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Abstract: One of the most persistent issues affecting people worldwide is water contamination
due to the indiscriminate disposal of pollutants, causing severe environmental problems. Dyes are
among the most harmful contaminants because of their high chemical stability and consequently
difficult degradation. To remove contaminants from water, adsorption is the most widely used
and effective method. In this work, we recall the results already published about the synthesis, the
characterization and the use of porous graphene-oxide–chitosan aerogels as a sorbent material. Those
systems, prepared by mixing GO sheets and CS chains, using APS as a cross-linking agent, and by
further lyophilization, were further characterized using nano-computed tomography, supplying more
understanding about their micro and nano-structure. Their sorbent ability has been investigated
also by the study of their isotherm of adsorption of two different anionic dyes: Indigo Carmine
and Cibacron Brilliant Yellow. Those analyses confirmed the potentialities of the aerogels and their
affinity for those anionic dyes. Moreover, the possibility of regenerating and reusing the material was
evaluated as a key aspect for applications of this kind. The treatment with NaOH, to promote the
desorption of adsorbed dyes, and subsequent washing with HCl, to re-protonate the system, ensured
the regeneration of the gels and their use in multiple cycles of adsorption with the selected water
contaminants.

Keywords: aerogels; chitosan; graphene oxide; regeneration; wastewater treatment

1. Introduction

Aerogels are generally defined as crosslinked materials characterized by softness and
exceptional porosity obtained through freeze drying from a physical gel precursor [1]. They
are stretchable, large in specific area, have great thermal and electrical properties and have
the ability to detect and react to external stimuli [2,3]. Depending on the nature of their
components, aerogels can be biocompatible and have applications in the biomedical field
and as sensors, adsorbent materials and catalyst supports [4–7]. Moreover, in the last years,
many researchers have focused on graphene and graphene-oxide-based systems thanks to
the features and characteristics of these molecules. Specifically, graphene oxide, an oxidized
form of graphene made of a single monomolecular layer with various oxygen functional
groups, presents great elasticity and flexibility, resistance to mechanical stimuli, adsorbent
features and unique surface chemistry, making this molecule an ideal candidate for aerogels
synthesis [8,9]. Due to this, many different systems of this kind have been designed in recent
years for environmental applications and for wastewater treatment, and valuable strategies
are already available in literature [10–15]. A notable example is represented by the synthesis
of doped reduced-graphene-oxide aerogels developed by controlled self-assembly tactics
and applied to remove radioactive cesium from effluent [16]. The three-dimensional layered
structure ensures for the system excellent mechanical strength and a large specific surface
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area. It also facilitates exposure of adsorption sites, which promotes the adsorption of
contaminant ions—in this case, Cs+. The composite materials exhibited excellent adsorption
performances and Cs+ selectivity: the maximum adsorption capacity was 227 mg/g, and the
removal rate was more than 90%. Another example of a functionalized aerogel for efficient
and selective removal of ions is represented by graphene oxide (GO)–montmorillonite
(MMT) composite systems [17]. This framework has controllable slit-shaped pores, and
thanks to the combination of MMT with GO, great selectivity for hydrated copper ions
in wastewater systems is ensured. Great removal efficiency, excellent selectivity and
regeneration for up to eight cycles confirmed the effectiveness of these devices.

Similarly, in 2021, Shadkam et al. proposed the synthesis and applications of reduced-
graphene-oxide–cellulose-nanocrystal hybrid aerogels [18]. The combination of those
reagents ensured reinforcement in the framework of the system, which is always a desired
feature for devices of this kind and applications, and obviously, excellent adsorbent ca-
pacity was reported. Moreover, the adsorption behavior of the material was described by
Langmuir isotherms with a maximum adsorption capacity of 454 mg/g for the removal of
toluene from aqueous media, which is an excellent performance for this kind of application.

