Crystallization of SAPO-11 Molecular Sieves Prepared from Silicoaluminophosphate Gels Using Boehmites with Different Properties
Abstract
:1. Introduction
2. Results and Discussion
3. Conclusions
4. Materials and Methods
4.1. Preparation of Silicoaluminophosphate Gels
4.2. Crystallization of Silicoaluminophosphate Molecular Sieves
4.3. Characterization
4.4. Method for Studying the Catalytic Properties of Samples in the Dimerization Process of α-Methylstyrene
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Potter, M.E. Down the microporous rabbit hole of silicoaluminophosphates: Recent developments on synthesis, characterization, and catalytic applications. ACS Catal. 2020, 10, 9758–9789. [Google Scholar] [CrossRef]
- Tian, P.; Wei, Y.; Ye, M.; Liu, Z. Methanol to olefins (MTO): From fundamentals to commercialization. ACS Catal. 2015, 5, 1922–1938. [Google Scholar] [CrossRef]
- Miller, S.J. Studies on Wax Isomerization for Lubes and Fuels. In Studies in Surface Science and Catalysis, 1st ed.; Weitkamp, J., Karge, H.G., Pfeifer, H., Hölderich, W., Eds.; Elsevier: Garmisch-Partenkirchen, Germany, 1994; Volume 84, pp. 2319–2326. [Google Scholar] [CrossRef]
- Yadav, R.; Sakthivel, A. Silicoaluminophosphate molecular sieves as potential catalysts for hydroisomerization of alkanes and alkenes. Appl. Catal. A Gen. 2014, 481, 143–160. [Google Scholar] [CrossRef]
- Lok, B.M.; Messina, C.A.; Patton, R.L.; Gajek, R.T.; Cannan, T.R.; Flanigen, E.M. Crystalline Silicoaluminophosphates. US Patent No. 4440871, 3 April 1984. [Google Scholar]
- Database of Zeolite Structure. Available online: http://www.iza-structure.org/databases (accessed on 15 December 2022).
- Barthomeuf, D. Topological model for the compared acidity of SAPOs and SiAl zeolites. Zeolites 1994, 14, 394–401. [Google Scholar] [CrossRef]
- Wang, W.; Liu, C.J.; Wu, W. Bifunctional catalysts for the hydroisomerization of n-alkanes: The effects of metal–acid balance and textural structure. Catal. Sci. Technol. 2019, 9, 4162–4187. [Google Scholar] [CrossRef]
- Deldari, H. Suitable catalysts for hydroisomerization of long-chain normal paraffins. Appl. Catal. A Gen. 2005, 293, 1–10. [Google Scholar] [CrossRef]
- Singh, P.S.; Bandyopadhyay, R.; Hegde, S.G.; Rao, B.S. Vapour phase beckmann rearrangement of cyclohexanone oxime over SAPO-11 molecular sieve. Appl. Catal. A Gen. 1996, 136, 249–263. [Google Scholar] [CrossRef]
- Meriaudeau, P.; Tuan, A.V.; Hung, N.L.; Szabo, G. Skeletal isomerisation of 1-butene on 10-member ring zeolites or on 10-member ring silico-alumino-phosphate microporous materials. Catal. Lett. 1997, 47, 71–72. [Google Scholar] [CrossRef]
