles had better heat stability below 85 ◦C and salt
stability below 90 mM. The in vitro release study indicated that the carvacrol in OCGn-2 followed a
Fickian release mechanism. The pork preservation test suggested that the OCGn-2 coating treatments
could remarkably restrict the quality decay of pork slices compared to free carvacrol or a physical
mixture of ovalbumin and carvacrol treatment. Nano-encapsulation of ovalbumin is beneficial to the
sustained release, enhanced oxidation resistance, and improved antibacterial activity of carvacrol.
The study suggested that ovalbumin gel nanoparticles embedded with carvacrol could be applied as
an efficient bacterial active packaging to extend the storage life of pork.
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1. Introduction

Among the common meat products, pork is consumed in huge quantities throughout
the world. However, a mass of polyunsaturated fatty acids in pork is harmful because bio-
chemical reactions such as oxidation and microbial spoilage can bring about color changes
and rancid taste [1]. The deterioration of meat during manufacturing and storage involves
three mechanisms: microbial spoilage, lipid oxidation, and enzymatic autolysis. Red meat
such as pork [2], beef [3], and mutton [4] are frequently related to outbursts mainly because
of the existence of Salmonella spp., Staphylococcus spp., Clostridium spp., and Listeria spp. In
recent years, Salmonella has been reported as the main reason for foodborne disease trans-
mission leading to hospitalization [5]. Salmonella in the feces can contaminate the surface of
the carcass during the slaughter process, and intestinal diseases and bacterial infections
can probably be generated after accidental consumption [6]. Therefore, contamination with
foodborne human pathogens, especially by Salmonella, is becoming an increasing concern
for the pork industry. The spoilage factors in meat products sometimes represent a high
risk for producers’ interest and poses a threat to consumer health. Therefore, preventing the
impact that the storage process has on Salmonella prevalence is a critical step in developing
strategies for pathogen reduction in meat and can guarantee economy and safety of the
meat processing industry.

In meat preservation, it is common that the addition of different preservatives in
various meat products could prevent lipid oxidation, delay rancidity, and improve color
sharpness. Despite the excellent efficiency and stability of synthetic preservatives, in the
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past several years, researchers have taken increasing interest in replacing them with natural
preservatives such as plant essential oil (PEO) on account of their potential impacts on
toxicity, carcinogenesis, teratogenicity, and mutagenicity [7]. PEO, frequently used by
meat producers, is extracted from specific plants, such as clove, thyme, and ginger [8–10].
Many of them are generally recognized as safe (GRAS) for use in the food industry, as
declared by the United States Food and Drug Administration (FDA) [11]. Carvacrol (Car),
purified from the secondary metabolites of oregano and thyme, has strong abilities against
both microorganisms and oxidization [12]. Nonetheless, the application of Car in food
processing is blocked because it is quickly volatile and hardly soluble in water.

Encapsulation, regarded to be a burgeoning and current method, can capture and
improve the solubility of PEO, and likewise effectively prevent sustained release during pro-
cessing and action, to manufacture a nano-delivery system in the form of nanoparticles [13].
The use of active food packaging, which utilizes PEO-loaded nanoparticles as active agents,
has become gradually attractive due to their properties against pathogenic microorgan-
isms and oxidation as well as stability by resisting varieties of environmental impacts [7].
Evidently, gel nanoparticles represent intricate, three-dimensional nanoscale biomacro-
molecular constructs that are intricately cross-linked, capable of accommodating substantial
fluid volumes, and, consequently, a noteworthy quantity of active constituents [14]. Inno-
vative hydrogel carriers, varying in matrix sizes from micrometers to nanometers, bestow
heightened transport capabilities. Gel nanoparticles seamlessly amalgamate the advan-
tages of hydrogels and nanoparticles, boasting traits such as water solubility, distinctive
adhesive properties, a spacious specific surface area amenable to manipulation, an ele-
vated loading capacity, meticulously regulated delayed release kinetics, and a superior
degree of biocompatibility and biodegradability [15]. Protein (e.g., whey protein [16],
gliadin [17], zein [18], and ovalbumin) is one of the most generally employed materials
for the manufacture of esculent nanoparticles since it can be assembled by covalent or
noncovalent bonds. Ovalbumin (OVA), the most plentiful protein component in egg white
protein (EWP), comprises about 192 hydrophobic amino acids and about 128 of which are
electropositive/electronegative; these demonstrate the feasibility of OVA as an efficient
carrier for agent delivery [19].