The quick overview above shows the great variety of graphene-oxide-based systems
available in the literature and their versatility in the adsorption of contaminants. In
this context, a very interesting strategy for synthetizing effective composite materials for
wastewater treatment is represented by the combination of graphene oxide and chitosan
(CS) chains [19,20]. This strategy is very interesting, since it merges the excellent properties
of chitosan with those of GO. The final systems have great mechanical resistance, excellent
adsorbent properties thanks to their porosity and a combination of the negative charges of
GO and the positive charges of CS. A clear example of such a system was presented by Shi
et al. They proposed the synthesis of composite aerogels of these two molecules, prepared
with a 1–2 ratio between GO and CS [21]. The system showed efficient adsorption ability
with methyl orange (MO) and methylene blue (MB) from water and pH responsive behavior
for single-dye adsorption, tending to adsorb MO at a low pH and MB at a high pH because
of hydrophobic adsorption and electrostatic interactions between the framework and the
external environment. Similarly, systems of this kind can also be designed as microdevices.
A notable example of this is represented by composite aerogel microspheres of chitosan
and graphene oxide fabricated via CO2 supercritical drying, which displayed excellent
performance for bilirubin removal [22]. Those systems showed good mechanical resistance,
great surface area (175 m2/g) and a pore-size distribution of 20–40 nm. Large adsorption
capacity was observed (178 mg/g within 2 h), and the Freundlich model, ascribed to
multilayer adsorption, fitted well the adsorption isotherm.

As presented above, various systems based on graphene oxide are employed in
wastewater treatment, and their combination with chitosan ensures effective devices. In
this work, we propose for the first time the realization of GO-CS aerogels with controlled
porosity and the use of ammonium persulfate (APS) as a crosslinking agent, depending on
dyes’ adsorption and regeneration. Moreover, the adsorption isotherm for the adsorbent
was investigated, together with the possibility of regenerating it in an efficient, solvent free
and not-expensive way to reduce the adsorbent required and have a lower environmental
impact [23–25].

2. Results and Discussion
2.1. Aerogel Network Formation

The network of the synthetized material was obtained through the cross-linking be-
tween graphene oxide and chitosan chains. Graphene oxide can be dispersed in water
because of the electrostatic repulsion between their sheets, and the presence of chitosan in
the solution can lead to a physical change in the system [26–28]. Chitosan is a positively-
charged polymer that is able to balance the negative charges of graphene and strongly
attract its molecules. These electrostatic interactions determine the hydrogen bonding and
the formation of the precursor hydrogels. The chemical characteristics of the system were
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studied by working with ATR-FTIR and are presented in the Supplementary Materials [23],
where the key features of the molecules of chitosan and graphene oxide can be detected
in the spectra of GO-CS aerogels with few modifications in parameters, such as intensity
or a shift towards a higher wavenumber, due to the linkage between the polymer and the
graphene oxide [29]. In Figure 1, we report the schematization of the synthetic procedure
together with the SEM analysis; additional SEM analysis is available in Figure S2 (Supple-
mentary materials). From SEM images, it is possible to observe the 3D porous structure
with pore sizes in the order of microns together with its uniformity, underlining the efficient
mixing procedure used.
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Figure 1. (A) Schematization of the synthetic procedure for GO/CS AG formation. (B) SEM images
at two different magnifications, as indicated.

Here we continue the discussion by introducing the nano-computed tomography
(nano-CT) as an effective tool to get additional information on the framework of the gel.
Nano-CT is an innovative high-resolution cross-sectional imaging technique using X-rays
to create cross-sections starting from a construction object. We built a virtual model of
the specimen with the advantage of not destroying the original sample [30,31]. Based
on the application of a transmission-target X-ray tube, the focal spot size can be reduced
to diameters less than 400 nm. Thanks to specific detectors and examination protocols,
a superior spatial resolution of up to 400 nm can be achieved, exceeding the resolution
capacity of typical micro-CT systems. In Figure 2, the results of nano-CT for the graphene-
oxide–chitosan aerogels are reported.