- Zhu, Z.; Chen, Q.; Xie, Z.; Yang, W.; Li, C. The roles of acidity and structure of zeolite for catalyzing toluene alkylation with methanol to xylene. Micropor. Mesopor. Mater. 2006, 88, 16–21. [Google Scholar] [CrossRef]
- Wang, X.; Guo, F.; Wei, X.; Liu, Z.; Zhang, W.; Guo, S.; Zhao, L. The catalytic performance of methylation of naphthalene with methanol over SAPO-11 zeolites synthesized with different Si content. Korean J. Chem. Eng. 2016, 33, 2034–2041. [Google Scholar] [CrossRef]
- Bértolo, R.; Silva, J.M.; Ribeiro, M.F.; Martins, A.; Fernandes, A. Microwave synthesis of SAPO-11 materials for long chain n-alkanes hydroisomerization: Effect of physical parameters and chemical gel composition. Appl. Catal. A Gen. 2017, 542, 28–37. [Google Scholar] [CrossRef]
- Yang, Z.; Li, J.; Liu, Y.; Liu, C. Effect of silicon precursor on silicon incorporation in SAPO-11 and their catalytic performance for hydroisomerization of n-octane on Pt-based catalysts. J. Energy Chem. 2017, 26, 688–694. [Google Scholar] [CrossRef]
- Liu, P.; Ren, J.; Sun, Y. Synthesis, characterization and catalytic properties of SAPO-11 with high silicon dispersion. Catal. Commun. 2008, 9, 1804–1809. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, W.; Guo, S.; Zhao, L.; Xiang, H. Optimization of the synthesis of SAPO-11 for the methylation of naphthalene with methanol by varying templates and template content. J. Braz. Chem. Soc. 2013, 24, 1180–1187. [Google Scholar] [CrossRef]
- Fernandes, A.; Ribeiro, F.; Lourenço, J.; Gabelica, Z. An elegant way to increase acidity in SAPOs: Use of methylamine as co-template during synthesis. In Studies in Surface Science and Catalysis, 1st ed.; Gédéon, A., Babonneau, M.F., Eds.; Elsevier: Paris, France, 2008; Volume 174, pp. 281–284. [Google Scholar] [CrossRef]
- Liu, P.; Ren, J.; Sun, Y. Influence of template on Si distribution of SAPO-11 and their performance for n-paraffin isomerization. Micropor. Mesopor. Mater. 2008, 114, 365–372. [Google Scholar] [CrossRef]
- Liu, P.; Ren, J.; Sun, Y. Acidity and isomerization activity of SAPO-11 synthesized by an improved hydrothermal method. Chin. J. Catal. 2008, 29, 379–384. [Google Scholar] [CrossRef]
- Lyu, Y.; Liu, Y.; He, X.; Xu, L.; Liu, X.; Yan, Z. The regulation of Si distribution and surface acidity of SAPO-11 molecular sieve. Appl. Surf. Sci. 2018, 453, 350–357. [Google Scholar] [CrossRef]
- Wang, Z.; Tian, Z.; Teng, F.; Wen, G.; Xu, Y.; Xu, Z.; Lin, L. Hydroisomerization of long-chain alkane over Pt/SAPO-11 catalysts synthesized from nonaqueous media. Catal. Lett. 2005, 103, 109–116. [Google Scholar] [CrossRef]
- Blasco, T.; Chica, A.; Corma, A.; Murphy, W.J.; Agúndez-Rodríguez, J.; Pérez-Pariente, J. Changing the Si distribution in SAPO-11 by synthesis with surfactants improves the hydroisomerization/dewaxing properties. J. Catal. 2006, 242, 153–161. [Google Scholar] [CrossRef]