Our previous studies have explored the physicochemical properties and antibacterial
properties of ovalbumin–carvacrol (OVA-Car) nanocomposites prepared by the oil-in-water
method [20] and gel-embedding method [21]. It was found that OVA-Car prepared by
gel-embedding method had better properties than those of OVA-Car from the oil-in-water
method. Moreover, among different pH conditions (2, 5, 7, and 9), which can affect gel
microstructure, OCGn-2 (OVA gel nanoparticles prepared loaded with Car at pH 2) was
selected because its gel structure was more dense and stable, and has higher encapsulation
efficiency contributing to higher sterilization rate.

However, previous studies have only explored the physicochemical properties and
antibacterial properties of nanoparticles while application tests on preserving fresh pork
are lacking. Hence, the purpose of this study was to apply OCGn-2 to evaluate its influence
on the quality characteristic of fresh pork contaminated with Salmonella during 4 ◦C storage.
This is based on the investigation of the influence of environmental stresses on the stability
of nanoparticles and the release profiles of Car from OCGn-2, which have the possibility
to be exploited as an effective economic approach for meat preservation. In the long term,
this study may offer new creative approach into the development of delivery systems with
improved biological preservatives.

2. Results and Discussion
2.1. Form Analysis

The solid sample was a light-yellow powder with tiny and uniform particles (Figure 1a).
It was easily soluble in water and appeared as a white liquid with high turbidity at high
concentrations (Figure 1b). The nanoparticle image demonstrated spherical and regularly
distributed particles, which had good homogeneity and stability without adverse reactions
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during the preparation process (Figure 1c,d). The results of TEM indicated that the size
distribution of most nanoparticles was between 40 and 60 nm. The reason for the larger
particle diameter might be that the protein layer outside the single particle swells and/or the
single particle agglomerates when dispersed in the solution. OVA encapsulation is indicated
to improve the delivery mode of antibacterial agents on pathogenic bacteria and provided a
reference for future research.
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Figure 1. (a,b) Sample morphology of OCGn-2. (c,d) Transmission electron microscope images of
OCGn-2.

2.2. Effects of Environmental Stresses on the Stability of OCGn-2

Figure 2a depicted the impact of thermal treatment in the temperature range of
55–95 ◦C for 15 min on the particle size, PDI and zeta potential of the solutions. No-
ticeable trends included an increase in particle size and a widening of the size distribution
at 85 ◦C on account of the poor thermal stability of OCGn-2. At other temperatures, their
average particle size remained below 350 nm, while the PDI fluctuated slightly around 0.3
because the composite particles tend to aggregate, resulting in larger particle sizes than
expected. When the temperature fell below 85 ◦C, the zeta potential exhibited slight fluctu-
ations between −27 mV and −29 mV. This indicated that OCGn-2 successfully withstood
thermally induced aggregation at this stage. However, surpassing 85 ◦C diminished the
net charge content, leading to particle aggregation and consequently an upsurge in the
measured particle size. Together, the above results indicated that OCGn-2 became stable
under low-temperature treatment.

As shown in Figure 2b, the effect of NaCl concentration on the stability of OCGn-2 was
assessed by assessing the particle size, PDI and zeta potential of the solution at different
concentrations of NaCl (10–170 mM). The particle size of OCGn-2 experienced a slight
decrease within the range of 10 to 90 mM NaCl. This phenomenon can be attributed to
the capacity of low NaCl concentrations to induce protein-based nanoparticle structures to
contract, leading to a smaller particle size. A comparable trend was observed in composite
condensed nanoparticles crosslinked with tannic acid [22]. Starting with the introduction
of a 90 mM NaCl solution, the PDI of the solution exhibited a notable and rapid increase
in response to an elevated ionic strength, surpassing the changes observed at the 0.3 level.
Ultimately, the nanoparticles displayed the greatest particle size and PDI in 170 mM NaCl
solution. The net charge of OCGn-2 exhibited a gradual decline as the NaCl concentration
increased. Particularly noteworthy is that the net charge dropped below 20 mV upon
surpassing 130 mM, signifying significant particle aggregation. These observations suggest
that the electrostatic repulsion and steric hindrance between nanoparticles have been
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severely compromised due to the screening effects induced by high ionic strength [23].
As a result, instability ensues, leading to extensive nanoparticle aggregation. A similar
phenomenon was also observed in the NaCl stability results of Camellia seed albumin
nanoparticles [24]. In summary, OCGn-2 subjected to temperatures below 85 ◦C or treated
with NaCl concentrations below 130 mM retained a uniform small particle size. This might
make the contact area between the samples and pathogenic microorganisms large enough
to facilitate the diffusion of the antibacterial active ingredients of OCGn-2 on the bacterial
cell membrane.
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Figure 2. Effect of environmental factors of temperature (a) and NaCl concentration (b) on the
particle size, polydispersity index (PDI) and zeta potential of OCGn-2. Values are means ± standard
deviations, indicated by error bars.

