Xylan–Porphyrin Hydrogels as Light-Triggered Gram-Positive Antibacterial Agents
Abstract
:1. Introduction
2. Results and Discussion
2.1. Xylan-TCPP Hydrogels: Preparation and Characterization
2.2. Swelling Properties
2.3. Rheological Behavior of the Hydrogel
2.4. In Vitro Bacterial Photoinactivation
3. Conclusions
4. Materials and Methods
4.1. General Methods
4.2. Rheological Analysis
4.3. Chemical Synthesis
4.4. Swelling Behavior of Hydrogels
4.5. Microbial Cultures
4.6. Bacterial Photoinactivation
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Anas, A.; Sobhanan, J.; Sulfiya, K.M.; Jasmin, C.; Sreelakshmi, P.K.; Biju, V. Advances in photodynamic antimicrobial chemotherapy. J. Photochem. Photobiol. C Photochem. Rev. 2021, 49, 100452. [Google Scholar] [CrossRef]
- Sharma, S.K.; Dai, T.; Kharkwal, G.B.; Huang, Y.Y.; Huang, L.; De Arce, D.J.B.; Tegos, G.P.; Hamblin, R.M. Drug Discovery of Antimicrobial Photosensitizers Using Animal Models. Curr. Pharm. Des. 2011, 17, 1303–1319. [Google Scholar] [CrossRef]
- Alves, E.; Faustino, M.A.A.F.; Neves, M.G.P.M.S.; Cunha, A.; Tomé, J.; Almeida, A. An insight on bacterial cellular targets of photodynamic inactivation. Future Med. Chem. 2014, 6, 141–164. [Google Scholar] [CrossRef]
- Awad, M.M.; Tovmasyan, A.; Craik, J.D.; Batinic-Haberle, I.; Benov, L.T. Important cellular targets for antimicrobial photodynamic therapy. Appl. Microbiol. Biotechnol. 2016, 100, 7679–7688. [Google Scholar] [CrossRef]
- Vatansever, F.; de Melo, W.C.M.A.; Avci, P.; Vecchio, D.; Sadasivam, M.; Gupta, A.; Chandran, R.; Karimi, M.; Parizotto, N.A.; Yin, R.; et al. Antimicrobial strategies centered around reactive oxygen species—Bactericidal antibiotics, photodynamic therapy, and beyond. FEMS Microbiol. Rev. 2013, 37, 955–989. [Google Scholar] [CrossRef]
- Tavares, A.; Carvalho, C.M.B.; Faustino, M.A.; Neves, M.G.P.M.S.; Tomés, J.P.C.; Tomés, A.C.; Cavaleiro, J.A.S.; Cunha, A.; Gomes, N.C.M.; Alves, E.; et al. Antimicrobial Photodynamic Therapy: Study of Bacterial Recovery Viability and Potential Development of Resistance after Treatment. Mar. Drugs 2010, 8, 91–105. [Google Scholar] [CrossRef]
- Maisch, T. Resistance in antimicrobial photodynamic inactivation of bacteria. Photochem. Photobiol. Sci. 2015, 14, 1518–1526. [Google Scholar] [CrossRef]
- Sen, P.; Soy, R.; Mgidlana, S.; Mack, J.; Nyokong, T. Light-driven antimicrobial therapy of palladium porphyrins and their chitosan immobilization derivatives and their photophysical-chemical properties. Dye. Pigment. 2022, 203, 110313. [Google Scholar] [CrossRef]
- Oyim, J.; Omolo, C.A.; Amuhaya, E.K. Photodynamic Antimicrobial Chemotherapy: Advancements in Porphyrin-Based Photosensitize Development. Front. Chem. 2021, 9, 635344. Available online: https://www.frontiersin.org/article/10.3389/fchem.2021.635344 (accessed on 28 April 2022). [CrossRef]
