Directional-Freezing-Assisted In Situ Sol–Gel Strategy to Synthesize High-Strength, Fire-Resistant, and Hydrophobic Wood-Based Composite Aerogels for Thermal Insulation
Abstract
:1. Introduction
2. Results and Discussion
2.1. Microstructure and Composition
2.2. Mechanical Properties
2.3. Thermal Insulation
2.4. Hydrophobicity
2.5. Thermal Stability and Fire Resistance
3. Conclusions
4. Materials and Methods
4.1. Materials and Chemicals
4.2. Preparation of Wood-Based Aerogel
4.3. Characterization
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Balaji, D.; Sivalingam, S.; Bhuvaneswari, V.; Amarnath, V.; Adithya, J.; Balavignesh, V.; Surya, R.G. Aerogels as alternatives for thermal insulation in buildings—A comparative teeny review. Mater. Today Proc. 2022, 62, 5371–5377. [Google Scholar] [CrossRef]
- Williams, J.C.; Nguyen, B.N.; McCorkle, L.; Scheiman, D.; Griffin, J.S.; Steiner, S.A.; Meador, M.A.B. Highly porous, rigid-rod polyamide aerogels with superior mechanical properties and unusually high thermal conductivity. ACS Appl. Mater. Interfaces 2017, 9, 1801–1809. [Google Scholar] [CrossRef]
- Paraskevopoulou, P.; Chriti, D.; Raptopoulos, G.; Anyfantis, G.C. Synthetic polymer aerogels in particulate form. Materials 2019, 12, 1543. [Google Scholar] [CrossRef] [Green Version]
- Linhares, T.; de Amorim, M.T.P.; Duraes, L. Silica aerogel composites with embedded fibres: A review on their preparation, properties and applications. J. Mater. Chem. A 2019, 7, 22768–22802. [Google Scholar] [CrossRef]
- Liu, H.; Liu, J.A.; Tian, Y.; Jiao, J.H.; Wu, X.H. Thermal insulation performance of silica aerogel composites doped with hollow opacifiers: Theoretical approach. Gels 2022, 8, 295. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.X.; Cheng, S.J.; Xu, K.; Yan, B.; Li, Y.L.; Cai, W.W.; Cai, J.F.; Xu, B.B.; Zhou, Y.H.; Zhang, Y.F.; et al. Controlling anisotropic thermal properties of graphene aerogel by compressive strain. J. Colloid Interface Sci. 2022, 619, 369–376. [Google Scholar] [CrossRef]
- Chen, C.J.; Kuang, Y.D.; Zhu, S.Z.; Burgert, I.; Keplinger, T.; Gong, A.; Li, T.; Berglund, L.; Eichhorn, S.J.; Hu, L.B. Structure-property-function relationships of natural and engineered wood. Nat. Rev. Mater. 2020, 5, 642–666. [Google Scholar] [CrossRef]
- Garemark, J.; Perea-Buceta, J.E.; Del Cerro, D.R.; Hall, S.; Berke, B.; Kilpelainen, I.; Berglund, L.A.; Li, Y.Y. Nanostructurally controllable strong wood aerogel toward efficient thermal insulation. ACS Appl. Mater. Interfaces 2022, 14, 24697–24707. [Google Scholar] [CrossRef]
- Chau, M.; Kopera, B.A.F.; Machado, V.R.; Tehrani, S.M.; Winnik, M.A.; Kumacheva, E.; Retsch, M. Reversible transition between isotropic and anisotropic thermal transport in elastic polyurethane foams. Mater. Horiz. 2017, 4, 236–241. [Google Scholar] [CrossRef] [Green Version]
- Sekeri, S.H.; Ibrahim, M.N.M.; Umar, K.; Yaqoob, A.A.; Azmi, M.N.; Hussin, M.H.; Othman, M.B.H.; Malik, M.F.I.A. Preparation and characterization of nanosized lignin from oil palm (Elaeis guineensis) biomass as a novel emulsifying agent. Int. J. Biol. Macromol. 2020, 164, 3114–3124. [Google Scholar] [CrossRef]
- Yaqoob, A.A.; Sekeri, S.H.; Othman, M.B.H.; Ibrahim, M.N.M.; Feizi, Z.H. Thermal degradation and kinetics stability studies of oil palm (Elaeis guineensis) biomass-derived lignin nanoparticle and its application as an emulsifying agent. Arab. J. Chem. 2021, 14, 103182–103199. [Google Scholar] [CrossRef]
- Paril, P.; Brabec, M.; Manak, O.; Rousek, R.; Rademacher, P.; Cermak, P.; Dejmal, A. Comparison of selected physical and mechanical properties of densified beech wood plasticized by ammonia and saturated steam. Eur. J. Wood Wood Prod. 2014, 72, 583–591. [Google Scholar] [CrossRef]