The structure appeared homogeneous, and the analysis demonstrated a highly porous
system, almost like a foam. The pores were in the scale of 25–75 µm, with irregular shape
and no directional bias on them, as shown in the 2D map. The total porosity was found
to be more than 96%, and almost all of it was classified as open porosity—interconnected
pores; the structure thickness was estimated to be in the order of 3 µm. Moreover, we
considered the final application of the system to be as an adsorbent material, so another
important parameter is the pore connectivity, which was quantified as a function of the
minimum pore diameter considered. This led to a connectivity density of the total pore
space of 3 × 10−5 µm−3.
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Figure 2. Nano-CT images of the GO-CS aerogel. On the top left, the 3D reconstruction of the gel is
reported, and in the other panels, the reconstruction, as a 2D map, of the internal porosity paths from
different angles is visible.

Lastly, a parameter that is configured more in the imaging field is the structure separa-
tion. In fact, it represents the thickness of the space by the binarization within the image.
Values of this factor can be calculated from 2D images. In this case, we obtained 72 µm with
structure linear density of 0.01 µm−1. The results obtained with nano-CT confirmed and
expanded the outcomes obtained with scanning electron microscopy already discussed.
The porous nature of the framework of the aerogel was verified, along with the homoge-
nous distribution of the pores. Moreover, the additional details presented regarding the
features of the system, the pore distribution and their connectivity, corroborated the use of
the materials for the selected application [32]. In Table S1, in the Supplementary Materials,
a complete dataset of the parameters obtained from the nano-CT is reported.

2.2. Adsorption Tests and Isotherm Study

The adsorption kinetic tests were conducted as described in the previous section,
with the solutions with different concentrations. The collected data were plotted as time-
dependent adsorption curves—sorption capacity (q) versus time—and as percentage of
dye removed versus time. In all the considered cases, fast kinetics of adsorption were
observed, and the efficacy of those systems was confirmed. The obtained results are
consistent with the ones already published, and therefore, we are not reporting them here
again. Next, we can deepen the discussion about the adsorption ability of the graphene-
oxide–chitosan aerogels by investigating the isotherm of the adsorption of the system. The
tests were conducted as described in the Materials and Methods section, and we modeled
the data using the Langmuir equation. The Langmuir adsorption isotherm can model the
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equilibrium between an adsorbate and an adsorbent system, where the adsorption is limited
to one molecular layer, while considering the surface as homogeneous and assuming that
there is no lateral interaction between adjacent adsorbed molecules when a single molecule
occupies a single surface site [33,34]. Quite accurate modeling was obtained using the
Langmuir equation, and the results are reported in the Figure 3.
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Figure 3. Plot of the collected data and experimental model for the isotherm curve of (A) CBY and
(B) IC. Blue dots are the experimental data, and the orange curve is the Langmuir model. Data are
presented as means ± standard deviations.

In both cases, the dataset of the dyes was fitted with good accuracy by the model
(coefficient of determination higher than 0.9), suggesting that monolayers of CBY and IC
dye molecules were adsorbed uniformly on the sorption site. Moreover, the steep slope of
the first portion of each curve, i.e., the high sorption capacity (qe) with a low concentration
of the pollutant, confirmed the results of the kinetic sorption test. The maximum value of
the adsorption capacity Qmax and the value of the Langmuir constant K are reported in
Table 1.

Table 1. Parameters of the Langmuir isotherm model for CBY and IC.

Dye Qmax [mg/g] K [L/mg]

IC 457.67 0.11

CBY 748.78 0.07

From the data presented above, it can be observed that the value of the Langmuir
constant of the model obtained for the IC (K = 0.11 L/mg) is higher than the one resulting
from the curve of the CBY (K = 0.07 L/g), highlighting a higher sorbent-solute affinity for IC
than CBY. Regarding saturation, the dyes reached approximately the same value in moles,
and this could be explained by their similar hydrodynamic radii [35]. In Table 2, we report
a comparison among the adsorption capacities of various adsorbent materials described in
the literature which are employed in the adsorption of IC and CBY. The GO/CS aerogel is
for certain among the most interesting materials for this application.
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Table 2. Performances obtained in this work compared with the literature.