2.3. In Vitro Release Studies

The in vitro release profiles of Car from the nanoparticles under ambient temperature
are shown in Figure 3. The results showed that the release of Car from OCGn-2 was divided
into two stages according to the rate of release. A burst release of Car was discovered
during the preliminary 60 h of the initial phase. Car was released up to 12.13% in the
buffer solution. The release at this stage was mainly due to the free Car attached to the
surface of the nanoparticles [25]. The release speed of the second stage drops slightly, that
is, between 60 h and 168 h, when the accumulated amount of Car released was 82.71% in
the buffer solution.
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For the spherical nanoparticles in this study, n = 0.4082, which is less than 0.45,
indicating that the Fickian release mechanism was followed [26]. The linear relation of ln
( Mt

M0
) versus ln(t) was used to measure the value of n and k.
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2.4. Meat Storage Test
2.4.1. pH Test

The pH level of fresh, unprocessed pork typically falls within the range of 5.18 to
6.17 [27]. As exhibited in Figure 4, the initial pH was 5.53–5.82 at 4 ◦C. At the beginning
of the storage, we observed a slight decline in pH value, attributing to the proliferation of
lactic acid in pork samples [28]. The pH reached the upper limit for fresh meat (pH = 6.8)
in around 10 days. The pH rose sharply especially after the 15-day storage period, ranging
from 7.96 to 8.54 except for two meat samples coated with OCGn-2. This could be ascribed
to the accretion of ammonia and the dissolution of the amino acids for the reason that
bacteria used and consumed amino acids [29]. It could be noticed that the spoilage degree
of pork samples coated with OCGn-2 was less severe than free Car groups, indicating the
ovalbumin nano-encapsulation enhanced the rot-fastness ability of Car. The pH of the
meat sample treated with 2 MIC OCGn-2 did not change significantly in the first 15 days,
indicating that 2 MIC OCGn-2 could restrain the chemical changes in the meat sample,
accordingly achieving the purpose of preservation.
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Figure 4. Changes in pH value of pork samples with different treatments during 4 ◦C storage. Values
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indicate significant difference at p < 0.05.

2.4.2. Weight Loss Test

Water loss can result in the reduction of meat weight, primarily attributable to the
irreversible transformation of the protein colloid, thus preventing the moisture in the
gel structure from being retained and flowing out of the tissue. As shown in Figure 5,
the untreated group exhibited a notably greater decline in weight compared to the other
treatment groups, and this trend intensified with the passage of time during storage. It was
because, during the storage process of pork, the water-holding capacity of pork became
worse because of microbial contamination, which exacerbated the water loss. According to
the general trend, the degree of the weight loss of pork peaked in the initial 15-day storage
period and then decreased slightly at 20 days. It was speculated that the free water in
the pork samples had almost completely evaporated during the 15-day storage period of
refrigeration, leaving the non-volatile bound water. It could be seen that the weight loss
of samples coated with OCGn-2 after 10 days was remarkably lower than that of other
treatment groups. In contrast to the free Car group, the weight loss of pork samples coated
with 2 MIC OCGn-2 was reduced by up to 43%. The findings indicated that nanoparticles
were proficient in significantly mitigating the rate of weight loss in pork, indicating that
ovalbumin nano-encapsulation improved the action efficiency of free Car.
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Figure 5. Changes in weight loss of pork samples with different treatments during 4 ◦C storage.
Values are means ± standard deviations, indicated by error bars. Values with different letters of each
sample indicate significant difference at p < 0.05.