- Zhang, L.L.; Xu, J.S.; Shen, H.Y.; Xu, J.Q.; Cao, J.Z. Montmorillonite-catalyzed furfurylated wood for flame retardancy. Fire Saf. J. 2021, 121, 103297–103305. [Google Scholar] [CrossRef]
- Li, Q.D.; Liang, Y.Y.; Chen, F.; Sang, T.H. Preparation and performance of modified montmorillonite-reinforced wood-based foamed composites. BioResources 2020, 15, 3566–3584. [Google Scholar] [CrossRef]
- Xu, J.F.; Li, X.Y.; Long, L.; Liu, R. Enhancement of the physical and mechanical properties of wood using a novel organo-montmorillonite/hyperbranched polyacrylate emulsion. Holzforschung 2021, 75, 545–554. [Google Scholar] [CrossRef]
- Baishya, P.; Maji, T.K. Enhancement in physicochemical properties of citric acid/nano SiO2 treated sustainable wood-starch nanocomposites. Cellulose 2017, 24, 4263–4274. [Google Scholar] [CrossRef]
- Yang, J.S.; Li, H.; Yi, Z.D.; Liao, M.R.; Qin, Z.Y. Stable superhydrophobic wood surface constracting by KH580 and nano-Al2O3 on polydopamine coating with two process methods. Colloids Surf. A 2022, 637, 128219–128228. [Google Scholar] [CrossRef]
- Svora, P.; Pawelkowicz, S.S.; Ecorchard, P.; Plocek, J.; Schieberova, A.; Prosek, Z.; Ptacek, P.; Posta, J.; Targowski, P.; Kuklik, P.; et al. Study of interactions between titanium dioxide coating and wood cell wall ultrastructure. Nanomaterials 2022, 12, 2678. [Google Scholar] [CrossRef]
- Song, Q.Q.; Miao, C.Q.; Sai, H.Z.; Gu, J.; Wang, M.J.; Jiang, P.J.; Wang, Y.T.; Fu, R.; Wang, Y.X. Silica-bacterial cellulose composite aerogel fibers with excellent mechanical properties from sodium silicate precursor. Gels 2022, 8, 17. [Google Scholar] [CrossRef]
- Rahayu, I.; Darmawan, W.; Nawawi, D.S.; Prihatini, E.; Ismail, R.; Laksono, G.D. Physical properties of fast-growing wood-polymer nano composite synthesized through TiO2 nanoparticle impregnation. Polymers 2022, 14, 4463. [Google Scholar] [CrossRef]
- Bak, M.; Molnar, F.; Rakosa, R.; Nemeth, Z.; Nemeth, R. Dimensional stabilization of wood by microporous silica aerogel using in-situ polymerization. Wood Sci. Technol. 2022, 56, 1353–1375. [Google Scholar] [CrossRef]
- Chen, H.; Zhang, Y.T.; Zhong, T.H.; Wu, Z.H.; Zhan, X.X.; Ye, J.Y. Thermal insulation and hydrophobization of wood impregnated with silica aerogel powder. J. Wood Sci. 2020, 66, 81–91. [Google Scholar] [CrossRef]
- Yan, M.Y.; Fu, Y.Y.; Pan, Y.L.; Cheng, X.D.; Gong, L.L.; Zhou, Y.; Ahmed, H.; Zhang, H.P. Highly elastic and fatigue resistant wood/silica composite aerogel operated at extremely low temperature. Compos. B—Eng. 2022, 230, 109496–109506. [Google Scholar] [CrossRef]
- Hill, C.; Altgen, M.; Rautkari, L. Thermal modification of wood—A review: Chemical changes and hygroscopicity. J. Mater. Sci. 2021, 56, 6581–6614. [Google Scholar] [CrossRef]
- Chen, C.J.; Song, J.W.; Cheng, J.; Pang, Z.Q.; Gan, W.T.; Chen, G.G.; Kuang, Y.D.; Huang, H.; Ray, U.; Li, T.; et al. Highly elastic hydrated cellulosic materials with durable compressibility and tunable conductivity. ACS Nano 2021, 14, 16723–16734. [Google Scholar] [CrossRef] [PubMed]
- Guan, H.; Cheng, Z.Y.; Wang, X.Q. Highly compressible wood sponges with a spring-like lamellar structure as effective and reusable oil absorbents. ACS Nano 2018, 12, 10365–10373. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.M.; Guo, C.N.; Zhang, M.Z.; Shi, L. Characteristics of nanoporous silica aerogel under high temperature from 950 °C to 1200 °C. Mater. Des. 2017, 129, 82–90. [Google Scholar] [CrossRef]
- Mahadik, S.A.; Pedraza, F.; Parale, V.G.; Park, H.H. Organically modified silica aerogel with different functional silylating agents and effect on their physico-chemical properties. J. Non-Cryst. Solids 2016, 453, 164–171. [Google Scholar] [CrossRef]