Material Dyes Adsorbed Maximum Adsorption
Capacity [mg/g] Reference Paper

GO/CS AG Indigo Carmine 457.7 This paper

Adsorbent material based corn
stover and paper waste Indigo Carmine 148.8 [36]

Mesoporous Mg/Fe layered double
hydroxide nanoparticles Indigo Carmine 62.5 (acid conditions) [37]

Bi2O3 doped MGO Indigo Carmine 126.6 [38]

GO/CS AG Cibacron Brilliant Yellow 748.8 This paper

Functionalized chitosan beads Cibacron Brilliant Yellow 179.5 [39]

Nanocarbons Cibacron Brilliant Yellow 300 [40]

Activated commercial carbons Cibacron Brilliant Yellow 527 [40]

2.3. Desorption and Reusability Test

To further study the potential of GO/CS aerogels as sorbent materials, the possibility
of regenerating and re-using the system after initial sorption was evaluated. The reusability
of the material is a pivotal aspect in applications of this kind, since it reduces the need
for new adsorbent and the problem of disposal of the used one, reducing the overall
environmental impact [41]. The reusability of GO/CS aerogels was assessed by conducting
four cycles of adsorption–desorption in which lower volumes of de-sorbent solution were
used with respect to the treated solution (approximately 4–5 times). As described in the
previous section, after each cycle of adsorption, the used samples were treated with NaOH
0.1 N to promote the desorption of the dyes. In fact, given the presence of sulphonate
groups, they can be easily dissolved in an alkaline environment, promoting their desorption
from the aerogel framework [42]. This treatment induces a loss of efficacy in the absorbing
capacity of the material towards the dyes studied due to the modification of the electrostatic
properties of the system induced by NaOH [43]. Due to this, the samples were treated
with HCl 0.01 N to re-protonate its structure, regenerating its sorption capacity. After the
complete regeneration procedure, the material is ready to be reused. In Figure 4, the results
of the regeneration procedure are reported as normalized adsorption (%) versus the cycle
of adsorption for the two dyes, together with the schematization of the regeneration and
re-use procedure. In both cases, it is possible to see that after the first cycle of adsorption–in
which more than 90% of IC was removed and more than 80% of CBY was removed–the
sorbent ability of the aerogel decreased such that around 60% of dye was removed in the
second cycle of adsorption in both cases. During the third cycle of adsorption, the most
important differences between the two dyes appeared: 45% of IC was adsorbed in the third
cycle and 40% in the fourth cycle; for CBY, 20% was removed in the third cycle, and very
low efficiency was detected during the last cycle.

The decrease in the adsorption capacity, in both cases, has been related to the partial
collapse of the internal three-dimensional network of the aerogels and to incomplete
desorption and regeneration between the various cycles. This phenomenon was much
more evident for CBY; this can be explained by considering that the regeneration procedure
is probably more effective with IC due to its higher affinity for the solvent employed
for the regeneration. Moreover, some loss of the sample in the form of small fragments
was observed during each adsorption and regeneration cycles due to the mechanical and
physical stress to which the gel was subjected during the adsorption and regeneration [44].
This occurrence more significant with CBY. This can be explained by considering that the
absorption of this dye in the aerogel causes a greater hindrance to the system, which results
in a decrease in the mechanical properties of the framework and the subsequent greater
loss of material during the tests with the shaker [45].
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3. Conclusions

In this work, we investigated the use of graphene-oxide–chitosan aerogels—in partic-
ular, their adsorbent properties. We confirmed the efficacy of those devices and modeled
an aerogel’s isotherm of adsorption for two different dyes using the Langmuir model. This
allowed us also to gain more understanding about the affinity of the framework with the
employed water contaminants. Moreover, an interesting characterization performed with
nano-computed tomography was presented, showing in detail the three-dimensional inner
framework of the system and the features of its controlled porosity. Finally, the reusability
of the aerogel was demonstrated by performing a desorption and regeneration procedure
using NaOH and HCl, without using tensides, guaranteeing multiple cycles of adsorption
with the same sample. This work underlined that aerogels are ideal candidates in this kind
of application thanks to their high sorbent ability, high surface area, soft nature, responsive
behavior, reusability and good mechanical resistance.