2.4.3. Color Measurement

The color change of the pork surface is an important indicator that reflects its visual
quality, which influences consumer acceptability. L*, a*, and b* of the selected color pa-
rameters are generally used to estimate the visible quality of fresh meat [30]. The color
parameters of different pork samples stored at 4 ◦C are exhibited in Table 1. With the
extension of time, L* and b* values showed an upward trend, while the a* value showed a
downward trend. On the micro level, as meat deteriorated, deoxymyoglobin (purple) or
oxymyoglobin (red) was oxidized to a brown color [31]. L* values were barely influenced by
an oxidation reaction, just revealing a slight growth with the storage period. The increase
in protein oxidation over the storage period resulted in reduced water retention and hence
greater dispersion of light [32]. The red color (a*) of meat is often regarded as an indicator
of meat freshness [33]. At 4 ◦C, the initial range of the a* value in the study spanned from
10.81 to 15.23. These distinctions among treatments might be due to the dosage of reagents
used that might impart color to the samples. As depicted in Figure 6, the visual aspects of
the various pork samples stored at 4 ◦C substantiate the dependability of the parameters.
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Table 1. Changes in color characteristics of pork samples stored at 4 ◦C for 20 days. Values are
mean ± standard deviation. Values with different letters in each row indicate significant difference at
p < 0.05.

Attributes
Treatment

Groups
Storage Days

0 5 10 15 20

L* C 36.38 ± 1.31 b 35.29 ± 1.87 b 36.74 ± 0.94 b 39.44 ± 1.61 b 46.53 ± 0.92 a

OVA 40.00 ± 1.47 b 40.43 ± 1.33 b 42.45 ± 0.73 b 42.98 ± 0.62 b 45.44 ± 0.81 a

Mix 37.23 ± 2.12 b 39.11 ± 1.03 b 39.98 ± 0.75 b 45.57 ± 0.78 a 44.12 ± 1.51 a

1MIC Car 33.73 ± 1.12 b 36.86 ± 1.69 ab 40.41 ± 1.38 a 40.87 ± 0.82 a 42.46 ± 1.15 a

2MIC Car 40.66 ± 1.17 b 41.96 ± 0.95 b 40.31 ± 2.12 b 49.07 ± 0.76 a 48.50 ± 1.73 a

1MIC OCGn-2 45.09 ± 0.83 b 43.21 ± 0.98 b 44.16 ± 2.31 b 37.08 ± 2.27 c 50.23 ± 1.93 a

2MIC OCGn-2 51.20 ± 1.12 a 44.89 ± 1.83 b 48.97 ± 0.95 a 49.05 ± 1.83 a 48.45 ± 0.77 a

a* C 11.90 ± 0.61 a 10.47 ± 0.77 b 9.01 ± 0.22 c 4.25 ± 0.34 d 3.21 ± 0.37 e

OVA 10.81 ± 0.38 a 7.26 ± 0.37 c 9.14 ± 0.16 b 6.04 ± 0.33 d 4.15 ± 0.12 e

Mix 11.24 ± 0.38 a 9.73 ± 0.22 b 7.35 ± 0.28 c 5.85 ± 0.87 d 3.29 ± 0.11 e

1MIC Car 11.75 ± 0.46 a 10.64 ± 0.25 b 7.23 ± 0.60 c 5.73 ± 0.38 d 3.77 ± 0.16 e

2MIC Car 10.83 ± 0.13 a 9.46 ± 0.76 b 8.96 ± 0.39 b 7.18 ± 0.19 c 4.06 ± 0.15 d

1MIC OCGn-2 14.23 ± 0.33 a 13.44 ± 0.44 a 9.66 ± 0.17 b 5.84 ± 0.17 c 3.24 ± 0.11 d

2MIC OCGn-2 15.23 ± 0.41 a 14.89 ± 0.61 a 14.05 ± 0.44 a 9.38 ± 0.28 b 8.91 ± 0.12 b

b* C 7.67 ± 0.46 c 7.24 ± 0.51 c 7.79 ± 0.11 c 9.12 ± 0.49 b 11.72 ± 0.72 a

OVA 8.88 ± 0.52 b 8.83 ± 0.32 b 9.60 ± 0.37 b 10.70 ± 0.74 ab 11.80 ± 0.49 a

Mix 9.12 ± 0.42 b 9.89 ± 0.42 b 10.27 ± 0.49 b 11.29 ± 0.53 ab 12.10 ± 0.22 a

1MIC Car 9.46 ± 0.67 b 9.72 ± 0.14 b 10.02 ± 0.23 b 11.70 ± 0.75 a 12.60 ± 0.77 a