- Li, L.; Shen, K.; Huang, X.; Lin, Y.; Liu, Y. SAPO-11 with preferential growth along the a-direction as an improved active catalyst in long-alkane isomerization reaction. Micropor. Mesopor. Mater. 2021, 313, 110827. [Google Scholar] [CrossRef]
- Agliullin, M.R.; Kutepov, B.I.; Ostroumova, V.A.; Maximov, A.L. Silicoaluminophosphate Molecular Sieves SAPO-11 and SAPO-41: Synthesis, Properties, and Applications for Hydroisomerization of C16+ n-Paraffins. Part 1: Current State of Research on SAPO-11 and SAPO-41 Synthesis (A Review). Pet. Chem. 2021, 61, 836–851. [Google Scholar] [CrossRef]
- Mukhamed’yarova, A.N.; Gareev, B.I.; Nurgaliev, D.K.; Aliev, F.A.; Vakhin, A.V. A Review on the Role of Amorphous Aluminum Compounds in Catalysis: Avenues of Investigation and Potential Application in Petrochemistry and Oil Refining. Processes 2021, 9, 1811. [Google Scholar] [CrossRef]
- López, C.M.; Escobar, V.; Arcos, M.E.; De Nobrega, L.; Yánez, F.; Garcia, L.V. Synthesis, characterization and catalytic behaviour of SAPO-11 obtained at low crystallization times and with low organic agent content. Catal. Today 2008, 133, 120–128. [Google Scholar] [CrossRef]
- Alfonzo, M.; Goldwasser, J.; López, C.M.; Machado, F.J.; Matjushin, M.; Méndez, B.; de Agudelo, M.R. Effect of the synthesis conditions on the crystallinity and surface acidity of SAPO-11. J. Mol. Catal. A Chem. 1995, 98, 35–48. [Google Scholar] [CrossRef]
- Agliullin, M.R.; Yakovenko, R.E.; Kolyagin, Y.G.; Serebrennikov, D.V.; Vildanov, F.S.; Prosochkina, T.R.; Kutepov, B.I. Relation between Morphology and Porous Structure of SAPO-11 Molecular Sieves and Chemical and Phase Composition of Silicoaluminophosphate Gels. Gels 2022, 8, 142. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Xu, J.; Fan, F.; Guo, Q.; Tong, X.; Yan, W.; Xu, R. Molecular engineering of microporous crystals:(III) The influence of water content on the crystallization of microporous aluminophosphate AlPO4-11. Micropor. Mesopor. Mater. 2012, 147, 212–221. [Google Scholar] [CrossRef]
- Chen, B.; Huang, Y. Examining the self-assembly of microporous material AlPO4-11 by dry-gel conversion. J. Phys. Chem. C 2007, 111, 15236–15243. [Google Scholar] [CrossRef]
- Xu, R.; Zhang, W.; Xu, J.; Tian, Z.; Deng, F.; Han, X.; Bao, X. Multinuclear solid-state NMR studies on the formation mechanism of aluminophosphate molecular sieves in ionic liquids. J. Phys. Chem. C 2013, 117, 5848–5854. [Google Scholar] [CrossRef]
- Leofanti, G.; Padovan, M.; Tozzola, G.; Venturelli, B. Surface area and pore texture of catalysts. Catal. Today 1998, 41, 207–219. [Google Scholar] [CrossRef]
