Synthesis and Degradation Properties of Sericin/PVA Hydrogels
Abstract
:1. Introduction
2. Results and Discussion
2.1. Isolation of Sericin
2.2. Preparation and Characterization of Hydrogels
2.3. Degradation Test
3. Conclusions
4. Materials and Methods
4.1. Materials
4.2. Isolation of Sericin
4.3. Preparation of Sericin/PVA Hydrogels
4.4. Characterizations
4.4.1. FTIR-ATR Spectroscopy
4.4.2. XRD Characterization
4.4.3. Morphological Characterization
4.5. Degradation Test
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Oliver, T.I.; Mutluoglu, M. Diabetic Foot Ulcer, StatPearls, Treasure Island; StatPearls Publishing: Hongkong, China, 2021. [Google Scholar]
- Hilton, J.R.; Williams, D.T.; Beuker, B.; Miller, D.R.; Harding, K.G. Wound dressings in diabetic foot disease. Clin. Infect. Dis. 2004, 39, S100–S103. [Google Scholar] [CrossRef] [Green Version]
- Dhivya, S.; Padma, V.V.; Santhini, E. Wound dressings—A review. Biomedicine 2015, 5, 24–28. [Google Scholar] [CrossRef]
- Deligkaris, K.; Tadele, T.S.; Olthuis, W.; van den Berg, A. Hydrogel-based devices for biomedical applications. Sens. Actuators B Chem. 2010, 147, 765–774. [Google Scholar] [CrossRef]
- Oyen, M.L. Mechanical characterisation of hydrogel materials. Int. Mater. Rev. 2014, 59, 44–59. [Google Scholar] [CrossRef]
- Dumville, J.C.; O’Meara, S.; Deshpande, S.; Speak, K. Hydrogel dressings for healing diabetic foot ulcers. Cochrane Database Syst. Rev. 2013, 7, CD009101. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, E.M. Hydrogel: Preparation, characterization, and applications: A review. J. Adv. Res. 2015, 6, 105–121. [Google Scholar] [CrossRef] [Green Version]
- Kapoor, S.; Kundu, S.C. Silk protein-based hydrogels: Promising advanced materials for biomedical applications. Acta Biomater. 2016, 31, 17–32. [Google Scholar] [CrossRef]
- Pereira, R.F.P.; Silva, M.M.; Bermudez, V.D.Z. Bombyx mori silk fibers: An outstanding family of materials. Macromol. Mater. Eng. 2015, 300, 1171–1198. [Google Scholar] [CrossRef]
- Kunz, R.I.; Brancalhão, R.M.C.; de Fátima Chasko Ribeiro, L.; Natali, M.R.M. Silkworm sericin: Properties and biomedical applications. BioMed Res. Int. 2016, 2016, 8175701. [Google Scholar] [CrossRef] [Green Version]
- Yan, C.; Liang, J.; Fang, H.; Meng, X.; Chen, J.; Zhong, Z.; Liu, Q.; Hu, H.; Zhang, X. Fabrication and evaluation of silk sericin-derived hydrogel for the release of the model drug berberine. Gels 2021, 7, 23. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, J.; Huang, L.; Wang, Z.; Wang, L. Design and performance of a sericin-alginate interpenetrating network hydrogel for cell and drug delivery. Sci. Rep. 2015, 5, 12374. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Zhao, Y.; He, X.; Fang, A.; Jiang, R.; Wu, T.; Chen, H.; Cao, X.; Liang, P.; Xia, D.; et al. A sterile self-assembled sericin hydrogel via a simple two-step process. Polym. Test 2019, 80, 106016. [Google Scholar] [CrossRef]
- Kundu, B.B.; Kundu, S.C. Silk sericin/polyacrylamide in situ forming hydrogels for dermal reconstruction. Biomaterials 2012, 33, 7456–7467. [Google Scholar] [CrossRef]