2MIC Car 8.23 ± 0.45 b 8.41 ± 0.28 b 8.39 ± 0.18 b 9.84 ± 0.36 a 10.43 ± 0.41 a

1MIC OCGn-2 12.38 ± 0.49 b 13.30 ± 0.57 b 13.53 ± 0.63 b 14.2 ± 0.82 ab 15.44 ± 0.43 a

2MIC OCGn-2 8.02 ± 0.13 c 8.93 ± 0.31 b 8.84 ± 0.18 b 9.07 ± 0.31 b 10.22 ± 0.27 a

2.4.4. Lipid Oxidation

Lipid oxidation stands as the predominant factor contributing to the deterioration
in meat quality due to the occurrence of rancidity, smelly substance, and other adverse
reactions, leading to the decrease in shelf life and public acceptability [34]. The assessment
of lipid oxidation in the pork samples was carried out through the measurement of the
TBARS value. A higher TBARS value indicates a greater degree of lipid oxidation in
the pork samples. As depicted in Figure 7, during the initial phase of storage at 4 ◦C,
TBARS values exhibited fluctuations within the range of 0.075 to 0.093 mg MDA/kg. As
anticipated, TBARS values in all seven treatments exhibited a significant increase (p < 0.05)
over the storage duration, signifying the advancement of lipid oxidation. It was observed
that the TBARS value of the free Car group showed severe lipid oxidation than samples
coated with OCGn-2, indicating that the ovalbumin nano-encapsulation enhanced the
exertion of inoxidizability of the free Car. Zhang [35] proposed that in contrast to free
essential oils, nano-encapsulated essential oils demonstrate heightened antimicrobial and
antioxidant potency. In addition, during a 15-day storage period, the TBARS values of 2
MIC OCGn-2-treated groups consistently remained below 0.5 mg MDA/kg, a threshold
considered sensorially acceptable to prevent rancidity [36].
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2.4.5. Protein Oxidation

The presence of thiol groups resulting from protein oxidation within the samples is
depicted in Figure 8. Within a dose effect, OCGn-2 with added 2 MIC indicated the furthest
restraint effect on the protein oxidation; the thiol contents decreased by 26.8%, lower than
that of the free Car group. It could be judged that ovalbumin nano-encapsulation conduced
free Car to decrease the loss of thiol contents. As described by Xiong [37], the controlled
release mechanism of the nano-encapsulation system demonstrated the ability to enhance
the antioxidant efficacy of essential oils in meat products. Additionally, it is common
knowledge that phenolics are characterized by hydroxyl groups connected to the aromatic
ring, which can provide electrons that can neutralize free-radical reactions, resulting in the
inhibition of oxidizing reaction [38].
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2.4.6. Microbiological Analysis

The change in TVCs of pork samples is revealed in Figure 9. The initial TVC exhibited
a relatively narrow range, spanning from 2.87 to 4.12 log CFU/g. Over the 4 ◦C storage,
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the pork samples coated with 2MIC OCGn-2 had a TVC remarkably lower than that of
the control samples. According to Huang et al. [39], a TVC value of 7 log CFU/g can
be established as the threshold indicative of the freshness and quality of pork. The pork
samples treated with OCGn-2 were far below this threshold value compared with free Car
groups after 20 d during 4 ◦C storage, demonstrating that the fabricated nano-delivery
system could effectively help free essential oil to persistently protect the pork from spoilage
microorganisms within a certain edible period.
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3. Conclusions

The present study investigated the application of OCGn-2 developed previously for
fresh pork preservation. Under certain conditions (thermal treatment and ionic strength),
OCGn-2 could remain relatively stable, while different durations greatly affected the
controlled-release process of Car. Application of OCGn-2 reduced discoloration of fresh
pork, successfully decreased lipid and protein oxidation, prevented weight loss and pH
change, and inhibited microbial growth. Compared with free Car, OCGn-2 with a concen-
tration of 0.32 mg/mL (i.e., 2 MIC) provided extended shelf life of fresh pork. To sum
up, the results demonstrated broad application prospects of OCGn-2 in pork preservation
processing in comparison with free essential oil. Nevertheless, it is necessary to further
uncover the underlying mechanism and to evaluate the possible physical toxicity.

4. Materials and Methods
4.1. Materials and Chemicals

Fresh eggs were obtained from a local supermarket (Yangzhou, China). Car (99%) and
1,1,3,3-tetraethoxypropane were obtained from Sigma-Aldrich (St. Louis, MO, USA). The
5,5′-dithiobis-(2-nitrobenzoic acid) was purchased from Biological Technology Co., Ltd.
(Shanghai, China). All other chemicals were of analytical grade. Fresh pork loins were
obtained from a local market (Yangzhou, China).