- Schwieger, W.; Machoke, A.G.; Weissenberger, T.; Inayat, A.; Selvam, T.; Klumpp, M.; Inayat, A. Hierarchy concepts: Classification and preparation strategies for zeolite containing materials with hierarchical porosity. Chem. Soc. Rev. 2016, 45, 3353–3376. [Google Scholar] [CrossRef]
- Tamura, M.; Shimizu, K.I.; Satsuma, A. Comprehensive IR study on acid/base properties of metal oxides. Appl. Catal. A Gen. 2012, 433, 135–145. [Google Scholar] [CrossRef]
- Agliullin, M.R.; Kolyagin, Y.G.; Serebrennikov, D.V.; Grigor’eva, N.G.; Dmitrenok, A.S.; Maistrenko, V.N.; Kutepov, B.I. Acid properties and morphology of SAPO-11 molecular sieve controled by silica source. Micropor. Mesopor. Mater. 2022, 338, 111962. [Google Scholar] [CrossRef]
- Grigor’eva, N.G.; Paukshtis, E.A.; Kutepov, B.I.; Galyautdinova, R.R.; Dzhemilev, U.M. Type Y zeolites in the dimerization reaction of alpha-methylstyrene. Petrol. Chem. 2005, 45, 419–425. [Google Scholar]
Boehmite | Gel Aging Temperature, °C | Gel Sample | Sample SAPO-11 |
---|---|---|---|
TR | 20 | SAPO-TR(20) | SAPO-11-TR(20) |
TR | 60 | SAPO-TR(60) | SAPO-11-TR(60) |
TR | 90 | SAPO-TR(90) | SAPO-11-TR(90) |
TR | 120 | SAPO-TR(120) | SAPO-11-TR(120) |
SB | 20 | SAPO-SB(20) | SAPO-11-SB(20) |
SB | 60 | SAPO-SB(60) | SAPO-11-SB(60) |
SB | 90 | SAPO-SB(90) | SAPO-11-SB(90) |
SB | 120 | SAPO-SB(120) | SAPO-11-SB(120) |
RP | 20 | SAPO-RP(20) | SAPO-11-RP(20) |
RP | 60 | SAPO-RP(60) | SAPO-11-RP(60) |
RP | 90 | SAPO-RP(90) | SAPO-11-RP(90) |
RP | 120 | SAPO-RP(120) | SAPO-11-RP(120) |
Sample | Gel Al2O3●P2O5●SiO2 | pH Index | Phase Composition |
---|---|---|---|
SAPO-TR(20) | 1.00●1.01●0.31 | 2.0 | Ph.DPA 1 + Bh 2 |
SAPO-TR(60) | 1.00●0.98●0.32 | 2.4 | Ph.DPA + Bh |
SAPO-TR(90) | 1.00●1.02●0.29 | 4.3 | Ph.DPA + AlPO4 × H2O |
SAPO-TR(120) | 1.00●1.00●0.30 | 6.6 | AlPO4 × 2H2O |
SAPO-SB(20) | 1.00●1.03●0.29 | 3.0 | Ph.DPA + Bh |
SAPO-SB(60) | 1.00●1.02●0.30 | 3.5 | Ph.DPA + Bh |
SAPO-SB(90) | 1.00●1.03●0.29 | 5.9 | Ph.DPA + AlPO4 × 2H2O |
SAPO-SB(120) | 1.00●1.01●0.31 | 7.3 | AlPO4 × 2H2O |
SAPO-RP(20) | 1.00●1.02●0.30 | 3.2 | Ph.DPA + Bh |
SAPO-RP(60) | 1.00●0.99●0.31 | 4.3 | Ph.DPA + Bh |
SAPO-RP(90) | 1.00●1.01●0.30 | 6.2 | Ph.DPA + AlPO4 × 2H2O |
SAPO-RP(120) | 1.00●0.98●0.30 | 7.8 | AlPO4 × 2H2O |
Sample | Crystal Sizes | Porous Structure | |||
---|---|---|---|---|---|
D001 1, nm | D010 2, nm | d020 3, Å | SBET 4, m2/g | Vmeso 5, cm3/g | |
TR | 21 | 11 | 6.05 | 152 | 0.54 |
SB | 16 | 6 | 6.14 | 236 | 0.64 |
PR | 13 | 3 | 6.25 | 340 | 0.88 |
Sample | Gel Al2O3●P2O5●SiO2 | Phase Composition | DR 1, % |
---|---|---|---|
SAPO-TR(20) | 1.00●1.00●0.13 | SAPO-11 + Tr 2 | - |
SAPO-TR(60) | 0.00●0.97●0.15 | SAPO-11 + Tr | - |
SAPO-TR(90) | 0.00●0.95●0.18 | SAPO-11 | 85 |
SAPO-TR(120) | 1.00●0.96●0.17 | SAPO-11 + Unknown phase | - |