- Belali, S.; Karimi, A.R.; Hadizadeh, M. Novel nanostructured smart, photodynamic hydrogels based on poly(N-isopropylacrylamide) bearing porphyrin units in their crosslink chains: A potential sensitizer system in cancer therapy. Polymer 2017, 109, 93–105. [Google Scholar] [CrossRef]
- Soliman, N.; Sol, V.; Ouk, T.S.; Thomas, C.; Gasser, G. Encapsulation of Ru(II) polypyridyl complex in polylactide nanoparticles for antimicrobial photodynamic therapy. Phamarceutics 2020, 12, 921. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, A.S. Hydrogels for biomedical applications. Adv. Drug Deliv. Rev. 2002, 54, 3–12. [Google Scholar] [CrossRef] [PubMed]
- Mesquita, M.Q.; Dias, C.J.; Neves, M.G.P.M.S.; Almeida, A.; Faustino, M.A.F. Revisiting Current Photoactive Materials for Antimicrobial Photodynamic Therapy. Molecules 2018, 23, 2424. [Google Scholar] [CrossRef] [PubMed]
- Xia, L.Y.; Zhang, X.; Cao, M.; Chen, Z.; Wu, F.G. Enhanced Fluorescence Emission and Singlet Oxygen Generation of Photosensitizers Embedded in Injectable Hydrogels for Imaging-Guided Photodynamic Cancer Therapy. Biomacromolecules 2017, 18, 3073–3081. [Google Scholar] [CrossRef]
- Liu, J.; Jiang, W.; Xu, Q.; Zeng, Y. Progress in Antibacterial Hydrogel Dressing. Gels 2022, 8, 503. [Google Scholar] [CrossRef]
- Belali, S.; Savoie, H.; O’Brien, J.M.; Cafolla, A.A.; O’Connell, B.; Karimi, A.R.; Boyle, R.W.; Senge, M.O. Synthesis and Characterization of Temperature-Sensitive and Chemically Cross-Linked Poly(N-isopropylacrylamide)/Photosensitizer Hydrogels for Applications in Photodynamic Therapy. Biomacromolecules 2018, 19, 1592–1601. [Google Scholar] [CrossRef]
- Glass, S.; Kühnert, M.; Lippmann, N.; Zimmer, J.; Werderhausen, R.; Abel, B.; Eulenburg, V.; Schulze, A. Photosensitizer-loaded hydrogels for photodynamic inactivation of multiresistant bacteria in wounds. RCS Adv. 2021, 11, 7600–7609. [Google Scholar] [CrossRef]
- Lovell, J.F.; Roxin, A.; Ng, K.K.; Qi, Q.; McMullen, J.D.; DaCosta, R.S.; Zheng, G. Porphyrin-Cross-Linked Hydrogel for Fluorescence-Guided Monitoring and Surgical Resection. Biomacromolecules 2011, 12, 3115–3118. [Google Scholar] [CrossRef]
- Brady, C.; Bell, S.E.J.; Parsons, C.; Gorman, S.P.; Jones, D.S.; McCoy, C.P. Novel Porphyrin-Incorporated Hydrogels for Photoactive Intraocular Lens Biomaterials. J. Phys. Chem. B 2007, 111, 527–534. [Google Scholar] [CrossRef]
- Ng, L.T.; Swami, S.; Gordon-Thomson, C. Hydrogels synthesised through photoinitiator-free photopolymerisation technique for delivering drugs including a tumour-tracing porphyrin. Radiat. Phys. Chem. 2006, 75, 604–612. [Google Scholar] [CrossRef]
- Elkihel, A.; Christie, C.; Vernisse, C.; Ouk, T.S.; Lucas, R.; Chaleix, V.; Sol, V. Xylan-Based Cross-Linked Hydrogel for Photodynamic Antimicrobial Chemotherapy. ACS Appl. Bio Mater. 2021, 4, 7204–7212. [Google Scholar] [CrossRef] [PubMed]