4.2. Preparation of OCGn-2 Nanoparticles

The preparation method was referred to our previous study [21]. An equal volume of
deionized water was mixed with the separated egg white, and then the pH was adjusted to
2.0 with HCl (1 M). After undergoing magnetic stirring for a duration of 3 h, the suspension
was subsequently subjected to centrifugation at 8000× g for a period of 15 min. Egg
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white protein supernatant was collected, and 31 mg/mL Car was added. The mixture was
agitated at 25 ◦C for a span of 3 h within a water bath maintained at 90 ◦C for 30 min, after
which it was promptly cooled to 4 ◦C by immersing it in an ice bath. OVA-Car gel at pH 2
(OCG-2) formed after refrigeration overnight at 4 ◦C. The gels were disintegrated through
stirring and homogenized with the aid of an ultrasonic processor to achieve uniform
OVA-Car gel nanoparticles at a pH level of 2 (OCGn-2).

4.3. Effect of Environmental Stress on the Stability of OCGn-2
4.3.1. Effect of Thermal Treatment

The samples were dissolved in an equal volume of phosphate buffer at a pH of 2.
The sample solutions were heated at different temperatures (55, 65, 75, 85, and 95 ◦C) for
15 min. The treated samples were then cooled in a water bath and diluted to 0.5 mg/mL to
scale the physical stability. In addition, the particle size, analyzed through the procedure in
Section 4.5, was used to denote the stability of the solution [40].

4.3.2. Effect of Ionic Strength

The samples were dissolved in an equal volume of phosphate buffer at a pH of 2.
The sample solutions were diluted with different concentrations (10, 50, 90, 130, and
170 mmol/L) of NaCl solutions and stored (4 ◦C). The particle size, analyzed by the proce-
dure in Section 4.5, was used to express the stability of the solution.

4.4. Transmission Electron Microscopy (TEM) Analysis

The morphology analysis of nanoparticles by TEM was conducted in OCGn-2 with a
Tecnai 12 (Philips, Amsterdam, The Netherlands) operated at 100 kV. The sample previously
diluted in ultrapure water was placed on carbon-coated copper grids and then observed
under the microscope after drying.

4.5. Particle Size and Polydispersity Index (PDI) Determination

Dynamic light scattering was employed for the determination of particle size distribu-
tion utilizing the Zetasizer Nano Es90 instrument (Malvern Instruments, Worcestershire,
UK). Approximately 1 mL of the test samples was placed in a Marvin measuring chamber,
whose temperature was set to 25 ◦C.

4.6. In Vitro Release Studies

A certain amount of OCGn-2 was incubated in a test tube containing 3 mL of pH 2
phosphate buffer at 25 ◦C, and samples were taken for centrifugation at specific time points.
The total cumulative amount of Car released was measured by a UV–Vis spectrophotometer
scan (UV-2550, Shimadzu, Kyoto, Japan) at 275 nm, and the volume of the released medium
(mL) was converted into the released amount (g) [41].

The mechanism of Car release was studied using Equation (1):

Mt

M0
= ktn (1)

where Mt is the content of Car released in a certain period, M0 is the content of Car
encapsulated in the delivery system, t represents the release duration, k denotes the kinetic
constant governing the system, and n is a diffusional exponent used to determine the
release mechanism.

4.7. Application of Nanoparticles on Fresh Pork
4.7.1. Preparation of Fresh Pork Samples

The preparation of pork samples adhered to the methodology outlined by Wang et al. [9],
albeit with certain tailored adjustments. Upon the removal of discernible fat and con-
nective tissues, the pork loins were meticulously sectioned into diminutive segments of
2 cm × 2 cm × 2 cm (about 10 ± 1 g each). A total of 105 pork samples were randomly
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chosen and apportioned among seven distinct treatment cohorts. The formulation and
final effective concentration of prepared coating solutions used in each group were listed in
Table 2.

Table 2. The formulation and final effective concentration of different coating solutions.