- Zhang, H.; Li, L.; Dai, F.; Zhang, H.; Ni, B.; Zhao, W.; Yang, X.; Wu, Y. Preparation and characterization of silk fibroin as a biomaterial with potential for drug delivery. J. Transl. Med. 2012, 10, 117. [Google Scholar] [CrossRef] [Green Version]
- Rehman, I.; Farooq, M.; Botelho, S. Biochemistry, Secondary Protein Structure; StatPearls Publishing: Hongkong, China, 2021. [Google Scholar]
- Teramoto, H.; Miyazawa, M. Analysis of structural properties and formation of sericin fiber by infrared spectroscopy. J. Insect Biotechnol. Sericol. 2003, 72, 157–162. [Google Scholar] [CrossRef]
- Martínez, D.C.C.; Zuluaga, C.L.; Restrepo-Osorio, A.; Álvarez-López, C. Characterization of sericin obtained from cocoons and silk yarns. Procedia Eng. 2017, 200, 377–383. [Google Scholar] [CrossRef]
- Sadat, A.; Joye, I.J. Peak fitting applied to fourier transform infrared and raman spectroscopic analysis of proteins. Appl. Sci. 2020, 10, 5918. [Google Scholar] [CrossRef]
- Kim, M.-K.; Kwak, H.-W.; Lee, J.-Y.; Yun, H.-S.; Kim, M.-H.; Lee, K.-H. Effect of lyoprotectant on the solubility and structure of silk sericin. Int. J. Indust. Entomol. 2012, 1, 133–137. [Google Scholar] [CrossRef]
- Ahmadi, F.; Oveisi, Z.; Samani, S.M.; Amoozgar, Z. Chitosan based hydrogels: Characteristics and pharmaceutical applications. Res. Pharm. Sci. 2015, 10, 1–16. [Google Scholar]
- Holloway, J.L.; Lowman, A.M.; Palmese, G.R. The role of crystallization and phase separation in the formation of physically cross-linked PVA hydrogels. Soft Matter. 2013, 3, 826–833. [Google Scholar] [CrossRef]
- Adelnia, H.; Ensandoost, R.; Moonshi, S.S.; Gavgani, J.N.; Vasafi, E.I.; Ta, H.T. Freeze/thawed polyvinyl alcohol hydrogels: Present, past and future. Eur. Polym. J. 2022, 164, 110974. [Google Scholar] [CrossRef]
- Wang, M.; Bai, J.; Shao, K.; Tang, W.; Zhao, X.; Lin, D.; Huang, S.; Chen, C.; Ding, Z.; Ye, J. Poly(vinyl alcohol) hydrogels: The old and new functional materials. Int. J. Polym. Sci. 2021, 1, 2225426. [Google Scholar] [CrossRef]
- Hanif, W.; Hardiansyah, A.; Randy, A.; Asri, L.A.T.W. Physically crosslinked PVA/graphene-based materials/aloe vera hydrogel with antibacterial activity. RSC Adv. 2021, 11, 29029–29041. [Google Scholar] [CrossRef] [PubMed]
- Tao, G.; Wang, Y.; Cai, R.; Chang, H.; Song, K.; Zuo, H.; Zhao, P.; Xia, Q.; He, H. Design and performance of sericin/poly(vinyl alcohol) hydrogel as a drug delivery carrier for potential wound dressing application. Mater. Sci. Eng. C 2019, 101, 341–351. [Google Scholar] [CrossRef]
- Xiang, J.; Shena, L.; Hong, Y. Status and future scope of hydrogels in wound healing: Synthesis, materials and evaluation. Eur. Polym. J. 2020, 130, 109609. [Google Scholar] [CrossRef]
- Yuan, L.; Li, X.; Ge, L.; Jia, X.; Lei, J.; Mu, C.; Li, D. Emulsion template method for the fabrication of gelatin-based scaffold with controllable pore structure. ACS Appl. Mater. Interfaces 2019, 11, 269–277. [Google Scholar] [CrossRef]