SAPO-SB(20) | 1.00●0.99●0.14 | SAPO-11 + Tr | - |
SAPO-SB(60) | 0.00●0.98●0.17 | SAPO-11 + Tr | - |
SAPO-SB(90) | 0.00●0.96●0.22 | SAPO-11 | 95 |
SAPO-SB(120) | 1.00●0.97●0.19 | SAPO-11 | 97 |
SAPO-RP(20) | 1.00●0.99●0.15 | SAPO-11 + Tr | - |
SAPO-RP(60) | 0.00●0.97●0.16 | SAPO-11 + Tr | - |
SAPO-RP(90) | 0.00●0.95●0.20 | SAPO-11 | 94 |
SAPO-RP(120) | 1.00●0.96●0.21 | SAPO-11 | 96 |
Sample | SBET 1, m2/g | SEX 2, m2/g | Vmicro 3, cm3/g | Vmeso 4, cm3/g |
---|---|---|---|---|
SAPO-11TR(60) | 128 | 76 | 0.03 | 0.25 |
SAPO-11TR(90) | 192 | 94 | 0.05 | 0.30 |
SAPO-11SB(90) | 250 | 118 | 0.07 | 0.32 |
SAPO-11SB(120) | 240 | 113 | 0.07 | 0.18 |
SAPO-11RP(90) | 233 | 103 | 0.07 | 0.13 |
SAPO-11RP(120) | 247 | 117 | 0.07 | 0.25 |
Sample | Acidity (μmol/g) | ||
---|---|---|---|
BAS 1 | LAS 2 | Ʃ BAS+LAS 3 | |
SAPO-11TR(60) | 17 | 5 | 22 |
SAPO-11TR(90) | 37 | 7 | 44 |
SAPO-11SB(90) | 75 | 10 | 85 |
SAPO-11SB(120) | 97 | 12 | 109 |
SAPO-11RP(90) | 50 | 4 | 54 |
SAPO-11RP(120) | 88 | 7 | 95 |
Sample | Xa-MS 1, % | SI 2, % | SII 3, % | SIII 4, % | STri 5, % |
---|---|---|---|---|---|
SAPO-11TR(60) | 36.1 | 2.1 | 95.1 | 2.7 | 0.1 |
SAPO-11TR(90) | 44.5 | 2.6 | 94.2 | 3.0 | 0.2 |
SAPO-11SB(90) | 92.4 | 4.5 | 90.7 | 4.2 | 0.6 |
SAPO-11SB(120) | 75.2 | 3.8 | 92.2 | 3.5 | 0.5 |
SAPO-11RP(90) | 62.1 | 2.8 | 93.3 | 3.6 | 0.3 |
SAPO-11RP(120) | 88.0 | 4.6 | 91.2 | 3.7 | 0.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Agliullin, M.R.; Cherepanova, S.V.; Fayzullina, Z.R.; Serebrennikov, D.V.; Khalilov, L.M.; Prosochkina, T.R.; Kutepov, B.I. Crystallization of SAPO-11 Molecular Sieves Prepared from Silicoaluminophosphate Gels Using Boehmites with Different Properties. Gels 2023, 9, 123. https://doi.org/10.3390/gels9020123
Agliullin MR, Cherepanova SV, Fayzullina ZR, Serebrennikov DV, Khalilov LM, Prosochkina TR, Kutepov BI. Crystallization of SAPO-11 Molecular Sieves Prepared from Silicoaluminophosphate Gels Using Boehmites with Different Properties. Gels. 2023; 9(2):123. https://doi.org/10.3390/gels9020123
Chicago/Turabian StyleAgliullin, Marat R., Svetlana V. Cherepanova, Zulfiya R. Fayzullina, Dmitry V. Serebrennikov, Leonard M. Khalilov, Tatyana R. Prosochkina, and Boris I. Kutepov. 2023. "Crystallization of SAPO-11 Molecular Sieves Prepared from Silicoaluminophosphate Gels Using Boehmites with Different Properties" Gels 9, no. 2: 123. https://doi.org/10.3390/gels9020123
APA StyleAgliullin, M. R., Cherepanova, S. V., Fayzullina, Z. R., Serebrennikov, D. V., Khalilov, L. M., Prosochkina, T. R., & Kutepov, B. I. (2023). Crystallization of SAPO-11 Molecular Sieves Prepared from Silicoaluminophosphate Gels Using Boehmites with Different Properties. Gels, 9(2), 123. https://doi.org/10.3390/gels9020123