4. Materials and Methods
4.1. Materials

A dispersion of graphene oxide (10 mg/mL) was obtained from GOgraphene, William
Blyte Limited (Harlow, Essex, England). Chitosan (at low molecular weight) was bought
from Sigma-Aldrich (Sigma-Aldrich Chemie GmbH, Deisenhofem, Germany). All other
chemicals were purchased from Sigma-Aldrich (Sigma-Aldrich Chemie GmbH, Deisen-
hofem, Germany). The materials were used as received.
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4.2. Synthesis of Graphene-Oxide–Chitosan Composite Aerogels

As explained, aerogels are solid porous materials that, though a sol–gel process, can
form a three-dimensional network with high porosity of precursors that are different
in nature (inorganic, organic, or hybrid). Here, chitosan–graphene-oxide aerogels were
synthetized using an acidic medium, as already described [23]. Briefly, chitosan was
dissolved in 2 mL of aqueous acetic acid (2.5% v/v), and after 2 h the aqueous dispersion of
graphene oxide was added. Then, ammonium persulfate, the oxidant agent, was dissolved
in water (0.5 mL) and then added to the system to favor the formation of the 3D network.
The hydrogels were frozen at −20 ◦C and then lyophilized to obtain final aerogels. The
ratio 1:1.7 between graphene and chitosan was employed.

4.3. Characterization of Materials and Nano-Computed Tomography

The aerogels were characterized using scanning electron microscopy (SEM) in order
to investigate their inner framework. SEM analyses were obtained using a Zeiss Evo50
with EDS Bruker Quantax 200, and the aerogels were characterized with ATR analysis
(attenuated total reflection) using a FT-IR spectrometer from Agilent Technologies, the
Varian 640. Spectra were collected under a nitrogen atmosphere at room temperature in
the wavenumber range of 400–4000 cm−1, with an average of 64 repetitive scans. This was
necessary to guarantee a good signal-to-noise ratio together with ahigh reproducibility and
a resolution of 4 cm−1. Spectra are visible in previous papers [23].

The specimens were then analyzed in a nano-computed tomography device (SkyScan
2211 Multiscale X-ray Nano_CY System, Bruker micro-CT, Kontich, Belgium) using a
20–190 kV tungsten X-ray source and a dual detection system: an 11-megapixel cooled
4032 × 2670 pixel CCD-camera and a 3-megapixel 1920 × 1536 pixel CMOS flat panel.

The samples were scanned at 38 kV, 370 µA and 1400 ms. The scans were taken
over 180◦ with a rotation step of 0.14◦ and a voxel size of 800 nm using the CCD detector.
Projections were reconstructed using the system-provided software, NRecon (version
1.7.4.6), and analyzed with CTAn (Bruker micro-CT, version 1.18.4.0).

pHPZC of aerogels was estimated using methods reported elsewhere [46,47]: the value
found was 7.85.

4.4. Adsorption Tests

The adsorption capacity of the aerogel was studied using an isotherm and kinetic sorp-
tion test that was carried out under dynamic conditions, using the shaker at 250–300 rpm
at room temperature (25 ◦C). Indigo Carmine (IC, MW = 466.35 g/mol, λmax = 610 nm) and
Cibacron Brilliant Yellow (CBY, MW = 831.02 g/mol, λmax = 402 nm) were employed as con-
taminants molecules to evaluate the sorbent ability of the aerogel. These organic molecules
are characterized by different molecular weights and different numbers of sulfonate groups
in their chemical structure, as reported in Figure 5. Indigo Carmine (Figure 5A and Cibacron
Brilliant Yellow (Figure 5B) dyes have been widely used in various industrial fields, such
as the textile industry, even though they have been considered toxic for humans, pigs and
rats. Due to their high toxicity, wastes that contain these compounds have to be treated to
minimize or eliminate their toxic effects.