- Annabi, N.; Nichol, J.W.; Zhong, X.; Ji, C.; Koshy, S.; Khademhosseini, A.; Dehghani, F. Controlling the porosity and microarchitecture of hydrogels for tissue engineering. Tissue Eng. Part B Rev. 2010, 16, 371–383. [Google Scholar] [CrossRef] [Green Version]
- Golafshan, N.; Rezahasani, R.; Esfahani, M.T.; Kharaziha, M.; Khorasani, S. Nanohybrid hydrogels of laponite: PVA-alginate as a potential wound healing material. Carbohydr. Polym. 2017, 176, 392–401. [Google Scholar] [CrossRef]
- Shamloo, A.; Sarmadi, M.; Aghababaie, Z.; Vossoughi, M. Accelerated full-thickness wound healing via sustained bFGF delivery based on a PVA/chitosan/gelatin hydrogel incorporating PCL microspheres. Int. J. Pharm. 2018, 537, 278–289. [Google Scholar] [CrossRef]
- Liu, J.; Shi, L.; Deng, Y.; Zou, M.; Cai, B.; Song, Y.; Wang, Z.; Wang, L. Silk sericin-based materials for biomedical applications. Biomaterials 2022, 287, 121638. [Google Scholar] [CrossRef]
Absorption Peak (cm−1) | Functional Groups | |
---|---|---|
Cocoon | Sericin | |
3269 | 3274 | N-H stretching overlapping with OH from serine (3500–3200 cm−1) |
1614 | 1618 | Amide I group mostly represents the C=O stretching of the amide group |
1508 | 1518 | Amide II group, contribution from N–H bending and C–N stretching |
1404 | 1398 | C–H and O–H bending |
1228 | 1240 | Amide III group, C–N and C=O stretching |
1063 | 1068 | C–OH stretching |
Secondary Structure | Percentage (%) |
---|---|
β-sheet intermolecular | 27.63 |
β-sheet | 24.18 |
Random coil | 4.18 |
β-turn | 44.01 |
Sample | Diameter (µm) | ||
---|---|---|---|
Minimum | Maximum | Mean | |
2S0P100 | 24 | 110 | 60 |
2S50P50 | 30 | 118 | 59 |
2S75P25 | 32 | 138 | 75 |
2S100P0 | - | - | - |
4S0P100 | 27 | 69 | 44 |
4S50P50 | 27 | 71 | 48 |
4S75P25 | 39 | 123 | 81 |
4S100P0 | 33 | 139 | 71 |
Sample | Diameter (µm) | ||
---|---|---|---|
Minimum | Maximum | Mean | |
2S0P100 | 34 | 123 | 67 |
2S50P50 | 37 | 85 | 56 |
2S75P25 | 33 | 99 | 65 |
2S100P0 | - | - | - |
4S0P100 | 43 | 140 | 72 |
4S50P50 | 38 | 67 | 51 |
4S75P25 | 52 | 112 | 69 |
4S100P0 | 35 | 191 | 97 |
Polymer Concentration | Sample | Sericin to PVA Ratio (v/v) |
---|---|---|
2% | 2S100P0 | 4:0 |
2S75P25 | 3:1 | |
2S50P50 | 2:2 | |
2S0P100 | 0:4 | |
4% | 4S100P0 | 4:0 |
4S75P25 | 3:1 | |
4S50P50 | 2:2 | |
4S0P100 | 0:4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ekasurya, W.; Sebastian, J.; Puspitasari, D.; Asri, P.P.P.; Asri, L.A.T.W. Synthesis and Degradation Properties of Sericin/PVA Hydrogels. Gels 2023, 9, 76. https://doi.org/10.3390/gels9020076
Ekasurya W, Sebastian J, Puspitasari D, Asri PPP, Asri LATW. Synthesis and Degradation Properties of Sericin/PVA Hydrogels. Gels. 2023; 9(2):76. https://doi.org/10.3390/gels9020076
Chicago/Turabian StyleEkasurya, William, Joses Sebastian, Dita Puspitasari, Putri P. P. Asri, and Lia A. T. W. Asri. 2023. "Synthesis and Degradation Properties of Sericin/PVA Hydrogels" Gels 9, no. 2: 76. https://doi.org/10.3390/gels9020076
APA StyleEkasurya, W., Sebastian, J., Puspitasari, D., Asri, P. P. P., & Asri, L. A. T. W. (2023). Synthesis and Degradation Properties of Sericin/PVA Hydrogels. Gels, 9(2), 76. https://doi.org/10.3390/gels9020076