- Elkihel, A.; Vernisse, C.; Ouk, T.S.; Lucas, R.; Chaleix, V.; Sol, V. Cationic porphyrin–xylan conjugate hydrogels for photodynamic antimicrobial chemotherapy. J. Appl. Polym. Sci. 2022, 139, e52744. [Google Scholar] [CrossRef]
- Jiblaoui, A.; Leroy-Lhez, S.; Ouk, T.S.; Grenier, K.; Sol, V. Novel polycarboxylate porphyrins: Synthesis, characterization, photophysical properties and preliminary antimicrobial study against Gram-positive bacteria. Bioorganic Med. Chem. Lett. 2015, 25, 355–362. [Google Scholar] [CrossRef]
- Satapathy, D.; Biswas, D.; Behera, B.; Sagiri, S.S.; Pal, K.; Pramanik, K. Sunflower-oil based lecithin organogels as matrices for controlled drug delivery. J. Appl. Polym. Sci. 2013, 129, 585–594. [Google Scholar] [CrossRef]
- Estanqueiro, M.; Conceição, J.; Amaral, M.H.; Lobo, J.M.S. Characterization, sensorial evaluation and moisturizing efficacy of nanolipidgel formulations. Int. J. Cosmet. Sci. 2014, 36, 159–166. [Google Scholar] [CrossRef]
- Wikene, K.O.; Rukke, H.V.; Bruzell, E.; Tϕnnesen, H.H. Physicochemical characterisation and antimicrobial phototoxicity of an anionic porphyrin in natural deep eutectic solvent. Eur. J. Phamaceutics Biopharm. 2016, 105, 75–84. [Google Scholar] [CrossRef] [PubMed]
- Ndong Ntoutoume, G.M.A.; Granet, R.; Mbakidi, J.M.; Constantin, E.; Bretin, L.; Léger, D.Y.; Liagre, B.; Brégier, F.; Chaleix, V.; Sol, V. Design and synthesis of zinc protoporphyrin IX/adamantane /cyclodextrin/cellulose nanocrystals complexes for anticancer photodynamic therapy. Bioorg. Med. Chem. Lett. 2021, 41, 128024. [Google Scholar] [CrossRef] [PubMed]
Hydrogels | Xyl-TCPP-1 | Xyl-TCPP-2 | Xyl-TCPP-3 |
---|---|---|---|
Mass percentage of TCPP after saponification of ester bond (%) | 14.8 | 9.9 | 6.2 |
B. cereus | S. aureus | |||
---|---|---|---|---|
Dark | Light | Dark | Light | |
xyl-TCPP-3 | 5.95 | - | 5.85 | - |
TCPP (6.2%) | 4.14 | - | 4.1 | - |
CT | Nd | Nd | Nd | Nd |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elkihel, A.; Vernisse, C.; Ouk, T.-S.; Lucas-Roper, R.; Chaleix, V.; Sol, V. Xylan–Porphyrin Hydrogels as Light-Triggered Gram-Positive Antibacterial Agents. Gels 2023, 9, 124. https://doi.org/10.3390/gels9020124
Elkihel A, Vernisse C, Ouk T-S, Lucas-Roper R, Chaleix V, Sol V. Xylan–Porphyrin Hydrogels as Light-Triggered Gram-Positive Antibacterial Agents. Gels. 2023; 9(2):124. https://doi.org/10.3390/gels9020124
Chicago/Turabian StyleElkihel, Abdechakour, Charlotte Vernisse, Tan-Sothéa Ouk, Romain Lucas-Roper, Vincent Chaleix, and Vincent Sol. 2023. "Xylan–Porphyrin Hydrogels as Light-Triggered Gram-Positive Antibacterial Agents" Gels 9, no. 2: 124. https://doi.org/10.3390/gels9020124
APA StyleElkihel, A., Vernisse, C., Ouk, T. -S., Lucas-Roper, R., Chaleix, V., & Sol, V. (2023). Xylan–Porphyrin Hydrogels as Light-Triggered Gram-Positive Antibacterial Agents. Gels, 9(2), 124. https://doi.org/10.3390/gels9020124