The kinetic sorption tests were performed as already described in our previous paper.
Very briefly, the lyophilized hydrogels were immersed inside a vial containing the solutions
of the dyes at desired concentration (100 mg/L and 350 mg/L) with a ratio between the
mass of adsorbent material and the dye’s solution volume of 1.33 mg/mL.
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At fixed time points, the sampling was performed, each time taking 1 mL of the
solution, which was then put back again in the system after the analysis. The mass of the
adsorbed dye per unit of mass of adsorbent material, defined sorption capacity q, and the
percentage of dye removal, were evaluated at each time through Equations (1) and (2).

q =
m0 − mt

mHG
(1)

% dye removed =
m0 − mt

m0
(2)

where m0 and mt are the masses in mg of the dye pollutant in the volume of solution at the
beginning and at time t, respectively; and mHG is the mass in g of the lyophilized hydrogel.
Then, isotherm tests were carried out with different concentrations for each dye using a ratio
between the mass of the adsorbent material and the volume of the solution of 0.8 mg/mL
and leaving the system in this condition for a long time (4 h) to reach equilibrium. The
concentration range of 0–300 mg/L was selected to collect the data for the isotherm with
CBY, and 0–150 mg/L was employed for IC. The data were modeled via non-linearized
methods, and the Langmuir model was the one that best fitted the considered statistic.
The Langmuir model, which assumes that the sorbent is coated by a monolayer of the
adsorbate, correlates the sorption capacity of the sorbent material (qe), calculated as mg of
pollutants adsorbed per g of sorbent material, with the concentration of the pollutant in the
solution at the equilibrium (Ce) as reported in Equation (3).

qe =
QmaxKCe

1 + KCe
(3)

Qmax is maximum adsorption capacity (mg/g), and K is the Langmuir isotherm con-
stant or affinity constant (dm3/mg).

4.5. Desorption and Reusability Test

Desorption and reusability tests were conducted to evaluate the possibility of reusing
the aerogels. The used samples were filtered on Buchner and washed with alkaline solvent
(NaOH, 0.1 N) to release the dye adsorbed from the material. Then, the aerogels were
reactivated in an acidic medium (HCl, 0.01 N) to re-protonate the framework of the material,
and finally, the reusability tests were conducted on the regenerated sponges, always using
the same concentration of 100 mg/mL.

4.6. Spectroscopy Analysis

Quantitative spectrophotometric analysis allows one to quantify the concentrations
of substances through the measurement of the absorption of UV-vis radiation by the
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molecules [48–50]. The solution that should be analyzed absorbs incident radiation with a
selected wavelength equal to the characteristic λmax, obtained from the UV-vis spectrum of
the considered dye, and a final detector measures the intensity of the radiation exiting the
sample. As is well-known, the absorbance of a sample and its concentration are linearly
correlated through the Lambert–Beer law, reported in Equation (4), which is valid only at
low concentrations.

A = ε C l (4)

l is the optical path in cm negligible for the employed cuvette; ε is the molar extinction
coefficient characteristic of each substance and represents the absorbance of the sample at a
unitary concentration and a unitary optical path; and C is the molar concentration of the
sample.

4.7. Statistical Analysis

Experimental data were analyzed using analysis of variance (ANOVA). Statistical
significance was set to p value < 0.05. The results are presented as mean value ± standard
deviation.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/gels9020110/s1. Figure S1: SEM images of GO/CS AGs with the respective magnifications.
Figure S2: Calibration curve for Indigo Carmine. Figure S3: Calibration curve for Cibacron Brilliant
Yellow. Figure S4: ATR FT-IR spectrum of GO-CS aerogels [51]. Table S1: Numerical values of the
parameters obtained through the nano-computed tomography.
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