Treatment Abbreviation Nanoparticle (mg/mL) OVA (mg/mL) Car (mg/mL)

untreated samples C 0 0 0
samples coated with OVA OVA 0 0.24 0

samples coated with a physical mixture of
OVA and Car Mix 0 0.24 0.16

samples coated with 1 MIC free Car solution 1MIC Car 0 0 0.39
samples coated with 2 MIC free Car solution 2MIC Car 0 0 0.78
samples coated with 1 MIC OCGn-2 solution 1MIC OCGn-2 0.40 0.24 0.16
samples coated with 2 MIC OCGn-2 solution 2MIC OCGn-2 0.80 0.48 0.32

The pork samples were fully submerged in the meticulously prepared coating solutions
for a 30 s. Subsequently, any surplus solution adhering to the surface of the pork samples
was eliminated through a 10 min air-drying process on the countertop. After that, pork
samples were, respectively, placed in the disposable sterile polystyrene tray and packed
into individual polyethylene self-seal bags (10 cm × 15 cm), and then stored at 4 ◦C. The
evaluation encompassed measurements of pH levels, weight loss, lipid oxidation, protein
oxidation, and the overall microbial count on days 0, 5, 10, 15, and 20.

4.7.2. pH Measurement

After the surface liquid was removed, the pork samples were homogenized and
centrifuged. The specimens were measured by an easy pH meter (PHS-3C, Shanghai,
China). The change in pH value of differently treated samples was measured at a specific
time interval (every 5 day) [42].

4.7.3. Weight Loss Test

To evaluate the availability of the nanoparticles in reducing myoserum loss, a weighing
method was used. Liquid on the pork samples surface was eliminated before measurement.
The weight loss of the pork samples can be calculated using Formula (2) as follows:

Weight loss (%) =
m0 −mn

m0
× 100% (2)

where m0 is the mass of the untreated fresh pork sample, and mn is the mass of the pork
sample on day n during the storage period.

4.7.4. Color Measurement

The colors of the pork samples were determined by a color sensor (SC-80C Automatic
Color Sensor; FTC, Stirling, VA, USA), following the method of [43]. The values were
determined based on color parameters, including L* (representing lightness), a* (indicating
redness), and b* (signifying yellowness).

4.7.5. Lipid Oxidation

Thiobarbituric acid reactive substances (TBARS) assay was used to determine the
lipid oxidation of pork samples, designed by [44] with some modification. In brief, 10 g
of the pork samples were blended with 20 mL of trichloroacetic acid (TCA, 7.5%, w/v) for
1 h, after which malonaldehyde (MDA) was extracted. A volume of five milliliters of the
clarified supernatant was combined with an equivalent volume of 0.02 M 2-thiobarbituric
acid (TBA) and subjected to a 30 min incubation within a vigorously boiling water bath.
Subsequent to cooling in an ice-water bath, the absorbance of the samples was quantified at
530 nm using a UV–Vis spectrophotometer scan (UV-2550, Shimadzu, Japan). A standard
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curve for 1,1,3,3-tetraethoxypropane was established to ascertain the MDA content. The
outcomes were presented in milligrams of MDA (equivalent) per kilogram of the sample.

4.7.6. Protein Oxidation

The assessment of protein oxidation was carried out employing the 5,5′-dithiobis-
(2-nitrobenzoic acid) (DTNB) method, raised by Ellman (1959) and modified by [45]. In
brief, the pork sample (2 g) was homogenized in 25 mL of 5% (w/v) sodium dodecylsulfate
(SDS) in 0.1 M phosphate-buffered saline (pH 8.0), and then 0.5 mL filtered aliquot was
mixed with 0.5 mL 10 mM DTNB in 0.1 M Tris buffer (pH 8.0). Following light-protected
incubation at 25 ◦C for a duration of 30 min, the sample absorbance was quantified at
412 nm using a spectrophotometer, and the results were converted into the expression of
nanomoles of thiol per milligram of protein.

4.7.7. Microbiological Analysis

The samples from different treatment groups (each 1 g) were completely homogenized
with sterile normal saline (each 9 mL) and serially diluted. The total viable count (TVC)
was ascertained through the plate counting technique, involving an incubation at 37 ◦C for
a duration of 48 h. The data were presented as the logarithm of colony-forming units per
gram (log cfu/g).

4.7.8. Statistical Analysis

Each experiment was performed in triplicate, and the results were provided as the
mean ± standard deviation. In order to determine the significance of differences between
the means, a thorough statistical analysis was conducted using SPSS 19.0 software. Statisti-
cal significance was deemed to be achieved at a threshold of p < 0.05.
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