- Wan, C.C.; Lu, Y.; Jiao, Y.; Jin, C.D.; Sun, Q.F.; Li, J. Fabrication of hydrophobic, electrically conductive and flame-resistant carbon aerogels by pyrolysis of regenerated cellulose aerogels. Carbohydr. Polym. 2015, 118, 115–118. [Google Scholar] [CrossRef]
- Hu, H.; Zhao, Z.B.; Wan, W.B.; Gogotsi, Y.; Qiu, J.S. Ultralight and highly compressible graphene aerogels. Adv. Mater. 2013, 25, 2219–2223. [Google Scholar] [CrossRef]
- Wu, Z.Y.; Li, C.; Liang, H.W.; Chen, J.F.; Yu, S.H. Ultralight, flexible, and fire-resistant carbon nanofiber aerogels from bacterial cellulose. Angew. Chem. 2013, 125, 2997–3001. [Google Scholar] [CrossRef]
- Lu, X.; Arduinischuster, M.C.; Kuhn, J.; Nilsson, O.; Fricke, J.; Pekala, R.W. Thermal conductivity of monolithic organic aerogels. Science 1992, 255, 971–972. [Google Scholar] [CrossRef] [PubMed]
- Sai, H.Z.; Wang, M.J.; Miao, C.Q.; Song, Q.Q.; Wang, Y.T.; Fu, R.; Wang, Y.X.; Ma, L.T.; Hao, Y. Robust silica-bacterial cellulose composite aerogel fibers for thermal insulation textile. Gels 2021, 7, 145. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.X.; Jia, S.F.; Liu, J.Y.; Wang, W.B.; Cao, H.M.; Guo, X.; Sun, W.S. Fabrication of thermal energy storage wood based on graphene aerogel encapsulated polyethylene glycol as phase change material. Mater. Res. Express 2020, 7, 95503–95512. [Google Scholar] [CrossRef]
- Johnson, K.L.; Kendall, K.; Roberts, A.D. Surface energy and the contact of elastic solids. Proc. R. Soc. Lond. A—Math. Phys. Sci. 1971, 324, 301–313. [Google Scholar]
- Sun, M.T.; Wang, Y.; Wang, X.W.; Liu, Q.; Li, M.; Shulga, Y.R.; Li, Z. In-situ synthesis of layered double hydroxide/silica aerogel composite and its thermal safety characteristics. Gels 2022, 8, 581. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.J.; Lee, J.M.; Nam, K.S.; Hwang, H. Thermal gelation for synthesis of surface-modified silica aerogel powders. Gels 2021, 7, 242. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.X.; Han, X.S.; Han, X.W.; Chen, Z.B.; Wang, S.J.; Pu, J.W. MXene/wood-derived hierarchical cellulose scaffold composite with superior electromagnetic shielding. Carbohyd. Polym. 2021, 254, 117033–117041. [Google Scholar] [CrossRef]
- Sai, H.Z.; Fu, R.; Xiang, J.H.; Guan, Y.L.; Zhang, F.S. Fabrication of elastic silica-bacterial cellulose composite aerogels with nanoscale interpenetrating network by ultrafast evaporative drying. Compos. Sci. Technol. 2017, 155, 72–80. [Google Scholar] [CrossRef]
Samples | NW | DW | DW/Si-8 | DW/Si-10 | DW/Si-12 | DW/Si-14 |
---|---|---|---|---|---|---|
MTES (mL) | 0 | 0 | 8 | 10 | 12 | 14 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hou, Y.; Chen, J.; Pan, D.; Zhao, L. Directional-Freezing-Assisted In Situ Sol–Gel Strategy to Synthesize High-Strength, Fire-Resistant, and Hydrophobic Wood-Based Composite Aerogels for Thermal Insulation. Gels 2023, 9, 170. https://doi.org/10.3390/gels9020170
Hou Y, Chen J, Pan D, Zhao L. Directional-Freezing-Assisted In Situ Sol–Gel Strategy to Synthesize High-Strength, Fire-Resistant, and Hydrophobic Wood-Based Composite Aerogels for Thermal Insulation. Gels. 2023; 9(2):170. https://doi.org/10.3390/gels9020170
Chicago/Turabian StyleHou, Yan, Junyong Chen, Defang Pan, and Lu Zhao. 2023. "Directional-Freezing-Assisted In Situ Sol–Gel Strategy to Synthesize High-Strength, Fire-Resistant, and Hydrophobic Wood-Based Composite Aerogels for Thermal Insulation" Gels 9, no. 2: 170. https://doi.org/10.3390/gels9020170
APA StyleHou, Y., Chen, J., Pan, D., & Zhao, L. (2023). Directional-Freezing-Assisted In Situ Sol–Gel Strategy to Synthesize High-Strength, Fire-Resistant, and Hydrophobic Wood-Based Composite Aerogels for Thermal Insulation. Gels, 9(2), 170. https://doi.org/10.3390/gels9020170